刘金明,郭坤林,甄 峰,张鸿琼,李文哲,许永花
·农业生物环境与能源工程·
基于近红外光谱的沼液挥发性脂肪酸含量快速检测
刘金明1,2,3,郭坤林2,甄 峰1,3,张鸿琼1,4,李文哲1,4,许永花5※
(1. 东北农业大学工程学院,哈尔滨 150030;2. 黑龙江八一农垦大学电气与信息学院,大庆 163319;3. 中国科学院可再生能源重点实验室,广州 510640;4. 黑龙江省寒地农业可再生资源利用技术及装备重点实验室,哈尔滨 150030;5. 东北农业大学电气与信息学院,哈尔滨 150030)
挥发性脂肪酸(Volatile Fatty Acids,VFA)作为厌氧发酵过程的重要中间产物,其在厌氧反应器中的累积能够反映出产甲烷菌的不活跃状态或厌氧发酵条件的恶化。为了实现对农牧废弃物厌氧发酵进行过程分析和状态监控,将近红外光谱(Near Infrared Spectroscopy,NIRS)与偏最小二乘(Partial Least Squares,PLS)相结合构建玉米秸秆和畜禽粪便厌氧发酵液乙酸、丙酸和总酸含量快速检测模型。将竞争自适应重加权采样法(Competitive Adaptive Reweighted Sampling,CARS)与遗传模拟退火(Genetic Simulated Annealing,GSA)算法相结合构建CARS-GSA算法对沼液中的乙酸、丙酸和总酸进行特征波长优选,原始光谱数据1 557个波长点经预处理和波长优选后,得到乙酸、丙酸和总酸特征波长变量分别为135、101和245个,建立的回归模型验证决定系数分别为0.988、0.923和0.886,预测均方根误差(Root Mean Squared Error of Prediction,RMSEP)分别为0.111、0.120和0.727,相对分析误差分别为9.685、3.685和3.484,与全谱建模相比RMSEP分别减少了17.78%、15.49%和1.22%,能够满足农牧废弃物厌氧发酵过程发酵液中乙酸和丙酸含量的快速检测需求,基本满足总酸的检测需求。结果表明,通过构建CARS-GSA算法优选乙酸、丙酸和总酸的敏感波长变量,参与建模的波长点数量显著减少,有效降低了变量维度和模型复杂度,提升了回归模型检测精度和预测能力,为快速准确检测沼液VFA提供了新途径。
厌氧发酵;挥发性脂肪酸;快速检测;近红外光谱;偏最小二乘;遗传模拟退火算法;竞争自适应重加权采样
挥发性脂肪酸(Volatile Fatty Acids,VFA)作为厌氧发酵过程的重要中间产物,为产甲烷阶段提供了底物[1]。产甲烷菌主要利用VFA形成甲烷,只有少部分甲烷由二氧化碳和氢气生成,但二氧化碳和氢气生成甲烷时也经过高分子有机物形成VFA的中间过程[2]。VFA在厌氧反应器中的积累能反映出产甲烷菌的不活跃状态或厌氧发酵条件的恶化,较高的VFA浓度对产甲烷菌有抑制作用,过高的VFA浓度甚至会导致厌氧发酵发生“酸败”[3]。在反应器运行过程中,发酵液的VFA浓度常用作厌氧发酵过程的重要监控指标[4]。通过监测发酵液中VFA的变化情况,可以很好地了解有机物的降解过程以及产甲烷菌的活性和系统的运行情况[5]。为了对厌氧发酵状态进行有效监控,有必要对发酵液的VFA含量进行快速、准确测定。
传统的VFA检测方法主要有精馏法、高效液相色谱法、气相色谱法和各种滴定技术[5-6]。但传统检测方法存在处理时间长、设备操作复杂等问题,难以满足厌氧发酵过程中通过快速测定VFA实现发酵过程状态监测的需求。针对厌氧发酵过程状态监测对VFA快速检测的需求,相关学者深入研究了快速滴定法[7]、新型色谱技术[8]、电化学传感器[9]、生物传感器[10]和光谱分析技术[11]在VFA快速检测方面的应用。光谱分析技术因其简便、快捷、无损、低成本的优势,已在发酵液VFA检测方面得到了广泛应用[12-13],其中以近红外光谱(Near Infrared Spectroscopy,NIRS)定量分析技术的应用最为广泛[14-16]。在应用NIRS对水体中的VFA含量进行快速检测方面,主要以光谱预处理方法和多元定量校正方法的研究为主,在VFA特征波长优选方面尚需进一步拓展,以消除不相关和非线性波长点对模型精度的影响。
当前,NIRS特征波长优选方法正朝着多种特征波长优选方法相结合的方向发展,将区间偏最小二乘法(Interval Partial Least Squares,iPLS)[17]、协同区间偏最小二乘法(Synergy iPLS,SiPLS)[18]、反向区间偏最小二乘法(Backward iPLS,BiPLS)[19]、连续投影算法[20]、竞争自适应重加权采样法(Competitive Adaptive Reweighted Sampling,CARS)[21]等特征波长优选算法与遗传算法(Genetic Algorithm,GA)[22]、模拟退火算法(Simulated Annealing Algorithm,SA)[23]、粒子群优化算法[24]等智能优化算法相结合进行NIRS特征波长变量优选已成为重要研究方向[25-27]。在NIRS定量分析方面,GA因其强大的特征波长优选能力已得到广泛应用[28-29],但GA存在早熟问题且进化后期搜索效率低。
遗传模拟退火(Genetic Simulated Annealing,GSA)算法是对GA的改进,通过结合SA的温度参数设计适应度函数,引入Metropolis扰动解选择复制策略,有效利用GA强大搜索能力的同时解决了GA的两点不足,在NIRS特征波长优选方面取得了较好的应用效果[30]。GSA在与iPLS、SiPLS和BiPLS相结合进行特征波长优选方面的性能也显著优于GA[30-32],但在使用iPLS、SiPLS和BiPLS进行特征谱区优选时,难以避免谱区内部存在冗余波长点。这些不相关和非线性的冗余波长点导致GSA编码过长,严重影响了GSA特征波长点二次搜索的性能。
因此,本文针对以秸秆和粪便为原料的厌氧发酵过程中,沼液VFA快速检测的需求,提出基于NIRS建立VFA快速检测模型,并将GSA与CARS相结合构建CARS-GSA算法进行VFA特征波长优选,有效解决iPLS、SiPLS和BiPLS敏感波段初步定位过程中存在冗余波长点的问题,进而获取满足实际检测需求的有效特征波长变量,以提高VFA快速检测模型的效率和精度。
试验用玉米秸秆取自东北农业大学校内试验田,猪粪取自哈尔滨市三元畜产实业公司,牛粪取自哈尔滨市宇峰奶牛养殖农民专业合作社,接种物取自黑龙江省寒地农业可再生资源利用技术及装备重点实验室。将采集的玉米秸秆自然风干后一部分经铡草机切成10 mm的秸秆段备用,另一部分经锤片式粉碎机(10 mm筛网)粉碎成秸秆粉备用。分别以秸秆段、秸秆粉、牛粪、猪粪、秸秆粉猪粪混合物(按总固体(Total Solid,TS)比1∶1)为厌氧发酵原料,以实验室500 L发酵罐常年驯化正常产气的牛粪厌氧发酵液为接种物,进行批式厌氧发酵试验。秸秆、牛粪、猪粪和接种物的TS浓度分别为86.02%、26.62%、31.22%和4.76%,按TS接种比1∶1,调整厌氧发酵原料和接种物添加量,使5种原料对应的发酵系统起始TS浓度分别为7%、6%、8%、7%和7%。在中温(36±1)℃恒温水浴槽中,分别采用5和10 L下口瓶作为反应器,进行2个批次的厌氧发酵试验,有效发酵容积分别为3.5和7 L。试验过程中每天定时对厌氧发酵反应器进行手摇搅拌2次,混匀料液的同时避免浮渣结壳。为了获取有代表性的VFA浓度数据样本,采集发酵液样品主要在批式厌氧发酵前半程进行。5 L发酵罐从装样后第2天开始,每天8:00采集发酵液样品40 mL存放于3个15 mL离心管中,共计采样16次。为防止料液TS浓度变高,对厌氧发酵过程产生不良影响,于第8天补水300 mL。10 L发酵罐从装样后第2天开始采样,共计采样15次,不需补水;共计采集与制备发酵液样品155个,于-20℃冰箱冷冻保存。
发酵液冷冻样品溶解后在冷冻离心机中以12 000 r/min离心10 min后,取上清液待测。使用Nicolet公司的Antaris II型傅里叶近红外光谱仪对采集样品进行透射光谱扫描,光谱采集范围4 000~10 000 cm-1(1 000~2 500 nm),分辨率为8.0 cm-1,样品扫描32次,数据保存格式为lg(1/T),背景每小时扫描一次,装样方式为1 mm光程石英比色皿前置通道扫描。在保持室内温湿度基本稳定的情况下,每个样品装样3次,取3次扫描平均值作为样品的原始光谱。原始光谱的波长数量为1 557个,数据点间距为3.86 cm-1,起始波数为10 001.03 cm-1,结束波数为3 999.64 cm-1。
使用安捷伦GC-6890N气相色谱仪测定厌氧发酵过程中沼液的VFA浓度。采用外标法建立VFA标准曲线,先制备乙酸、丙酸、丁酸、异丁酸和异戊酸的混合标准溶液,再使用去离子水稀释至6种不同浓度,并测定不同浓度标准溶液各成分对应的出峰时间和积分面积。将混合溶液的保留时间与单品的保留时间进行比较,根据已知标准溶液中各物质的浓度和积分时间绘制标准曲线。对溶解、离心并采集透射光谱数据后的厌氧发酵液样品上清液进行VFA含量测定。将其与25%偏磷酸溶液按体积比10∶1进行混合,然后再以12 000 r/min离心10 min后取上清液,将上清液使用0.45m超滤膜过滤,取滤液进行VFA浓度测定。
1.4.1 CARS算法
CARS算法基于“适者生存”的原则,将蒙特卡洛采样(Monte-Carlo Sampling,MCS)、指数衰减函数和自适应加权采样(Adaptive Reweighted Sampling,ARS)相结合获取波长子集,基于偏最小二乘(Partial Least Squares,PLS)回归系数绝对值的大小获取一系列变量组合,并选择交叉验证均方根误差(Root Mean Squared Error of Cross Validation,RMSECV)值最小的子集作为特征波长。CARS在迭代过程中引入MCS和ARS 2个随机因素,难以保证每次优选结果的一致性。可以采用多次运行CARS算法,每次都选中的波长点代表着光谱数据中与待测目标属性相关性高的波长点,选定这些多次都选中波长作为特征波长,能够建立高性能的回归模型。
1.4.2 CARS-GSA算法
CARS-GSA算法以CARS优选后的特征波长为输入,采用GSA算法对CARS优选结果进行再优化,以剔除CARS优选结果中相关性较差的波长点,从而进一步提高建模性能。CARS-GSA以CARS优选后特征波长点数为码长,以PLS回归模型的折RMSECV为目标函数,按初始种群个数约为码长的三分之一进行二进制编码和种群初始化。“1”和“0”分别表示该波长点对应的数据“是”、“否”选中参与运算。在确定初始温度、退温操作,并计算适应度函数值后,执行多个轮次的GSA选择、交叉、变异和Metropolis选择复制进化操作,完成NIRS特征波长点的优选。多次执行GSA算法对CARS优选结果进行再优化,并选择多次重复选中的波长点作为特征波长变量建立PLS回归模型,能够得到较高的回归模型性能。
本文算法包括光谱预处理、样本集划分、特征波长优选及回归模型构建等全部在Matlab R2012b软件平台中实现。
在采用安捷伦GC-6890N气相色谱仪测定155个发酵液样本的VFA浓度时,得到81个乙酸浓度有效数据、78个丙酸浓度有效数据和87个总酸浓度有效数据(总酸浓度为乙酸、丙酸、丁酸、异丁酸和异戊酸质量分数之和)。对获得的VFA样本有效浓度数据进行四分位数分析,并绘制箱线图如图1所示。
图1 样本VFA浓度箱线图
由图1可知,乙酸样本在低浓度区域占比较大,丙酸样本略微偏向低浓度区域,总酸样本分布比较均匀。乙酸样本偏离严重的原因在于厌氧发酵产乙酸、产甲烷平衡期产甲烷菌能够及时将生成的乙酸转化为甲烷和二氧化碳,进而使平衡期阶段(在整个发酵周期中时间占比较大)的乙酸浓度偏低。
为消除光谱区域中平顶峰对建模结果的影响,先剔除原始光谱数据中波数4 933.02~5 295.57 cm-1的95个波长点,再用剩余的1 462个有效波长点建立乙酸、丙酸和总酸回归模型,并对不同光谱预处理方法下的回归模型性能进行评测。经计算比较后确定乙酸浓度回归模型采用的光谱预处理方法为MSC+SG,丙酸回归模型采用的光谱预处理方法为SG+MSC,总酸回归模型采用的光谱预处理方法为FD+SNV+SG。样品原始光谱及预处理后的乙酸、丙酸和总酸光谱数据的平均光谱如图2所示。
图2 样品光谱数据
对81个乙酸样品的原始光谱依次进行MSC和SG平滑处理后,使用SPXY法划分为60个校正集样本和21个验证集样本;对78个丙酸样品的原始光谱数据依次进行SG平滑和MSC处理后,使用SPXY法划分为60个校正集样本和18个验证集样本;对87个总酸样品的原始光谱数据依次进行FD、SNV和SG平滑处理后,使用SPXY法划分为70个校正集样本和17个验证集样本。乙酸、丙酸和总酸浓度值如表1所示。
表1 样品VFA浓度
注:SD是Standard deviation的缩写,NS是Number of sample的缩写。
Note: SD is short for standard deviation, NS is short for number of sample.
2.2.1 CARS特征波长优选
在使用CARS优选乙酸回归模型特征波长时,先执行500轮次CARS算法,再按重复选中次数递增的方式选取RMSEP最小时对应的特征波长优选结果作为CARS的特征波长(记为CARS500)。执行500次CARS算法共得到乙酸特征波长383个以波数表示,下同,选中次数最多的特征波长波数为4 416.19 cm-1,对应着乙酸-CH3基团的组合频,选中次数为457次。选中次数较多的特征波长点主要分布在4 000~4 600、4 750~4 930、5 300~5 500、5 750~6 050、6 750~7 100和7 500~7 800 cm-1区域。其中4 000~4 600 cm-1对应着乙酸-CH3基团的组合频,4 750~4 930 cm-1对应着C=O和-OH基团的组合频,5 300~5 500 cm-1对应着-COOH基团的一级倍频,5 750~6 050 cm-1对应着-CH3基团的一级倍频,6 750~7 100 cm-1对应着C=O和-OH基团的二级倍频,7 500~7 800 cm-1对应着-CH3基团的二级倍频。CARS500优选特征波长与乙酸平均光谱如图3所示。
图3 CARS500优选乙酸特征波长
为分析不同重复选中次数下,CARS500优选特征波长的建模性能,建立RMSECV、RMSEP和波长点个数随重复选中次数的变化关系,如图4所示。
由图4可知,RMSECV随着选中波长点个数的减少整体上呈先迅速减少、再波浪状向前、最后跳跃式快速上升的形式,其中波长点数为120时,RMSECV得到最小值0.163,对应重复选中次数为39次。RMSEP随选中波长点个数减少整体呈锯齿型变化并逐渐增加的形式,其中重复选中次数为30、选中波长数量为142时,所建PLS回归模型的RMSEP获得最小值为0.116。采用RMSEP最小时对应的142个波长点作为CARS500优选的乙酸特征波长。
图4 RMSE、波长数量和选中次数间的关系
2.2.2 CARS-GSA特征波长优选
在使用CARS-GSA优选发酵液乙酸特征波长时,以CARS500优选的142个波长点为码长随机生成50个染色体构建初始种群,执行GSA算法进行特征波长点二次优选。GSA算法的初温确定系数取100,退温系数取0.9,进化代数取100,交叉概率取0.7,变异概率取0.01,邻域解扰动位数取10。连续执行算法50次,优选的乙酸特征波长中选中35次以上的波长共计14个。其中,波数4 057.49、4 319.77、4 354.48、4 358.33、4 362.19、4 366.05、4 408.48、4 412.33、4 416.19、4 420.05、4 531.90和4 539.61 cm-1对应着-CH3基团的组合频,波数4 925.30 cm-1对应着C=O基团的组合频,波数5 311.00 cm-1对应着-COOH基团的一级倍频。CARS-GSA优选特征波长与乙酸平均光谱如图5所示。
图5 CARS-GSA优选乙酸特征波长
为分析CARS-GSA优选特征波长的建模性能,建立RMSECV、RMSEP与波长点个数间的对应关系,如图6所示。由图6可知,RMSECV和RMSEP随选中波长点个数增加整体上呈先迅速减少、再趋于平缓、最后略有上升的趋势,但RMSECV的最小值要早于RMSEP出现。RMSECV最小值对应的波长点数为54、重复选中次数为26,RMSEP最小值对应的波长点数为135、重复选中次数为10,说明仅以RMSECV最小确定特征波长的方式容易导致回归模型产生过拟合的问题。因此,选择RMSEP最小时对应的135个选中波长作为CARS-GSA优选的乙酸特征波长。由图3和图5中RMSECV和RMSEP最小值的对比可知,CARS-GSA优选特征波长的建模性能优于CARS-500的建模性能。
图6 RMSE与波长数量间的关系
2.2.3 特征波长优选结果
按上述方法执行CARS500和CARS-GSA进行丙酸和总酸特征波长优选,得到101个丙酸特征波长和245个总酸特征波长。乙酸、丙酸和总酸特征波长分布情况如图7所示。
由图7可知,VFA特征波长全部位于8 000 cm-1以下的中低频区域,其中4 000~4 933、5 296~5 600和6 600~7 200 cm-1区域分布的特征波长点最多,这3部分正好对应着光谱数据中吸收峰较强、分辨率较好的区域。丙酸特征波长在4 100~4 500 cm-1区域有53个,对应着-CH2和-CH3基团的组合频;在4 000~4 900 cm-1区域有7个,对应着C=O和-OH基团的组合频;在5 300~5 320 cm-1区域有2个,对应着-COOH基团的一级倍频;在5 670~5 700 cm-1区域有9个,对应着-CH2基团的一级倍频;在6 000~6 070 cm-1区域有13个,对应着-CH3基团的一级倍频;在6 860~7 060 cm-1区域有17个,对应着C=O、-CH2和-OH的二级倍频。总酸特征波长在4 000~4 720 cm-1区域有139个,对应着C-C、C=O、-CH、-CH2和-CH3基团的组合频;在4 800~4 930 cm-1区域有27个,对应着C=O和-OH基团的组合频;在5 300~5 380 cm-1区域有19个,对应着-COOH基团的一级倍频;在5 930~6 010 cm-1区域有11个,对应着-CH、-CH2和-CH3基团的一级倍频;在6 590~6 600 cm-1区域有2个,对应着C=O基团的二级倍频;在6 730~7 200 cm-1区域有47个,对应着C=O、-CH、-CH2、-CH3和-OH的二级倍频。通过分析乙酸、丙酸和总酸特征波长可知,CARS-GSA与CARS500优选特征波长结果具有很好的一致性,CARS-GSA只是剔除掉CARS500优选特征波长中选中次数较少的相关性较差波长点。
图7 VFA特征波长优选结果
为评测2种波长优选算法的性能,以CARS500和CARS-GSA优选后的特征波长变量作为PLS回归模型的输入,建立沼液VFA定量回归模型,并与全谱建模结果(Full-PLS)、单次CARS(运行10次取最佳结果)优选特征波长的建模效果进行对比,结果如表2所示。
表2 VFA PLS回归模型评价指标
注:PCs是principal components的缩写。
Note: PCs is short for principal components.
由表2可知,在单次CARS优选特征波长建立的VFA回归模型中,乙酸和丙酸CARS回归模型的性能优于全谱建模,而总酸CARS回归模型的性能弱于全谱建模。原因在于乙酸和丙酸的结构相对简单,CARS能够快速定位到相关性高的特征波长点,而总酸的结构相对复杂,不同基团对应的特征波长点数量较多,当使用CARS剔除波长点时可能去掉某些相关性较高的特征波长点,导致建模性能受到影响。多次执行CARS算法进行特征波长优选可以解决单次CARS算法优选总酸特征波长建模性能较差的问题。
采用CARS-GSA作为厌氧发酵过程中发酵液乙酸、丙酸和总酸浓度的特征波长优选方案,以优选后的特征波长分别建立乙酸、丙酸和总酸浓度PLS回归模型并进行性能评测,其结果如图8所示。
图8 VFA实测值与预测值分布
1)本研究采用NIRS结合化学计量学方法进行沼液VFA的快速检测,构建模型进行特征波长优选,建立的乙酸、丙酸和总酸PLS回归模型验证决定系数分别为0.988、0.923和0.886,预测均方根误差分别为0.111、0.120和0.727,且RPD都大于3,能够满足农牧废弃物厌氧发酵过程中对发酵液乙酸和丙酸浓度的快速检测需求,基本满足总酸浓度的检测需求。
2)CARS500在发酵液VFA浓度NIRS特征波长优选方面具有良好的性能,通过多次执行CARS算法并选取重复选中波长点作为特征波长的方式能够有效提高建模精度和效率,并在一定程度上解决了CARS算法优选特征波长结果的随机性问题。
3)CARS-GSA采用GSA对多次CARS优选的特征波长进行二次优化,能够有效去除CARS500优选波长中相关性较弱的冗余波长点,在提高建模精度和检测效率的同时,确立了乙酸、丙酸和总酸相关基团与其特征波长的对应关系和特征波长在光谱区间内的分布规律。
[1]史风梅,徐洪涛,卢玢宇,等. 温度对养殖废水厌氧发酵初期产酸的影响及其原因分析[J]. 农业工程学报,2018,34(增刊):42-47. Shi Fengmei, Xu Hongtao, Lu Binyu, et al. Effects of temperature on production of volatile fatty acids in mesophilic anaerobic fermentation of swine wastewater and its cause analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp.): 42-47. (in Chinese with English abstract)
[2]于佳动,赵立欣,冯晶,等. 序批式秸秆牛粪混合厌氧干发酵过程物料理化及渗滤特性[J]. 农业工程学报,2019,35(20): 228-234. Yu Jiadong, Zhao Lixin, Feng Jing, et al. Physicochemical and percolating characteristics of sequencing batch dry anaerobic digestion of straw-cow manure mixture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 228-234. (in Chinese with English abstract)
[3]宋香育,张克强,房芳,等. 工艺措施对猪粪秸秆混合厌氧干发酵产气性能的影响[J]. 农业工程学报,2017,33(11):233-239. Song Xiangyu, Zhang Keqiang, Fang Fang, et al. Influences of different technological strategies on performance of anaerobic co-digestion of pig manure with straw in solid-state[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 233-239. (in Chinese with English abstract)
[4]Sbarciog M, Giovannini G, Chamy R, et al. Control and estimation of anaerobic digestion processes using hydrogen and volatile fatty acids measurements[J]. Water Science and Technology, 2018, 78(10): 2027-2035.
[5]Chatterjee B, Radhakrishnan L, Mazumder D. New approach for determination of volatile fatty acid in anaerobic digester sample[J]. Environmental Engineering Science, 2018, 35(4): 333-351.
[6]Lahav O, Morgan B E. Titration methodologies for monitoring of anaerobic digestion in developing countries: A review[J]. Journal of Chemical Technology and Biotechnology, 2004, 79(12): 1331-1341.
[7]Hey T, Sandstrom D, Ibrahim V, et al. Evaluating 5 and 8 pH-point titrations for measuring VFA in full-scale primary sludge hydrolysate[J]. Water SA, 2013, 39(1): 17-22.
[8]Ward A J, Bruni E, Lykkegaard M K, et al. Real time monitoring of a biogas digester with gas chromatography, near-infrared spectroscopy, and membrane-inlet mass spectrometry[J]. Bioresource Technology, 2011, 102(5): 4098-4103.
[9]Peris M, Escuder-Gilabert L. On-line monitoring of food fermentation processes using electronic noses and electronic tongues: A review[J]. Anal Chim Acta, 2013, 804: 29-36.
[10]Yu Z, Leng X, Zhao S, et al. A review on the applications of microbial electrolysis cells in anaerobic digestion[J]. Bioresource Technology, 2018, 255: 340-348.
[11]Nguyen Duc, Gadhamshetty Venkataramana, Nitayavardhana Saoharit, et al. Automatic process control in anaerobic digestion technology: A critical review[J]. Bioresource Technology, 2015, 193: 513-522.
[12]Bruni E, Ward A J, Kocks M, et al. Comprehensive monitoring of a biogas process during pulse loads with ammonia[J]. Biomass & Bioenergy, 2013, 56: 211-220.
[13]Falk H M, Reichling P, Andersen C, et al. Online monitoring of concentration and dynamics of volatile fatty acids in anaerobic digestion processes with mid-infrared spectroscopy[J]. Bioprocess and Biosystems Engineering, 2015, 38(2): 237-249.
[14]Stockl Andrea, Lichti Fabian. Near-infrared spectroscopy (NIRS) for a real time monitoring of the biogas process[J]. Bioresource Technology, 2018, 247: 1249-1252.
[15]Nespeca Maurílio Gustavo, Rodrigues Caroline Varella, Santana Kamili Oliveira, et al. Determination of alcohols and volatile organic acids in anaerobic bioreactors for H2production by near infrared spectroscopy[J]. International Journal of Hydrogen Energy, 2017, 42(32): 20480-20493.
[16]Li L, Peng X Y, Wang X M, et al. Anaerobic digestion of food waste: A review focusing on process stability[J]. Bioresource Technology, 2018, 248: 20-28.
[17]Rato Tiago J, Reis Marco S. Multiresolution interval partial least squares: A framework for waveband selection and resolution optimization[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 186: 41-54.
[18]邹小波,张俊俊,黄晓玮,等. 基于音频和近红外光谱融合技术的西瓜成熟度判别[J]. 农业工程学报,2019,35(9): 301-307. Zou Xiaobo, Zhang Junjun, Huang Xiaowei, et al. Distinguishing watermelon maturity based on acoustic characteristics and near infrared spectroscopy fusion technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 301-307. (in Chinese with English abstract)
[19]Zareef M, Chen Q S, Ouyang Q, et al. Prediction of amino acids, caffeine, theaflavins and water extract in black tea using FT-NIR spectroscopy coupled chemometrics algorithms[J]. Analytical Methods, 2018, 10(25): 3023-3031.
[20]张亚坤,罗斌,宋鹏,等. 基于近红外光谱的大豆叶片可溶性蛋白含量快速检测[J]. 农业工程学报,2018,34(18):187-193. Zhang Yakun, Luo Bin, Song Peng, et al. Rapid determination of soluble protein content for soybean leaves based on near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 187-193. (in Chinese with English abstract)
[21]王巧华,梅璐,马美湖,等. 利用机器视觉与近红外光谱技术的皮蛋无损检测与分级[J]. 农业工程学报,2019,35(24): 314-321. Wang Qiaohua, Mei Lu, Ma Meihu, et al. Nondestructive testing and grading of preserved duck eggs based on machine vision and near-infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 314-321. (in Chinese with English abstract)
[22]Jiang H, Xu W, Chen Q. Comparison of algorithms for wavelength variables selection from near-infrared (NIR) spectra for quantitative monitoring of yeast (Saccharomyces cerevisiae) cultivations[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 214: 366-371.
[23]Ye Dandan, Sun Laijun, Zou Borui, et al. Non-destructive prediction of protein content in wheat using NIRS[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 189: 463-472.
[24]Zhu Y W, Chen X Y, Wang S M, et al. Simultaneous measurement of contents of liquirtin and glycyrrhizic acid in liquorice based on near infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 196: 209-214.
[25]杨玮,李民赞,郑立华,等. 冬枣氮素含量预测模型中特征波长选择方法的应用[J]. 农业工程学报,2015,31(增刊2):164-168. Yang Wei, Li Minzan, Zheng Lihua, et al. Application of spectral screening method on prediction model of nitrogen content of jujube leaves[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.2): 164-168. (in Chinese with English abstract)
[26]朱瑶迪,张佳烨,李苗云,等. 肽聚糖对肉制品中产气荚膜梭菌芽孢萌发率影响及预测[J]. 农业工程学报,2020,36(4): 287-293. Zhu Yaodi, Zhang Jiaye, Li Miaoyun, et al. Effect of different peptidoglycan on clostridium perfringens spore germination and quantitative prediction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 287-293. (in Chinese with English abstract)
[27]Yun Y H, Bin J, Liu D L, et al. A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration[J]. Analytica Chimica Acta, 2019, 1058: 58-69.
[28]Yang M, Xu D, Chen S, et al. Evaluation of machine learning approaches to predict soil organic matter and ph using vis-NIR spectra[J]. Sensors, 2019, 19(2): 263.
[29]Song J, Li G, Yang X. Optimizing GA-PLS model of soluble solids content in Fukumoto navel orange based on Vis-NIR transmittance spectroscopy using discrete wavelet transform[J]. Journal of the Science of Food and Agriculture, 2019, 99(11): 4898-4903.
[30]刘金明,初晓冬,王智,等. 玉米秸秆纤维素和半纤维素NIRS特征波长优选[J]. 光谱学与光谱分析,2019,39(3):743-750. Liu Jinming, Chu Xiaodong, Wang Zhi, et al. Optimization of characteristic wavelength variables of near infrared spectroscopy for detecting contents of cellulose and hemicellulose in corn stover[J]. Spectroscopy and Spectral Analysis, 2019, 39(3): 743-750. (in Chinese with English abstract)
[31]刘金明,程秋爽,甄峰,等. 基于GSA的厌氧发酵原料碳氮比NIRS快速检测[J]. 农业机械学报,2019,50(11): 323-330. Liu Jinming, Cheng Qiushuang, Zhen Feng, et al. Rapid determination of C/N ratio for anaerobic fermentation feedstocks using near infrared spectroscopy based on GSA[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 323-330. (in Chinese with English abstract)
[32]Liu Jinming, Li Nan, Zhen Feng, et al. Rapid detection of carbon-nitrogen ratio for anaerobic fermentation feedstocks using near-infrared spectroscopy combined with BiPLS and GSA[J]. Applied Optics, 2019, 58(18): 5090-5097.
Rapid determination of volatile fatty acids in biogas slurry based on near infrared spectroscopy
Liu Jinming1,2,3, Guo Kunlin2, Zhen Feng1,3, Zhang Hongqiong1,4, Li Wenzhe1,4, Xu Yonghua5※
(1.,,150030,; 2.,,163319,; 3.,510640,; 4.,150030,; 5.,,150030,)
Volatile Fatty Acids (VFA), serving as important intermediate products in Anaerobic Digestion (AD), have been considered as the key variables in most AD monitoring strategies, as they respond to incoming imbalances, indicating the buffer capacity of digesters to process disturbance and imminent digester failure that caused by sudden operational changes. In order to ensure efficient operation of AD while improve the utilization rate of raw materials, it is necessary to accurately monitor and evaluate the operation state of biogas engineering, via detecting the concentrations of VFA in the process of biogas production with corn stover and animal manure as feedstocks. Previously, the rapid detection models of Acetic Acid (AA), Propionic Acid (PA) and Total Acid (TA) in biogas slurry have been constructed, using the Near Infrared Spectroscopy (NIRS) technique combined with the Partial Least Squares (PLS), aiming to overcome the time consuming and high-cost in the traditional chemical analysis method. However, a prediction model can trigger the high complexity and low accuracy, due to the spectroscopic data generally includes quantities of invalid redundant information. In this study, an integrated algorithm was presented, based on the Competitive Adaptive Reweighted Sampling (CARS) and genetic simulated annealing algorithm (GSA), to optimize the characteristic wavelength variables of AA, PA, and TA, and thereby to improve the efficiency and precision of NIRS detection models. An AD experiment was carried out with corn stover, pig manure and cow manure as feedstocks, where 155 samples of biogas slurry were collected. The NIRS data of biogas slurry was acquired in a transmittance mode using the AntarisTMII FT-NIR spectrophotometer equipped with a quartz cuvette. A Gas Chromatography (GC) system was used to measure the VFA of biogas slurry, where 81 valid data of AA, 78 valid data of PA, and 87 valid data of TA were obtained to establish the regression model. One segment of the spectrum with 95 wavelength points was removed from 4 933.02 to 5 295.57 cm-1, and 1462 wavelength variables remained, mainly due to the saturation of spectrum can be caused by the strong combination band of -OH from water. The spectral preprocessing methods were selected, according to the mean relative error of calibration set. Correspondingly, the samples were divided into the calibration set and validation set, using Sample Set Portioning based on Joint X-Y Distances (SPXY) algorithm. The number of characteristic wavelength variables for AA, PA, and TA were 135, 101, and 245, respectively. The PLS regression models were established with the characteristic wavelengths of AA, PA, and TA, where the results were the coefficients of multiple determination for prediction is 0.988, root mean squared error of prediction (RMSEP) of 0.111, and the residual predictive deviation (RPD) of 9.685 for AA, coefficients of multiple determination for prediction is 0.922, RMSEP of 0.120, and RPD of 3.685 for PA, coefficients of multiple determination for prediction is 0.886, RMSEP of 0.727, and RPD of 3.484 for TA. Meanwhile, compared with the whole spectrum model, the RMSEP in the CARS-GSA model decreased by 17.78%, 15.49%, and 1.22%, respectively, showing that the number of wavelengths significantly decreased after the optimization, whereas, the performance of regressive model was obviously higher than that of the whole wavelengths. The results demonstrate that the CARS-GSA model can fulfil the requirement of rapid detection for AA and PA concentrations in biogas slurry during anaerobic fermentation with agricultural waste as feedstocks, while basically meet the detection requirement of TA concentration. The CARS-GSA model also can be used to enhance the forecasting capability of the model, while reduce its complexity. The findings can provide a new way to improve the accuracy and robustness of prediction model, base on optimizing sensitive wavelengths for AA, PA, and TA, further for rapid and accurate measurement of VFA concentrations in biogas slurry.
anaerobic digestion; volatile fatty acids; rapid determination; near infrared spectroscopy; partial least squares; genetic simulated annealing algorithm; competitive adaptive reweighted sampling
刘金明,郭坤林,甄峰,等. 基于近红外光谱的沼液挥发性脂肪酸含量快速检测[J]. 农业工程学报,2020,36(18):188-196.doi:10.11975/j.issn.1002-6819.2020.18.023 http://www.tcsae.org
Liu Jinming, Guo Kunlin, Zhen Feng, et al. Rapid determination of volatile fatty acids in biogas slurry based on near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(18): 188-196. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.18.023 http://www.tcsae.org
2020-05-10
2020-06-28
中国科学院可再生能源重点实验室(Y907k81001);国家重点研发计划(2019YFD1100603);黑龙江省博士后面上资助(LBH-Z19087);黑龙江八一农垦大学三横三纵支持计划(ZRCQC202007);黑龙江八一农垦大学学成人才科研启动计划(XDB202006)
刘金明,博士,副教授,主要从事光谱分析技术在农业领域的应用研究。Email:jinmingliu2008@126.com
许永花,副教授,主要从事光谱分析技术方面的研究。Email:xyhsy@126.com
10.11975/j.issn.1002-6819.2020.18.023
O657.33
A
1002-6819(2020)-18-0188-09