基于粒子图像测速的坡面流水动力学特性

2020-10-22 14:31杨坪坪张会兰王云琦
农业工程学报 2020年17期
关键词:明渠床面深水

杨坪坪,张会兰,王云琦,李 瑞

基于粒子图像测速的坡面流水动力学特性

杨坪坪1,2,张会兰3,4,王云琦3,4,李 瑞1,2※

(1.贵州师范大学喀斯特研究院,贵阳 550001;2.国家喀斯特石漠化防治工程技术研究中心,贵阳 550001;3.北京林业大学水土保持学院 重庆三峡库区森林生态系统教育部野外科学观测研究站,北京 100083;4.北京林业大学水土保持学院 重庆缙云山三峡库区森林生态系统国家定位观测研究站,北京 100083)

粒子图像测速(Particle Image Velocimetry, PIV)技术具有多点同时测量、对水流无干扰的优点,该研究利用高分辨率PIV(分辨率为64 pixels/mm),测量了7组坡面流(水深范围为0.5~1.1 cm,雷诺数范围为1 000~3 000),并测量1组深水明渠紊流作为对照,研究了流速轮廓线和修正系数、紊动强度和雷诺应力、偏态系数和峰度系数的变化规律。结果表明:1)PIV能够有效观测坡面流床面至水面的流速分布。当坡面流流态为过渡流时,流速修正系数随着雷诺数的增加呈对数增加,均值为0.77;2)对比深水明渠紊流的紊动强度,坡面流的流向紊动强度较大,而垂向紊动强度较小,且随着水深及雷诺数的增加,坡面流紊动强度逐渐与深水明渠紊流的特征吻合。深水明渠紊流中受雷诺应力影响的流体占比约80%,而坡面流中受雷诺应力影响的流体占比小于80%,随着雷诺数的增加坡面流中受雷诺应力影响的流体占比变大;3)对比深水明渠紊流的峰度系数,坡面流的峰度系数大部分大于3,表明坡面流较深水明渠紊流出现极端流速事件的概率小。PIV技术有利于实验室研究坡面水力侵蚀的力学机理机制问题。

水动力学;坡面流;流速;粒子图像测速;紊动强度;雷诺应力

0 引 言

坡面流是在重力作用下沿地表向下运动的浅层明流,其特点是水深极浅,一般在毫米量级[1],是一种特殊而复杂的水流。坡面流常以坡面漫流的形式出现,是坡面侵蚀的动力源,被认为是坡面侵蚀的开始阶段。坡面流不仅能够剥离土壤,且起着搬运土壤颗粒的重要作用[2-3]。对坡面流的研究有利于揭示坡面水土作用机理及构建坡面土壤侵蚀方程。

坡面流水动力学特性是研究坡面流的基础,包括流速、流型流态、阻力系数、水流功率等[4-8],其中流速的准确测量直接影响坡面流水动力学参数计算的精确程度。常用的测量方法为:1)流量法。可通过水深计算得到断面的平均流速,该方法尤其适用于室内定床试验。杨坪坪等[9]和张光辉等[10]通过该方法研究表明流速与流量间呈线性正相关;2)染色示踪法。通过染色剂示踪坡面流从而测量流速,但该方法测得的流速为最大流速,需要用流速修正系数对其进行修正得到断面平均流速。基于染色示踪法,Li等[11]研究发现与流态关系密切,当流态为层流、过渡流和紊流时,取值分别为0.67、0.7和0.8。Zhao等[6]、Ali等[12]和Zhang等[13]和研究表明与雷诺数和傅汝德数呈正比,而与含沙量和坡度呈反比。赵春红等[14]研究表明与坡面流阻力的形式密切相关,与植被阻力呈正比,而与颗粒阻力呈反比;3)电解质脉冲法。是在坡面流中加入盐液,通过测量各断面的导电性变化得到坡面流流速。夏卫生[15]利用该方法系统研究了清水坡面流流速,结果表明测量的距离越远,该方法与流量法和染色示踪法得到的流速越接近,测量越准确。此外,电解质脉冲法也需要利用进行修正。Li等[16]通过该方法的研究表明随对数增加,并根据的变化趋势认为坡面流层流和紊流的边界分别为2 000和8 000。但罗榕婷等[17]指出该方法存在盐溶液的扩散作用,电流信号变化与水流速不同步,所得流速没有明确物理意义。以上3种常用方法皆为单点测量方法,测量坡面流断面的平均流速。受限于测速技术,无法测量从床面到水面的坡面流流速分布,因而对坡面流的流速轮廓、紊动强度及雷诺应力等水动力学特性的研究鲜有报道。粒子图像测速(Particle Image Velocimetry, PIV)技术是一种流动可视化技术,具有不干扰水流、多点同时测量及测量频率高的优点,能够准确获取二维瞬时流场,提供丰富的流场信息[18]。基于该项技术,钟强等[19-21]测量了明渠水流从床面至水面的流速分布,并进一步计算了明渠水流二维断面的紊动强度和雷诺应力等特征。

本研究尝试将PIV应用于坡面流流速的测量中,通过增加PIV的分辨率,使其能够满足浅水深的测量,并测量坡面流从床面至水面的流速,随后计算紊动强度和雷诺应力、偏态和峰度系数等水动力学特性。研究结果有利于进一步认识坡面流的特性,为坡面流的理论研究提供参考。此外,目前鲜有将PIV技术应用于水土保持研究中,本研究尝试提高PIV的分辨率以适应坡面流的研究,从而探讨坡面流的动力学特性,可为水土保持理论研究提供新的研究思路与研究方法。

1 材料与方法

1.1 试验设备

试验在北京林业大学水蚀机理实验室水槽中开展,水槽长为12 m,宽和高均为0.3 m,由玻璃制成。整个水槽是自循环的系统,水槽入口有变频水泵和流量计,以控制和测量流量。水流入口放置稳定水流的装置,使进入水槽的水流顺直。此外,水槽沿程等间距布设了超声波水位计,配合尾门调节,通过观测沿程水位变化,最终达到恒定均匀流的状态。水流温度由数显温度计测量,精度可达±0.1 ℃。

PIV的硬件系统包括示踪粒子、光源和相机。示踪粒子用于示踪水流,本研究使用的示踪粒子为空心玻璃珠,直径为10m,密度为1.06×103kg/m3。空心玻璃珠与水的密度相近,从而保证能够有效示踪水流,避免出现上浮或者下沉的现象。此外,空心玻璃珠能够较好地反射激光,保证成像清晰。本研究所使用的光源为8 W的半导体连续激光器。相机像素为640×480,频率为452 Hz(1 s拍摄452张图片)。测速原理是激光照亮示踪粒子,高速摄像机拍摄示踪粒子的运动,分析相邻2帧图像间计算窗口的自相关系数,若相邻2帧中某2个计算窗口的自相关系数最大则表示该计算窗口由前一帧的位置运动至后一帧的位置,以此获得计算窗口的位移,结合相机频率可获得计算窗口的流速,从而获得整个平面的流场。为保证水流充分发展,相机放置在距离入口7 m处(图1)。为适应坡面流水深浅的特殊条件,通过增加相机与镜头间的接圈来增加PIV分辨率,最终分辨率高达64 pixels/mm,测量效果较好[22-23]。

注:O表示坐标原点;x表示平行于水流方向;y表示垂直于床面。下同。

在试验中,计算窗口的像素大小为16×16,重叠率为50%,因此实际2个相邻计算窗口间的距离为8 pixels,迭代3次。所得的瞬时流场由3×3的高斯滤波法进行滤波以剔除错误的信息。采用笛卡尔坐标系,坐标原点位于测量区域的左下角并在图1中用表示,轴平行于水流方向为流向,轴垂直于床面为垂向。相应地,方向的流速分量为流向流速(,cm/s),方向的流速分量为垂向流速(,cm/s)。流速轮廓线的提取方式如图2所示,原始图片如图2a所示;将5 000对瞬时流场中相同坐标点的、平均,得到图2c所示的时均流场;利用JFM-PIV处理相邻2帧原始图片,可计算得到图2b所示的瞬时流场,计算过程详见文献[18];随后将同一高度的流速平均求得该高度的平均流速,得到图2d所示的流速轮廓线。

注:u为流向流速,cm·s-1。 Note: u represents the streamwise velocity, cm·s-1.

1.2 水流条件

因目前对坡面流没有明显的界定,前人研究尽量减小水深,使其较浅,从而模拟坡面流。本试验开展之前首先搜集前人有关坡面流的试验设计,调查数据如表1所示,在搜集过程中尽量扩大水深范围,且包括各种试验条件,例如野外冲刷试验、室内冲刷、降雨模拟试验。搜集试验设计的目的是确定本试验坡面流水流条件的大概范围。前人研究可能出现坡面流范围不全或者出现不属于坡面流的情况,针对该问题本研究增加一组深水明渠紊流,并与前人在深水明渠紊流中的试验数据作对比[19-20,24-25],若试验设计组次的各项特征与深水明渠紊流吻合,表明该组次已达到深水明渠紊流条件,不属于坡面流;若各项特性具有差异,则是本研究探讨的坡面流特性。由表1可知试验中坡面流的水深(,cm)1.5 cm,平均流速(,cm/s)在7~100 cm/s间变化,雷诺数在[500,5 000]间变化,流态属于过渡流(根据经典明渠流态的判别方法:<500为层流;500<<5 000为过渡流;>5 000为紊流)[26-27];傅汝德数在[0.5,2]之间变化。本试验的水流条件根据表1所搜集数据确定。

表1 坡面流试验条件文献调查

本研究共开展了8组次的试验,详细的水流条件如表2所示。表2中的试验组次按照水深从小到大排列,其中C1~C7为坡面流,其<1.1 cm。为避免水深过浅而出现滚波,从而影响坡面流特性,因此>0.5 cm。在16~27 cm/s间变化,在1 092~2 877间变化,在0.7~0.995间变化。<5 000属于过渡流。<1属于缓流。虽然本试验坡度小于表1中前人的试验坡度,但是、、、满足条件,从而满足坡面流动力过程相似[30]。此外,设置一组深水明渠紊流作为对照组,由CK表示,水深较大且属于充分发展的明渠紊流,其作用为对比坡面流与深水明渠紊流的差异性。从C1到CK组次,和逐渐变大而没有明显的变化规律。在本研究所有试验中,宽深比皆大于5(水槽底宽为30 cm),因此边壁对试验没有显著影响,可视为准二维流动[31]。

坡面流具有沿程不稳定易出现滚波、沿程不断有质量源加入等特征,但本研究开展的8组次试验皆是恒定均匀流条件,其目的是为了分析坡面流本身所具有的特性,及其与深水明渠紊流的区别(大多深水明渠紊流的水流试验条件为恒定均匀流,同设置为恒定均匀流易于比较)。如果为非恒定均匀流,水流要素随时间发生了变化,情况复杂,很难判断是坡面流本身的特性所引起的差异,还是非恒定均匀流所引起的差异。

表2 研究区域水流条件

注:C1~C7为坡面流,CK为深水明渠紊流。下同

Note: C1-C7 are overland flow, CK is turbulent flow in deep-water open channel. The same below.

1.3 计算方法

紊动强度是流速的二阶矩,表示流体质点的脉动强度。雷诺应力是流体质点2个方向脉动强度乘积,表示2个流体质点间碰撞的强弱程度,如式(1)~(3)所示。

式中为重力加速度,9.8 m/s2;为水力能坡,可用坡度代替计算[5,8,14,26-27],=sin,为坡度,每组次如表2所示。

偏态系数为流速的三阶矩,表示概率密度函数(Probability Density Function, PDF)的对称性,峰度系数表示PDF曲线的形状。流向流速的和的计算如式(6)和式(7)所示。

2 结果与分析

2.1 流速及流速修正系数

流速是坡面流水动力学特性中最为基础的参数。PIV具有多点同时测量的优势,能够精确测量从床面至水面的流速分布,图3为本研究8组次水流条件下的流向流速轮廓线,黑色箭头表示的增加方向,从C1至CK组次,增加,流速轮廓线也逐渐向右移动,流速变大。对于坡面流,当相对水深/<0.2时,曲线的斜率变化较大,流速剧烈变化;而当/>0.2时,曲线的斜率变化较小,流速的变化较小。出现该现象的原因是,贴近床面部分受黏性影响较大,因此流速梯度较大;而远离床面的地方,黏性影响较小,流速梯度较小。对于CK组,在贴近床面处未形成流速剧烈变化的曲线段,原因是一者的增加会进一步的压缩受黏性应力影响的范围;二者深水明渠紊流中受黏性影响的流体占比较小,导致CK曲线的变化整体比较平缓。

注:h为测点距床面距离,cm;H为水深,cm;h/H表示相对水深;Re为雷诺数,黑色箭头表示Re增加的方向。下同。

计算图3中曲线的期望值(平均流速)与表面最大流速的比值,得到流速修正系数。如图4所示为坡面流随着的变化关系,同时也绘制出了Li等[16]利用电解质脉冲法得到的-关系曲线,其试验也是在清水光滑床面中开展。在过渡流内,本研究结果表明随着的增加,呈对数增加,与图4中虚线的变化相似,与前人研究规律相符[16,32]。机理是因的增加,流体微团的运动加剧,微团之间的碰撞加大,流体微团间的相互碰撞致使流体微团间动能变换,表现出流体微团间的速度相近,从而导致平均流速与最大流速之间的差异变小,表现出随着增加变大。在过渡区,-的回归方程为=0.071+ 0.09ln(),决定系数2=0.91,拟合效果较好,可用于清水光滑床面流速修正系数的估算。本研究在过渡流的平均值为0.77,大于普遍应用于染色示踪法中过渡流的=0.7[6,11,33-35]。当利用盐溶液和染色示踪的方法时,由于盐液扩散和染料与水流流速之间的关系未知,所以不确定其所测流速是否为水流的最大流速[17],以及在染色示踪法中存在目视误差,致使3种方法测量出的具有差异。利用PIV测量流速的优势为所测的流速具有明确的物理意义,通过流速轮廓线能够准确测量水流的最大流速与平均流速。

图4 平均流速修正系数和雷诺数间的关系

2.2 紊动强度及雷诺应力

紊动强度是流速的二阶矩,统计上表示数据的离散程度,物理意义是表示流速脉动强弱的程度。为便于比较,将紊动强度用摩阻流速*无量纲化,图5和图6分别为流向紊动强度′/*和垂向紊动强度′/*在全水深的分布情况。图5和图6中的实线是Chen等[20]通过PIV所测得的深水明渠紊流紊动强度,虚线是Del álamo等[25]通过直接数值模拟(Direct Numerical Simulation,DNS)所计算的深水明渠紊流紊动强度。本研究CK的数据与Chen等[20]和Del álamo等[25]所测的数据较吻合,表明本试验测量及计算准确。从床面至水面,图5所示的′/*和图6所示的′/*呈现出先增加后减少的变化趋势。对于′/*因上升段所占部分极小,PIV未能观测到;而对于′/*,PIV观测到了上升段及下降段。在距水面较近时(/>0.9),′/*不再下降而变得平缓,而′/*逐渐下降至0,原因是受水面影响,限制了垂向的脉动,该方向的脉动能量转移至流向,该现象称为紊动能的重分配[19,36]。DNS是将水面作为刚盖假设,未能准确模拟到该过程,因此在水面附近,与所测数据具有差异。

图5和图6中CK数据点、实线和虚线表示了深水明渠紊流紊动强度的变化规律,对比坡面流和深水明渠紊流的紊动强度,坡面流的′/*保持在较大的水平,但从C1~C7(和逐渐增加),/>0.3的数据逐渐减小,逐渐与深水明渠紊流重合;对于′/*,其值保持在较小水平,从C1~C7,其峰值点变化显著,逐渐靠近床面,曲线尾部逐渐与深水明渠紊流重合。然而,本试验未能观测到′/*和′/*曲线头部逐渐接近深水明渠紊流紊动强度曲线的过程。可以预测,随着和进一步增加,坡面流′/*和′/*曲线的头部也会逐渐趋近深水明渠紊流的曲线,直至与深水明渠流吻合,此时水流由坡面流发展成为深水明渠紊流。

图5 流向紊动强度沿水深的分布特征

图6 垂向紊动强度沿水深的分布特征

注:NR为文献[24]在深水明渠紊流中的试验数据。

2.3 偏态及峰度系数

偏态系数和峰度系数分别是流速的三、四阶矩。矩的阶次越高,对测量的精度要求越高[19]。图8和图9分别是流向流速的和沿水深的分布特征,实线为钟强等[19]利用PIV和粒子示踪测速技术(Particle Tracking Velocimetry, PTV)测量深水明渠紊流的试验数据。图8和图9中的虚线表示正态分布情况下=0,=3。当<0时,PDF曲线左侧尾部比右侧长,呈负偏,出现小于平均流速的瞬时流速值较多。反之,呈正偏,出现大于平均流速的瞬时流速值越多。绝对值越大,PDF偏斜越严重。当>3,PDF曲线较正态分布高瘦,表明更多的事件集中于均值附近,远离均值的极端事件出现概率较小(例如相干结构[37]中“清扫”造成高速流体俯冲床面,床面区域出现较大的瞬时流速极端事件;“喷射”造成床面附近小流速进入高流速区,高流速区出现小流速的极端事件);反之,PDF曲线较矮胖,出现极端事件的概率较大。

对照组的和与钟强等[19]的结果相吻合,再次证明测量及计算的准确性。对于坡面流而言,在近床面的区域值趋于1,随后逐渐减小直至达到负的最大值,之后值又会逐渐增加,在水面附近区域值趋于0。在床面区域的>0,原因是时均流速极小,受“清扫”的影响,出现大于时均流速的瞬时流速较多,呈现出正偏;而远离床面的区域<0,原因是受“喷射”的影响,瞬时流速出现小于时均流速大的较多,呈现负偏。曲线是从正最大值减小到负最大值,随后又回升至正值,最终稳定在=3附近。对比深水明渠紊流,当/<0.7时,<3,表明出现极端事件的比例较高。而坡面流中大部分>3,表明瞬时流速较集中于均值附近,出现极端事件的比例较小,是因为相干结构需要一定的空间发展[38]。坡面流由于水深浅薄,一定程度上限制了相干结构的发展,造成极端事件出现的概率小。如图8所示,C1~C4组次,>0出现在/<0.2的区域,而C5~C7组次,>0出现在/<0.1的区域,而对于深水明渠紊流,该区域仅在/<0.01,表明呈正偏的区域随着和的增加而逐渐被压缩。如图9所示,床面区域>3的部分随着水深的增加而逐渐被压缩,表明随着水深和雷诺数的增加较少发生极端事件的区域逐渐减小(>3的区域表明瞬时流速集中在均值附近)。

3 结 论

本研究通过提高粒子图像测速(Particle Image Velocimetry, PIV)的分辨率(达64 pixels/mm,使其满足浅水深的测量),测量了光滑床面上7组坡面流的流速和1组深水明渠紊流的流速,分析了流速轮廓线及流速修正系数,计算了紊动强度和雷诺应力、偏态系数和峰度系数,得到以下结论:

1)利用高分辨率粒子图像测速技术能够有效观测床面至水面的坡面流流速,从而得到流速轮廓线。通过流速轮廓线计算了流速修正系数,测得坡面流在过渡流时,流速修正系数随着雷诺数的增加呈对数增加,流速修正系数均值为0.77;

2)坡面流的紊动强度并非呈稳定的状态,对比深水明渠紊流的紊动强度,坡面流的流向紊动强度较大,而垂向紊动强度较小,随着水深和雷诺数的增加,坡面流紊动强度逐渐与深水明渠紊流的紊动强度吻合。通过对水流应力分布的分析,表明随着水深和雷诺数的增加,坡面流中受雷诺应力影响部分逐渐增加而受黏性应力影响部分逐渐减小;

3)坡面流流向流速大部分峰度系数大于3,表明坡面流流速大多集中在时均流速附近,受水深浅薄的限制,出现极端流速事件的概率较小。

通过增加PIV分辨率的方法,将其改进从而适应于坡面流流速的测量。从测量结果而言,PIV能够精确的测量床面至水面的流速,是一种具有清晰物理意义的测速手段。与其他测速手段相比,PIV具有多点同时测量、不干扰水流、频率高的优点,能够测量二维瞬时流场,获得丰富的信息,例如:流速轮廓线、紊动强度、应力、偏度系数、峰度系数等。此外,通过分析流场特征,可得到水流中存在的瞬时或者时均的结构,例如:通过二维PIV发现了明渠中的发夹涡,以及高低流速带、喷射、清扫等水流结构。因而,PIV能够较好的解决水力侵蚀中的机理机制问题。然而,将PIV应用于水力侵蚀之中仍存在如下的问题:PIV主要应用于实验室的观测,很难将其应用于野外的观测之中;目前的研究主要针对定床条件,需解决当PIV应用于动床试验时,随着侵蚀的发生,视角会被床面遮挡从而形成盲区的问题;PIV是较为微观的局部观测,而水力侵蚀的发生常常是较大尺度,需解决两者之间的尺度关系。

[1]张宽地,王光谦,孙晓敏,等. 坡面薄层水流水动力学特性试验[J]. 农业工程学报,2014,30(15):182-189.

Zhang Kuandi, Wang Guangqian, Sun Xiaomin, et al. Experimental on hydraulic characteristics of shallow open channel flow on slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(15): 182-189. (in Chinese with English abstract)

[2]Abrahams A D, Parsons A J, Luk S H. Resistance to overland flow on desert hillslopes[J]. Journal of Hydrology, 1986, 88(3): 343-363.

[3]Nearing M A, Bradford J M, Parker S C. Soil detachment by shallow flow at low slopes[J]. Soil Science Society of America Journal, 1991, 55(2): 339-344.

[4]蒋昌波,隆院男,胡世雄,等. 坡面流阻力研究进展[J]. 水利学报,2012,43(2):189-197. Jiang Changbo, Long Yuannan, Hu Shixiong, et al. Recent progress in studies of overland flow resistance[J]. Journal of Hydraulic Engineering, 2012, 43(2): 189-197. (in Chinese with English abstract)

[5]张宽地,王光谦,吕宏兴,等. 模拟降雨条件下坡面流水动力学特性研究[J]. 水科学进展,2012,23(2):229-235.

Zhang Kuandi, Wang Guangqian, Lyu Hongxing, et al. Experimental study of shallow flow hydraulics on a hillslope under artificial rainfall conditions[J]. Advances in Water Science, 2012, 23(2): 229-235. (in Chinese with English abstract)

[6]Zhao Chunhong, Gao Jianen, Huang Yuefei, et al. Effects of vegetation stems on hydraulics of overland flow under varying water discharges[J]. Land Degradation & Development, 2016, 27(3): 748-757.

[7]Yang Pingping, Zhang Huilan, Ma Chao. Effects of simulated submerged and rigid vegetation and grain roughness on hydraulic resistance to simulated overland flow[J]. Journal of Mountain Science, 2017, 14(10): 2042-2052.

[8]杨坪坪,王云琦,张会兰,等. 降雨强度和单宽流量与地表粗糙度交互作用下坡面流阻力特征[J]. 农业工程学报,2018,34(6):145-151.

Yang Pingping, Wang Yunqi, Zhang Huilan, et al. Effects of roughness element on overland flow resistance under interaction of simulated rainfall and surface roughness[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 145-151. (in Chinese with English abstract)

[9]杨坪坪,张会兰,王玉杰,等. 刚性植被空间配置模式对坡面流水动力学特性的影响[J]. 水土保持学报,2015,29(1):90-95.

Yang Pingping, Zhang Huilan, Wang Yujie, et al. Impact of spatial configuration mode of rigid vegetation on overland flow dynamics[J]. Journal of Soil and Water Conservation, 2015, 29(1): 90-95. (in Chinese with English abstract)

[10]张光辉,卫海燕,刘宝元. 坡面流水动力学特性研究[J].水土保持学报,2001,15(1):58-61.

Zhang Guanghui, Wei Haiyan, Liu Baoyuan. Study on hydro-dynamic properties of overland flow[J]. Journal of Soil and Water Conservation, 2001, 15(1): 58-61. (in Chinese with English abstract)

[11]Li Gang, Abrahams A D, Atkinson J F. Correction factors in the determination of mean velocity of overland flow[J]. Earth surface Processes and Landforms, 1996, 21(6): 509-515.

[12]Ali M, Sterk G, Seeger M, et al. Effect of flow discharge and median grain size on mean flow velocity under overland flow[J]. Journal of Hydrology, 2012, 452: 150-160.

[13]Zhang Guanghui, Luo Rongting, Cao Ying, et al. Correction factor to dye-measured flow velocity under varying water and sediment discharges[J]. Journal of Hydrology, 2010, 389(1): 205-213.

[14]赵春红,高建恩,王飞,等. 阻力形式对坡面薄层流流速修正系数的影响[J]. 农业机械学报,2013,44(10):130-135.

Zhao Chunhong, Gao Jianen, Wang Fei, et al. Effects of resistance forms on velocity correction factor of overland flow[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 130-135. (in Chinese with English abstract)

[15]夏卫生. 电解质脉冲法测量坡面薄层恒定水流速度的研究及其初步应用[D]. 杨凌:西北农林科技大学,2003.

Xia Weisheng. Study on Velocity Measurement of Steady Sheet Flow with the Electrolyte Pulse and Its Application[D]. Yangling: Northwest Agriculture and Forestry University, 2003. (in Chinese with English abstract)

[16]Li Gang, Abrahams A D. Effect of saltating sediment load on the determination of the mean velocity of overland flow[J]. Water Resources Research, 1997, 33(2): 341-347.

[17]罗榕婷,张光辉,曹颖. 坡面含沙水流水动力学特性研究进展[J]. 地理科学进展,2009,28(4):567-574.

Luo Rongting, Zhang Guanghui, Cao Ying. Progress in the research of hydrodynamic characteristics of sediment-laden overland flow[J]. Progress in Geography, 2009, 28(4): 567-574. (in Chinese with English abstract)

[18]陈启刚. 基于高频PIV的明渠湍流涡结构研究[D]. 北京:清华大学,2014.

Chen Qigang. High-Frequency Measurement of Vortices in Open Channel Flow with Particle Image Velocimetry[D]. Beijing: Tsinghua University, 2014. (in Chinese with English abstract)

[19]钟强,王兴奎,苗蔚,等. 高分辨率粒子示踪测速技术在光滑明渠紊流黏性底层测量中的应用[J]. 水利学报,2014,45(5):513-520.

Zhong Qiang, Wang Xingkui, Miao Wei, et al. High resolution PTV system and its application in the measurement in viscous sub-layer in smooth open channel flow[J]. Journal of Hydraulic Engineering, 2014, 45(5): 513-520. (in Chinese with English abstract)

[20]Chen Qigang, Qi Meilan, Zhong Qiang, et al. Experimental study on the multimodal dynamics of the turbulent horseshoe vortex system around a circular cylinder[J/OL]. Physics of Fluids, 2017, 29(1). [2017-01-31], https: //doi.org/10.1063/1.4974523.

[21]刘春晶,李丹勋,王兴奎. 明渠均匀流的摩阻流速及流速分布[J]. 水利学报,2005,36(8):950-955.

Liu Chunjing, Li Danxun, Wang Xingkui. Experimental study on friction velocity and velocity profile of open channel flow[J]. Journal of Hydraulic Engineering, 2005, 36(8): 950-955. (in Chinese with English abstract)

[22]Yang Pingping, Zhang Huilan, Wang Yunqi, et al. Hydrodynamic characteristics in a sheet flow upstream water flow of a circular cylinder[J/OL]. Physics of Fluids, 2019, 31(12). [2019-12-17], https: //doi.org/10.1063/1.5126040.

[23]杨坪坪,张会兰,王云琦,等. 低柱体雷诺数下柱体上游薄层流马蹄涡特征研究[J]. 工程科学与技术,2019,51(1):52-59.

Yang Pingping, Zhang Huilan, Wang Yunqi, et al. Characteristics of horseshoe vortex upstream of a cylinder in shallow water with low cylinder Reynolds number[J]. Advanced Engineering Sciences, 2019, 51(1): 52-59. (in Chinese with English abstract)

[24]Nezu I, Rodi W. Open-channel flow measurements with a laser doppler anemometer[J]. Journal of Hydraulic Engineering, 1986, 112(5): 335-355.

[25]Delálamo J C, Jiménez J, Zandonade P, et al. Scaling of the energy spectra of turbulent channels[J]. Journal of Fluid Mechanics, 2004, 500: 135-144.

[26]张宽地,王光谦,孙晓敏,等. 模拟植被覆盖条件下坡面流水动力学特性[J]. 水科学进展,2014,25(6):825-834.

Zhang Kuandi, Wang Guangqian, Sun Xiaomin, et al. Hydraulic characteristic of overland flow under different vegetation coverage[J]. Advances in Water Science, 2014, 25(6): 825-834. (in Chinese with English abstract)

[27]李勉,姚文艺,杨剑锋,等. 草被覆盖对坡面流流态影响的人工模拟试验研究[J]. 应用基础与工程科学学报,2009,17(4):513-523.

Li Mian, Yao Wenyi, Yang Jianfeng, et al. Experimental study on the effect of grass cover on the overland flow pattern in the hill slope gully side erosion system[J]. Journal of Basic Science and Engineering, 2009, 17(4): 513-523. (in Chinese with English abstract)

[28]Abrahams A D, Atkinson J F. Relation between grain velocity and sediment concentration in overland flow[J]. Water Resources Research, 1993, 29(9): 3021-3028.

[29]Zhang Ganghui, Liu Baoyuan, Nearing M A, et al. Soil detachment by shallow flow[J]. Transactions of the American Society of Agricultural Engineers, 2002, 45(2): 351-357.

[30]申震洲. 黄土坡面水蚀相似性模拟机水蚀动力过程试验研究[D]. 西安:西安理工大学,2016.

Shen Zhenzhou. The Soil Erosion Experiment about Similitude and Hydrodynamic Characteristics on Loess Slope[D]. Xi’an: Xi’an University of Technology, 2016. (in Chinese with English abstract)

[31]Nezu I. Open-channel flow turbulence and its research prospect in the 21stCentury[J]. Journal of Hydraulic Engineering, 2005, 131(4): 229-246.

[32]Abrantes J R C B, Moruzzi R B, Silveira A, et al. Comparison of thermal, salt and dye tracing to estimate shallow flow velocities: Novel triple-tracer approach[J]. Journal of Hydrology, 2018, 557: 362-377.

[33]Mu Hongli, Yu Xianjun, Fu Suhua, et al. Effect of stem cover on hydraulic parameters of overland flow[J/OL]. Journal of Hydrology, 2019, 577, [2019-07-18], https://doi.org/ 10.1016/j.jhydrol.2019.123964.

[34]吴秋菊,吴发启,王林华. 土壤结皮坡面流水动力学特征[J]. 农业工程学报,2014,30(1):81-88.

Wu Qiuju,,Wu Faqi,Wang Linhua. Hydrodynamic characteristics of overland flow under soil crusts[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 81-88. (in Chinese with English abstract)

[35]Xiao Hai, Liu Gang, Liu Puling, et al. Response of soil detachment rate to the hydraulic parameters of concentrated flow on steep loessal slopes on the Loess Plateau of China[J]. Hydrological Processes, 2017, 31(14): 2613-2621.

[36]Vesselina R, Nihar B, Ram B. Revisiting turbulence in smooth uniform open channel flow[J]. Journal of Hydraulic Research, 2008, 46(S1): 36-48.

[37]钟强. 明渠紊流不同尺度相干结构实验研究[D]. 北京:清华大学,2014.

Zhong Qiang. Experimental Study on Diverse Scale Coherent Structures in Open Channel Flows[D]. Beijing: Tsinghua University, 2014. (in Chinese with English abstract)

[38]Zhou Jigen, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387: 353-396.

Hydrodynamic characteristics of overland flow based on particle image velocimetry

Yang Pingping1,2, Zhang Huilan3,4, Wang Yunqi3,4, Li Rui1,2※

(1.550001,; 2.550001,; 3.()100083,; 4.100083,)

Accurate measurement of overland flow velocity along flow depth is critical for hydraulic and soil erosion processes over hill-slopes, yet multipoint velocity along the flow depth has not realized a clear understanding of overland flow characteristics. Particle Image Velocimetry (PIV) breaks through the spatial simple point survey technology limit and not disturbing the flow due to optical measurement. This method could provide rich velocity information for overland flow. To match the shallow depth measurements, the resolution of PIV was improved up to 64 pixels/mm by adding the extension tubes and strengthen the light. Taking advantage of PIV, this study was to explore the hydrodynamics characteristics of overland flow, and the velocity in the streamwise and wall-normal direction were measured. The velocity was obtained by calculating the velocity of corresponding particles for two consecutive images. Experiments were carried out with seven overland flow conditions ensured by previous literature research, featured with flow depth changing from 0.55 to 1.1 cm, Reynolds number from 1 092 to 2 877, and Fraud number from 0.7 to 0.995, while an extra case of deep-water open channel flow was conducted as the control group. The statistical parameters of overland flow were studied, in terms of velocity profiles, correction coefficient, turbulence intensity, skewness, and kurtosis coefficient of instantaneous velocity. Results showed that 1) The velocities from flume bed to free surface were effectively measured using PIV. The correction coefficient equated the ratio of mean velocity to maximum velocity, which widely was used to dye and sault tracing methods, logarithmically increased with increasing Reynolds number when overland flow regimes belong to transition flow. However, the present mean correction coefficient equated to 0.77 in transition flow and was larger than 0.7 that acquired by dye and sault tracing methods. Because of the maximum velocity measured by dye and sault tracing methods were doubtable, the correction coefficient acquired by different methods were discrepant. The PIV had clear physical meanings, that could distinguish maximum and mean velocity. 2) The turbulent intensity was the second moment of instantaneous velocity and represented the pulse of fluid. Compared with deep-water open channel turbulent flow, the turbulence intensity and Reynold stress were not stable for overland flow. The streamwise turbulent intensity of overland flow was larger than that of deep-water open channel turbulent flow, while wall-normal turbulent intensity was smaller. As increasing flow depth and Reynold number, turbulent intensity became stable and closed to that of deep-water open channel turbulent flow. The parts of fluids affected by Reynolds stress was about 80% for deep-water open channel turbulent flow while that was less than 80% for overland flow. Moreover, the parts of fluids affected by Reynolds stress became larger with increasing Reynolds number for overland flow. 3) The skewness and kurtosis coefficient were the third and fourth moments of instantaneous velocity, which described the shape of the probability density function. The higher the order of the moment, the more accuracy of measurement was required. The skewness and kurtosis coefficient of control groups well agreed with the previous study, implying the reliability of the present experiments. The skewness coefficient and the kurtosis coefficient of overland flow were different from deep-water open channel flow and gradually closed to the curve of deep-water open channel flow as increasing flow depth. Based on the features of the skewness coefficient, more instantaneous velocity larger than the mean velocity occurred near the flume bed region, while more instantaneous velocity smaller than the mean velocity occurred near the free surface region. Most parts of the overland flow of the kurtosis coefficient were larger than 3, implying the probability that occurred with excessive velocity for overland flow was lower than that of deep-water open channel turbulent flow, due to the limitation of shallow depth and the coherent structure had not enough space to fully develop. Although PIV is not suitable for field tests and erodible flume bed due to block of camera view, PIV has a unique advantage, i.e. multiple point survey, contactless, and high-frequency measurement. Thus, this method could further apply in the research of soil and water conservation and could help study the water erosion mechanism.

hydrodynamics; overland flow; flow velocity; particle image velocimetry; turbulence intensity; Reynolds stress

杨坪坪,张会兰,王云琦,等. 基于粒子图像测速的坡面流水动力学特性[J]. 农业工程学报,2020,36(17):115-124.doi:10.11975/j.issn.1002-6819.2020.17.014 http://www.tcsae.org

Yang Pingping, Zhang Huilan, Wang Yunqi, et al. Hydrodynamic characteristics of overland flow based on particle image velocimetry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 115-124. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.17.014 http://www.tcsae.org

2020-03-25

2020-06-02

国家自然科学基金项目(31760243);贵州省科技计划项目(黔科合支撑[2019]2847号,黔科合基础[2018]1112号);贵州省水利厅科研项目(KT201806)

杨坪坪,博士,讲师,主要从事水土保持与土壤侵蚀等方面研究。Email:pingping_yang0320@163.com

李瑞,博士,研究员,主要从事土壤侵蚀与水土保持、生态环境工程等方面研究。Email:rlfer@126.com

10.11975/j.issn.1002-6819.2020.17.014

S715

A

1002-6819(2020)-17-0115-10

猜你喜欢
明渠床面深水
基于混相模型的明渠高含沙流动底部边界条件适用性比较
明渠瞬时床面切应力粒子图像测量技术
援孟八桥深水钢吊箱围堰设计
深水爆炸载荷及对潜艇结构毁伤研究进展
识人需要“涉深水”
骨质疏松这样锻炼
6个姿势练好腰背肌
基于动态朴素贝叶斯分类器的明渠水华风险评估模型
浅水区
团身滚动治腰痛