张铁鹰,张丽阳,刘俊丽,廖朝勇,吕林,廖秀冬,罗绪刚
我国畜禽饲料资源中微量元素砷含量分布的调查研究
张铁鹰,张丽阳,刘俊丽,廖朝勇,吕林,廖秀冬,罗绪刚
(中国农业科学院北京畜牧兽医研究所,北京 100193)
【】研究我国不同地区间各种饲料原料中砷含量分布情况及不同饲料原料中砷含量超标情况,确定砷污染高风险原料为严控饲料砷含量,防止饲料砷超标提供科学依据,更为饲料企业科学制定重金属砷的品控方案提供数据支持。利用离子色谱-电感耦合等离子体-质谱联用仪(IC-ICP-MS)对采自全国31个省、直辖市和自治区的40种共4 054个主要畜禽饲料原料中砷含量进行测定。这40种饲料原料的平均砷含量范围为5.21—13 292.0 µg·kg-1之间,而各类饲料原料砷含量分布规律是:矿物质饲料(5 018.6 µg·kg-1)>动物性蛋白饲料(1 704.8 µg·kg-1)>秸秆类饲料(1 239.0 µg·kg-1)>牧草类饲料(500.3 µg·kg-1)>谷类籽实加工副产品(329.24 µg·kg-1)>植物性蛋白饲料(72.99 µg·kg-1)>谷类籽实(38.07 µg·kg-1)。同时发现,谷物籽实及其副产物与秸秆类饲料的砷分布规律:玉米秸>副产物(玉米蛋白粉、喷浆玉米皮、玉米DDGS)>玉米籽实;小麦秸>副产物(小麦麸、小麦DDGS、次粉)>小麦籽实;稻秸>副产物(米糠、脱脂米糠)>稻谷>碎米,是因为谷物植株在生长过程中对砷的富集能力排序:根>叶>茎>谷壳>米粒。通过比较不同省(区)玉米、小麦和豆粕的砷含量发现,不同省(区)同一种饲料原料的砷含量均存在极显著差异(<0.01)。根据国家饲料卫生标准,在对40种饲料原料砷含量超标率的统计中发现,谷物籽实类饲料、植物蛋白类饲料及牧草类饲料的砷含量均未超标;而谷物籽实加工副产品中的脱脂米糠砷超标率为2.8%,其他未超标;动物蛋白中鱼粉砷超标率5.3%,其他未超标;秸秆类饲料中稻秸砷超标率27.4%,其他未超标;矿物质饲料中石粉与磷酸氢钙砷含量超标率分别为30.8%和60%,其他未超标。不同饲料的砷含量超标率:磷酸氢钙>石粉>稻秸>鱼粉>脱脂米糠。以上结果表明:不同种类和不同地区饲料原料中砷含量差异较大,谷物相关的饲料原料中,秸秆类饲料砷含量最高,谷物加工副产物次之,籽实类最低。反刍动物饲料在选择秸秆类原料时,应重点检测砷的含量。同时,磷酸氢钙、石粉、稻秸、鱼粉和脱脂米糠均存在砷含量超标现象,可视为砷污染高危饲料。因此,在实际生产中,应充分考虑不同地区不同原料中的砷含量,加大高危饲料的检测频率,严控饲料砷含量在国标GB 13078-2017允许的范围内,保障饲料品质安全。
饲料原料;砷含量;猪;鸡
【研究意义】饲料是我国畜牧业发展的关键环节,饲料品质的好坏直接影响养殖效益,阻碍畜牧业健康发展。随着建设生态畜牧业的进程加快,饲料品质安全被日益关注,全国饲料工业标准化技术委员会于2017年对饲料卫生标准进行了重新修订(现行版本为GB 13078-2017)[1],其中对总砷的限量进行了修改,增加了在“干草及其加工产品”“棕榈仁饼粕”“藻类及其加工产品”“甲壳类动物及其副产品、鱼虾粉、水生软体动物及其副产品”和“其他水生动物源性饲料原料”中的限量;增加了“其他矿物质饲料原料”和“其他饲料原料”中的限量;将“猪、家禽添加剂预混合饲料”扩展为“添加剂预混合饲料”;将“猪、家禽浓缩饲料”和“牛、羊精料补充料”分别扩展为“浓缩饲料”和“精料补充料”,并将“猪、家禽配合饲料”扩展为“其他配合饲料”。研究不同地区畜禽饲料资源及其砷含量和分布规律,对饲料原料的选择,饲料砷污染的防控,饲料品质的保障及推动畜牧业的健康发展均具有重大的现实意义。【前人研究进展】砷广泛存在于土壤、岩石及水中,是一种有毒的非金属元素[2]。矿物质饲料添加剂及鱼粉等都会是饲料中砷的主要来源。大量研究表明,无极砷毒性强,有机砷毒性相对较低,且砷在特定范围内可以抑制肿瘤细胞及病原微生物生长[3-5],我国曾一度批准苯胂酸类有机胂制剂作为饲料添加剂使用,使用有机砷为饲料添加剂的猪场周围土壤或者长期施用猪粪作为肥料的农田,大部分土壤砷含量超标,并在农作物、地下水及动物产品中发生砷富集[6-9]。砷超量能够对任何动物产生毒性,通过影响基因的正常功能、细胞的能量代谢,诱发染色体变异并致癌[10-12]。饲料中砷超标不但影响动物的生产性能还能够引发重大食品安全问题,造成环境污染[13-18]。【本研究切入点】我国一直未对畜禽饲料资源中砷含量分布进行系统、专门的调研,随着我国饲料卫生标准的从严修订,降低由饲料品质安全引发的食品安全、环境污染等一系列重大社会问题,亟需对我国当前畜禽饲料资源中微量元素砷含量的分布情况进行普查分析,严控原料接受标准及饲料产品中砷的含量。【拟解决的关键问题】因此,本研究对全国不同区域主要畜禽饲料原料中微量元素砷含量进行测定,研究不同地区各种饲料原料中砷含量的分布,为防止畜禽饲料中砷超标,保障饲料安全,提供科学依据。
1.1.1 采样 针对我国不同区域主要畜禽饲料资源的分布情况,结合各省(市、区)的2013年各原料总产量及其在各县(市)或企业总产量占全省合计总产量的比例,以确定各省(市、区)及其各县(市)或代表性企业的样品数;同时还根据谷物籽实、牧草或秸秆饲料在各县(市)的镇(乡)分布情况,确定各县(市)的代表性镇(乡)及其样品数。于2016年1月至2018年6月期间,在我国除港澳台外的31个省、直辖市和自治区,包括东北和西北(黑龙江、吉林、辽宁、陕西、甘肃、宁夏、新疆、青海,共8个省(区))、华北(北京、天津、河北、山西、内蒙,共5个省(市、区))、华东和华中(上海、山东、江苏、安徽、江西、浙江、福建、湖北、湖南、河南,共10个省(市))及西南和华南(重庆、四川、贵州、云南、西藏、广东、广西、海南,共8个省(市、区)),采集了40种共4 054个饲料样品,样品均采自当地农户、农场或饲料原料加工企业,且饲料原料加工企业的原料也是产自当地。采样时应用GPS定位并拍照,并按照编码方案标示条形码后,带回实验室备分析。
1.1.2 样品种类 主要调查我国不同地区的七大类型饲料原料,包括谷物籽实(玉米、小麦、稻谷、大麦)及其加工副产品(碎米、次粉、小麦麸、米糠、脱脂米糠、玉米DDGS、小麦DDGS、玉米胚芽粕、喷浆玉米皮、玉米蛋白粉、木薯干)、植物性蛋白饲料(膨化大豆、豆粕、菜籽粕、棉籽粕、花生粕、亚麻粕、葵花粕)、动物性蛋白饲料(鱼粉、肉粉、水解羽毛粉、肠膜蛋白粉、血浆蛋白粉、血球蛋白粉)、秸秆类饲料(玉米秸、甘薯藤、稻秸、小麦秸)、牧草类饲料(羊草、黑麦草、苜蓿、青贮玉米)和矿物质饲料(石粉、磷酸氢钙、骨粉、贝壳粉),以便较全面地了解饲料中的砷水平。
1.2.1 样品处理 2016年1月至2018年10月期间,所采样品均集中于中国农业科学院北京畜牧兽医研究所统一处理,以保证分析结果的一致性和可靠性。样品经过挑选、清洁、风干、混合均匀后以四分法缩减分取试样,于不锈钢小型高速粉碎机(IL-04BL)粉碎后,分装自封袋,注明样品名称、编号、条形码等后冷库保存。
1.2.2 分析方法 准确称取0.5 g(精确到0.0001 g)饲料样品于消化管中,加入5 mL浓硝酸和2 mL双氧水浸泡2 h后,在高通量密闭微波消解仪(CME,美国)上消化后,使用离子色谱-电感耦合等离子体-质谱联用仪(IC-ICP-MS)测定其砷含量[19-20],同时应用国家标准物质猪肝粉(GBW10051)或黄豆粉(GBW10013)作为对照,检查分析的可靠性。
1.2.3 数据处理 所有数据均采用SAS 9.4中的一般线性模型(GLM)程序进行单因素方差分析,差异显著者,以最小显著差异(LSD)法比较各组间的差异显著性。数据以平均值加减标准差表示,以<0.05和0.01分别作为各项数据显著差异和极显著差异检验水平。
砷的药理及毒理作用已经明确,对任何动物均有毒性。饲料中砷超标,将严重威胁畜牧生产。因此,砷被确认为饲料中重点防控的重金属安全风险因子之一。我国在饲料卫生标准中也对畜禽饲料及原料中的砷含量进行了严格的限量规定(表1)。
表1 饲料原料中砷的限量标准(风干基础)
为获得对全国具有一定代表性的结果,共采集了我国除港澳台外的31个省、直辖市和自治区的4 054个饲料原料样品,测定砷含量。结果分类列于表2—表7中。
在同一类别中的不同饲料原料中砷含量均存在极显著差异(<0.01)。谷物类籽实中的平均砷含量为38.07 µg·kg-1, 其中稻谷的砷含量最高(221.04 µg·kg-1),玉米中最低(6.72 µg·kg-1),且砷含量均未超标;谷物籽实加工副产品中的平均砷含量为329.24 µg·kg-1, 其中米糠的砷含量最高(1 016.2 µg·kg-1),玉米胚芽粕最低(7.13 µg·kg-1),仅脱脂米糠中砷含量超标率为2.8%;植物性蛋白饲料中的平均砷含量为72.99 µg·kg-1,其中葵花粕中的砷含量最高(315.56 µg·kg-1), 膨化大豆中最低(5.21 µg·kg-1),但葵花粕样本只来源于3个省,且样本之间的变异较大,因此其砷含量可能不具备代表性,且砷含量均未超标;动物性蛋白饲料中的平均砷含量为1 704.8 µg·kg-1,其中鱼粉的砷含量最高(5 137.1 µg·kg-1), 血球蛋白粉中最低(38.05 µg·kg-1),仅鱼粉砷含量超标率为5.3%;秸秆类饲料中的平均砷含量为1 239.0 µg·kg-1,其中稻秸中的砷含量最高(3 025.2 µg·kg-1), 玉米秸中最低(154.7 µg·kg-1),仅稻秸砷含量超标率为27.4%;牧草类饲料中的平均砷含量为500.3 µg·kg-1,其中羊草中砷含量最高(663.12 µg·kg-1),青贮玉米含量最低(345.84 µg·kg-1),且砷含量均未超标;矿物质饲料中的平均砷含量为5 018.6 µg·kg-1,其中磷酸氢钙中的砷含量最高(13 292.5 µg·kg-1),骨粉中最低(53.52 µg·kg-1),磷酸氢钙砷含量超标率达60%,石粉砷含量超标率次之,为30.8%。
由以上结果可以看出,这40种饲料原料的平均砷含量范围为5.21—13 292.0 µg·kg-1之间,而各类饲料原料砷含量分布规律是:矿物质饲料(5 018.6 µg·kg-1)>动物性蛋白饲料(1 704.8 µg·kg-1)>秸秆类饲料(1 239.0 µg·kg-1)>牧草类饲料(500.3 µg·kg-1)>谷类籽实加工副产品(329.24 µg·kg-1)>植物性蛋白饲料(72.99 µg·kg-1)>谷类籽实(38.07 µg·kg-1);其中最高的2种饲料原料分别为磷酸氢钙和鱼粉,这与砷广泛存在于岩石和水体中有关。40种饲料原料中,磷酸氢钙、石粉、稻秸、鱼粉及脱脂米糠中均存在砷含量超标现象,可视为高危饲料原料,程度为:磷酸氢钙(60%)>石粉(30.8%)>稻秸(27.4%)>鱼粉(5.3%)>脱脂米糠(2.8%),应提高高危饲料原料的检测频率,保障饲料品质安全。
表2 谷类籽实及其加工副产品中砷含量分布(风干基础)
同列数据不同大写字母表示谷物籽实类饲料差异显著(<0.01)。结果表示为平均值±标准差。超标率=每种类饲料样品超标数/该种类饲料样品总数×100%。下同
Means lacking a common capital letter within the same columns are significant difference among the zinc contents in the feedstuffs of cereals (<0.01). Results are expressed as mean ± standard deviation. Over-limit ratio = the number of exceeding limit standard samples in each kind/total number of samples in each kind ×100%. The same as below
表3 植物性蛋白饲料中砷含量分布(风干基础)
表4 动物性蛋白饲料中砷含量分布(风干基础)
表5 秸秆类饲料中砷含量分布(风干基础)
表6 牧草类饲料中砷含量分布(风干基础)
表7 矿物质饲料中砷含量分布(风干基础)
为了明确在各地区自然条件下对饲料原料中砷含量的影响,选择了常用而且采样面较广的玉米、小麦和豆粕,根据玉米、小麦和豆粕的主产地及主要畜禽主要养殖区域分布情况,进行以省(区)为单位的平均砷含量的比较(表8)。由表8可见,18个主要省(区)的玉米平均砷含量具有显著差异(<0.01),其中以湖北省玉米平均砷含量最低,为1.41 µg·kg-1,而山西省玉米平均砷含量最高,为13.67 µg·kg-1,相差12.26 µg·kg-1;11个主要省(区)的小麦平均砷含量差异不显著;14个主要省(区)的豆粕平均砷含量具有显著差异(<0.01),其中江苏省的豆粕平均砷含量最低,为4.48 µg·kg-1,福建省最高,为213.79 µg·kg-1,相差209.31 µg·kg-1。
本研究中所调查的7大类饲料原料中,以矿物质饲料中砷含量最高,其中以磷酸氢钙中砷含量最高,超标率达60%,谷物籽实类饲料中砷含量最低。磷酸氢钙采集自14个省,平均砷含量为13 292.5 µg·kg-1(13.3 mg·kg-1),已经超出了饲料卫生标准规定矿物质饲料原料的最高限量10 mg·kg-1,表明磷酸氢钙极易受到砷的污染,应提高对矿物质原料尤其是磷酸氢钙中砷含量的检测频率。李俊等2014年对我国7省(区)的天然矿物饲料中重金属调查报告也得出一致结果,砷在磷酸氢钙含量较高,最高含量甚至为饲料卫生标准控制线的2.2倍,超标率50%[21]。在动物蛋白饲料原料中,鱼粉的砷含量最高5 137.1µg·kg-1,在所检测的动物蛋白饲料原料中,只有鱼粉的砷含量存在超标现象5.3%,属于砷污染是高风险原料,也是饲料中砷的主要来源[22-25]。笔者还发现谷物籽实的加工副产品中,米糠(稻谷加工副产物)的砷含量最高1 016.2 µg·kg-1,是稻谷的4.6倍,脱脂米糠的砷含量仅次于米糠,且存在超标现象,超标率为2.8%,米糠是稻谷加工过程中分离出的种皮、糊粉层和胚的混合物,脱脂米糠是米糠脱脂膨化后的产品,米糠和脱脂米糠均含有大量的纤维,砷的含量高于碎米,低于稻秸,水稻各部位对砷的富集能力排序:根>叶>茎>谷壳>米粒[26-28]。玉米蛋白粉与喷浆玉米皮的砷含量分别是玉米的6.4和8.2倍,小麦麸中的砷含量是全麦粒的2.9倍,说明谷物表皮的含量高于籽实。此外,本研究发现砷在秸秆类饲料含量相对较高,在稻秸中含量最高3 025.2 µg·kg-1,是稻谷的13.7倍,且稻秸的砷含量超标率为27.4%,稻秸是茎叶的总和,均为砷富集的主要部位[29-30],属于砷污染高风险原料。玉米秸的砷含量是玉米的23倍,小麦秸砷含量是小麦的13.2倍,砷在谷物秸秆中的含量高于表皮和籽实,是由于砷在植物不同器官的分布不同所致。袁雪花等[31]在对高砷地下水灌溉区的动物饲料及产品中砷含量的研究发现,玉米秸秆的超标率达100%。玉米籽粒的砷含量符合饲料卫生标准,砷主要在植物的秸秆中富集,与本研究结论一致,动物产品如动物肝脏,肾脏,牛奶均出现砷超标现象,反刍动物的日粮配置需要考虑秸秆类饲料的砷含量[31]。
表8 我国部分省(区)玉米、小麦及豆粕中砷含量分布(风干基础)
同列数据不同大写字母表示为极差异显著(<0.01)。结果表示:平均值±标准差。括号内的数字为样品采集数和测定个数
Means lacking a common capital letter within the same column are significant difference (<0.01). Results are expressed as mean ± standard deviation. Number of samples in parentheses
同一种原料不同地区的砷含量明显不同,其中除小麦外,玉米及豆粕中砷含量在各省(市)中均差异显著,可能是由于不同作物在不同地区的土壤、气候条件、作物品种等有关。玉米的砷含量在山东、贵州、山西及黑龙江省中较高,在湖北、江苏和吉林省相对较低;豆粕砷含量在四川、河北、湖北及福建省较高,在辽宁、江苏、黑龙江和广东较低;因此,从玉米、小麦及豆粕砷含量在各省(市)的分布情况看,并无明显规律,也并无相关研究供参考。
对采自全国31个省、直辖市和自治区的40种共4 054个主要畜禽饲料原料中砷含量分布的调查研究发现,我国畜禽不同饲料原料中砷含量分布不同,各省(区)玉米和豆粕中砷含量也存在差异。其中,磷酸氢钙、石粉、稻秸、鱼粉及脱脂米糠中存在砷含量超标现象,因此,在实际生产中,应充分考虑不同地区饲料原料中的砷含量,尤其要做好高危饲料原料的砷含量检测,严控饲料产品中砷含量,确保饲料品质安全。
[1] 全国饲料工业标准化技术委员会. 2017, 饲料卫生标准GB 13078-2017.
National Feed Industry Standardization Technical Committee. 2017, Feed Hygiene Standard GB 13078-2017. (in Chinese)
[2] PACHAURI V, MEHTA A, MISHRA D, MISHRA D, FLORA S. Arsenic induced neuronal apoptosis in guinea pigs is Ca2+dependent and abrogated by chelation therapy: Role of voltage gated calcium channels., 2013, 35: 137-145.
[3] ZHONG F, ZHANG S N, SHAO C K, YANG J, WU X Y. Arsenic trioxide inhibits cholangiocarcinoma cell growth and induces apoptosis., 2010, 16(3): 413-420.
[4] WU J N, JI Z Y, LIU H L, LIU Y H, HAN D Y, SHI C, SHI C B, WANG C L, YANG G, CHEN X F, SHEN C, LI H D, BI Y K, ZHANG D Z, ZHAO S G. Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway., 2013, 220(1): 61-69.
[5] KOMOROWICZ I, BARALKIEWICZ D. Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry—Last decade review., 2011, 84(2): 247-261.
[6] ZHANG X Y, ZHOU M Y, LI L L, JIANG Y J, ZOU X T. Effects of arsenic supplementation in feed on laying performance, arsenic retention of eggs and organs, biochemical indices and endocrine hormones., 2016, 58(1): 63-68.
[7] 刘雅慈, 李亚松, 张兆吉, 田夏, 曹胜伟. 鲁北平原养鸡场周边包气带与地下水砷化合物分布规律. 南水北调与水利科技, 2017, 15(3): 86-93.
LIU Y C, LI Y S, ZHANG Z J, TIAN X, CAO S W. Distribution of arsenic compounds in vadose zone and groundwater around the chicken farm in Lubei Plain., 2017, 15(3): 86-93. (in Chinese)
[8] 王付民, 陈杖榴, 孙永学, 高延玲, 余静贤. 有机胂饲料添加剂对猪场周围及农田环境污染的调查研究. 生态学报, 2006(26): 154-162.
WANG F M, CHEN Z L, SUN Y X, GAO Y L, YU J X. Investigation on the pollution of organoarsenical additives to animal feed in the surroundings and farmland near hog farms., 2006(26): 154-162. (in Chinese)
[9] 王克俭, 廖新俤. 猪场周围环境中砷的分布及迁移规律研究. 家畜生态学报, 2005, 26(2): 29-32.
WANG K j, LIAO X d. Study on the distribution and migrating disciplinavian of arsenic around the pig farm., 2005, 26(2): 29-32. (in Chinese)
[10] ADRIEN A.. 7thed. London: Chapman and Hall, 1985: 550-561.
[11] MOE B, PENG H Y, LU X F, CHEN B W, CHEN L W L, GABOS S, LI X F, LE X C. Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing., 2016, 49(11): 113-124.
[12] NACHMAN K E, RABER G, FRANCESCONI K A, NAVAS-ACIEN A, LOVE D C. Arsenic species in poultry feather meal., 2012, 417: 183-188.
[13] AGGARWAL M, NARAHARISETTI S B, SARKAR S N, RAO G S, DEGEN G H, MALIK J K. Effects of subchronic coexposure to arsenic and endosulfan on the erythrocytes of broiler chickens: a biochemical study., 2009, 5(1): 139-148.
[14] 袁涛, 管恩平, 何桂华, 贾俊涛, 张艺兵. 砷制剂作为畜禽促生长剂的作用及其危害分析. 中国家禽, 2010, 32(22): 51-53.
YUAN T, GUAN E P, HE G H, JIA J T, ZHANG Y B. Effect and hazard analysis of arsenic preparation as growth promoter for livestock and poultry., 2010, 32(22): 51-53. (in Chinese)
[15] STANLEY, T R, SPAHN, J W, SMITH G J, ROSSCOE R. Main and interactive effects of arsenic and selenium on mallard reproduction and duckling growth and survival., 1994(26): 444-451.
[16] HERMAYER K L, STAKE P E, SHIPPE R L. Evaluation of dietary zinc, cadmium, tin, lead, bismuth and arsenic toxicity in hens., 1977(56): 1721.
[17] VODELA J K, LENZ S D, RENDEN J A, MCELHENNEY W H, KEMPPAINEN B W. Drinking water contaminants (arsenic, cadmium, lead, benzene, and trichloroethylene). 2. Effects on reproductive performance, egg quality, and embryo toxicity in broiler breeders., 1997, 76(11): 1493-1500.
[18] 周岩民, 杜文兴, 韩兆玉, 王冉, 陆治年, 王恬. 洛克沙生对肉鸭生产性能和砷残留及组织病变的影响. 南京农业大学学报, 2001, 24(4): 46-50.
ZHOU Y M, DU W X, HAN Z Y, WANG R, LU Z N, WANG T. Effect of organic arsenic on performance, tissue arsenic residue and tissue pathogenic change of meat-strain ducks., 2001, 24(4): 46-50. (in Chinese)
[19] 周利英, 戴璐, 倪小波, 骆海清, 常云芝, 李桂景, 魏云计. 微波消解ICP-AES法同时测定饲料中8种重金属元素. 饲料工业, 2018, 39(1): 46-48.
ZHOU L Y, DAI L, NI X B, LUO H Q, CHANG Y Z, LI G J, WEI Y J. Determination of eight heavy metal elements in feeds by microwave digestion ICP-AES., 2018, 39(1): 46-48. (in Chinese)
[20] 贺燕, 籍燕燕, 田蕴, 蒋向君. 微波消解-原子荧光光度法测定饲料中总砷. 山东畜牧兽医, 2012, 33: 22-23.
HE Y, JI Y Y, TIAN Y, JIANG X J. Determination of total arsenic in feed by microwave digestion-atomic fluorescence spectrometry.2012, 33: 22-23. (in Chinese)
[21] 李俊, 李宏, 董颖超, 李胜, 杨汉卿, 杨坤, 李洁. 天然矿物质饲料中重金属安全隐患调查报告. 畜牧兽医杂志, 2014, 33(4): 81-89.
LI J, LI H, DONG Y C, LI S, YANG H Q, YANG K, LI J. investigation report on potential safety hazards of heavy metals in natural mineral feed., 2014, 33 (4): 81-89. (in Chinese)
[22] 林建斌, 李金秋, 宋国华. 水产饲料安全与水产品质量. 水利渔业, 2008, 28(2): 112-114.
LIN J B, LI J Q, SONG G H. Aquatic feed safety and aquatic product quality.2008, 28(2): 112-114. (in Chinese)
[23] 林建斌. 水产饲料安全的特点与影响因素. 科学养鱼, 2008(9): 65-66.
LIN J B. Characteristics and influencing factors of aquatic feed safety., 2008(9): 65-66. (in Chinese)
[24] 黎修全. 浅析动物源性饲料产品安全及卫生质量评价指标. 饲料工业, 2008, 29(19): 57-62.
LI X Q. Analysis on the evaluation index of safety and hygiene quality of animal-derived feed products., 2008, 29(19): 57-62. (in Chinese)
[25] 杨荣, 朱双红, 王华朗, 韩垂旺, 宋增廷, 王立志, 张旭娟. 大米加工主要副产品资源在畜禽饲料中的应用. 广东饲料, 2018, 27(9): 39-42.
YANG R, ZHU S H, WANG H L, HAN C W, SONG Z T, WANG L Z, ZHANG X J. Application of main by-product resources of rice processing in livestock and poultry feed., 2018, 27(9): 39-42. (in Chinese)
[26] 陈同斌. 土壤溶液中的砷及其与水稻生长效应的关系. 生态学报, 1996, 16(2): 147-153.
CHEN T B. Arsenic in soil solution and its effect on the growth of rice (L.)., 1996, 16(2): 147-153. (in Chinese)
[27] 吴佳, 纪雄辉, 魏维, 谢运河. 水分状况对水稻镉砷吸收转运的影响. 农业环境科学学报, 2018, 37(7): 1427-1434.
WU J, JI X H, WEI W, XIE Y H. Effect of water levels on cadmium and arsenic absorption and transportation in rice., 2018, 37(7): 1427-1434. (in Chinese)
[28] YANG Y P, ZHANG H M, YUAN H Y, DUAN G L, JIN D C, ZHAO F J, ZHU Y G. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation., 2018, 236: 598-608.
[29] LIU W J, ZHU Y G, SMITH F A, SMITH S E. Do phosphorus nutrition and iron plaque alter arsenate(As)uptake by rice seedlings in hydroponic culture?, 2010, 162(2): 481-488.
[30] 邹丽娜, 戴玉霞, 邱伟迪, 张舒, 赵佳伟, 唐先进, 施积炎, 徐建明. 硫素对土壤砷生物有效性与水稻吸收的影响研究. 农业环境科学学报, 2018, 37(7): 1435-1447.
ZOU L N, DAI Y X, QIU W D, ZHANG S, ZHAO J W, TANG X J, SHI J Y, XU J M. Effect of sulfur on the bioavailability of arsenic in soil and its accumulation in rice plant (L.)., 2018, 37(7): 1435-1447. (in Chinese)
[31] 袁雪花, 苏玉红. 高砷地下水灌溉区动物饲料及产品中砷污染水平研究. 畜牧与兽医, 2017, 49(4): 46-50.
YUAN X H, SU Y H. Arsenic contaminated levels in forage and animal products in irrgation district with high arsenic groundwater.e, 2017, 49(4): 46-50. (in Chinese)
A Survey on Distribution of Arsenic Contents in Feedstuffs for Livestock and Poultry in China
ZHANG TieYing, ZHANG LiYang, LIU JunLi, LIAO ChaoYong, Lü Lin, LIAO XiuDong, LUO XuGang
(Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193)
【】 The aim of this survey was to study the arsenic (As) contents in various feed ingredients from different provinces in China, providing a scientific basis for controlling As contents in the feed ingredients, and even for guiding feed companies to establish a scientific process on As detection. 【】A total of 40 types of 4 054 feed samples were collected from 31 provinces, municipalities and regions, and then the As contents of them were measured by Ion chromatography-inductively coupled plasma mass spectrometer (IC-ICP-MS).【】The results showed that the average As contents of these 40 kinds of feed ingredients ranged from 5.21 to 13 292.0 µg·kg-1, and the distribution of As contents in different species of feed ingredients was as follows: mineral ingredients (5 018.6 µg·kg-1)>animal ingredients (1 704.8 µg·kg-1)>straw ingredients (1 239.0 µg·kg-1)>pasture ingredients (500.3 µg·kg-1)>cereal by-products (329.24 µg·kg-1)>plant protein ingredients (72.99 µg·kg-1)>cereals (38.07 µg·kg-1). Meanwhile, the distribution of As contents of cereals, cereal by-products and straw ingredients was as follows: corn straw>corn by-products (corn gluten meal, spray corn cortex and corn DDGS)>corn; wheat straw>wheat by-products (wheat bran, wheat DDGS and wheat middling)>wheat; rice straw>rice by-products ( rice bran and defatted rice bran)>rice>broken rice, which concerned the capacities of different parts of cereals gathering As from soil and water, root>leaf>stem>chaff>grain . The results in comparison with As contents of corn, wheat or soybean meal from different provinces (regions) are extremely significant (<0.01) respectively, demonstrating As contents among same type of samples from different regions are significant also. Moreover, the ratios of As contents exceeding the limit standard, based on hygienical standard for feeds, have been calculated among the 40 kinds of feed ingredients. As contents in cereals, plant protein ingredients and pasture ingredients were under the limit standard. Nevertheless, As contents of only defatted rice bran in cereal by-products presented the over-limit ratio of 2.8%; As contents of only fish meal in animal ingredients showed the over-limit ratio of 5.3%; The over-limit ratio of rice straw in straw ingredients was 27.4%; Both limestone and dicalcium phosphate in mineral ingredients were with high over-limit ratios 30.8% and 60%, respectively. Over-limit ratios of As contents in different kinds of feed ingredients were as follows: dicalcium phosphate>limestone>rice straw>fish meal>defatted rice bran.【】The above results showed that the As contents in feed ingredients varied greatly in different kinds and regions. The As contents of those cereals relatives ingredients presented a common rule, that is, As contents of straw ingredients were highest, successively, cereals by-products and cereals. Especially, As contents of dicalcium phosphate, limestone, rice straw, fish meal and defatted rice bran were above the limit standard sometimes, which could be considered as high risk feed ingredients. Therefore, the As content in basal diets from different types and regions should be considered in the preparation of diets. It is necessary to improve As detection frequency to make sure of the As contents in animal diets under the safe limits according to the GB 13078-2017 strictly.
feedstuff; arsenic contents; pig; chicken
10.3864/j.issn.0578-1752.2020.21.018
2019-05-22;
2020-08-28
国家科技部科技基础性工作专项(2014FY111000)、中国农业科学院科技创新工程专项经费(ASTIP-IAS09)
张铁鹰,E-mail:zhty999@163.com
(责任编辑 林鉴非)