南水北调中线工程封冻期闸门群开度控制器改进设计

2020-10-22 14:27刘孟凯
农业工程学报 2020年17期
关键词:闸门南水北调开度

刘孟凯,关 惠,郭 辉,毕 胜

南水北调中线工程封冻期闸门群开度控制器改进设计

刘孟凯1,关 惠1,郭 辉2,毕 胜2

(1. 武汉科技大学恒大管理学院,武汉 430081;2. 长江科学院,武汉 430010)

大型串联渠系封冻期容易产生较大的水力波动,增大了冰塞形成风险,如何通过闸门群联合调度减小水力波动,能够在一定程度上抑制封冻期冰塞发生。该研究通过设计PI(Proportional Integral)控制器和OF(Optimization Feedback)控制器2个控制环节,以最小水位偏差为目标函数,考虑渠池间流量约束、闸门开度约束和闸门调整速率约束,结合遗传算法,建立封冻期渠系闸门群优化调度模拟模型,并以南水北调中线古运河节制闸至北拒马河节制闸之间的渠系为背景,进行模型效果分析与参数敏感性分析。模拟结果表明,在模拟工况下,控制器中加入OF控制器较仅用PI控制器显著降低最大水位偏差,其中下游最大水位偏差减小约36%,且系统恢复稳定时刻提前近2.9 h,所建模型对抑制封冻期水力响应过大有一定的效果;减小了各闸门的最大开度,其中渠池11闸门最大开度减小近20%,但对于部分渠池增大了单次闸门开度调整幅度;遗传算法求解过程对扰动流量取值范围设定不宜过大。

遗传算法;仿真;封冻期;闸门群;控制器;运行安全

0 引 言

南水北调中线工程总干渠长1 432 km(含天津段干渠155 km),沿线共有64座节制闸,88座分水口门。由于南水北调中线工程总干渠输水线路长、调水规模大,沿线无在线调节水库,全线采用自流输水,因此,为了实现安全的适时适量输水,该工程在运行调度过程中对闸门群的流量调节与控制的要求非常高[1-2]。而南水北调中线干渠受水波传播速度限制,具有大滞后性,且沿线任一分水口或节制闸的流量变化都将引起一定渠道范围内的水位波动,表现出很强的耦合作用[3]。冬季运行时,在结冰期生成冰盖的瞬间,渠道的糙率、过水面积和湿周都会明显变化,导致渠系原来的稳定非恒定流状态发生变化[4-5]。因此,渠系封冻期水力响应规律复杂,对封冻期运行调度安全与适时适量供水造成威胁,需要对渠系闸门群进行联合调度,促使封冻期水位波动幅度和变化速率减小且尽快稳定。

目前,研究渠道冰期运行调度问题主要涉及渠道自动化控制、冰期输水及闸门群优化3个方面。在渠道自动化控制方面,管光华等[6]基于蓄量阶跃补偿及蓄量二次补偿2类算法,结合PI(Proportional Integral)反馈控制器,对现有算法控制性能进行比较,并提出了简化时滞参数显示算法;Hashemy等[7]采用在线调蓄策略,将模型预测控制应用于水位控制,提高渠系运行能力;Shahdany等[8]利用分散比例积分和集中式线性二次调节控制器缓解渠道中来流波动影响;Kong等[9]提出一种精确模拟水力的两级控制方法,能一定程度抑制多池渠道系统水位波动和增加稳定时间;叶雯雯等[10]提出一种自适应PID(Proportional Integral Derivative)控制算法,能够针对特定性能指标实现控制器参数的自我优化;黄凯等[11]在PID算法的积分环节中引入启动阈值,并采用惯性环节串联补偿微分环节,降低了系统超调,提高了控制性能;李晨[12]则采用动态矩阵预测控制对渠系控制系统的实时信息进行反馈校正,有效应对扰动带来的影响。

在渠道冰期输水方面,Rokaya等[13]采用相关效应的抽样方法,研究了常用河冰模型参数与边界条件之间的相关性;Yang等[14]基于Muskingum水文方法,建立了融冰期洪水演进过程模型,确定了黄河包头段融冰期的出流路径线,模拟过程与实测结果吻合较好;穆祥鹏等[15]通过构建一维渠道冰水力学数学模型,研究了渠道流冰输移和发展规律,并提出冰水二相流渠道的安全运行措施;刘孟凯等[1, 16-17]对不同冰情阶段的渠系水力响应进行了分析,并提出了减小水力响应幅度的方法;韩延成等[18]提出正常水深的简易显示迭代算法,为冰盖下输水渠道正常水深计算提供便捷的计算方法;温世亿等[19]开展了冰情原型观测,掌握了小流量、暖冬气候条件下中线干渠冬季冰情生消演变的基本规律;段文刚等[20]结合原型观测数据,分析了冰情时空分布特征、冰情演变条件及特点;李芬等[21]采用模糊评价方法对南水北调中线京石段冰害风险空间分布进行定量研究,提高了渠系冰期输水时应对风险的能力;吴艳等[22]提出基于水温实测资料的冰期水内冰演变计算方法,可实时动态分析渠道冰水二相流水内冰的产生、演变及输移,计算精度较高;赵新等[23]通过物理模型试验研究得到了输水渠道融冰期加厚冰盖形成初期糙率约为0.029。

在闸门群优化调度方面,因调水工程闸门群调度问题与水库群优化调度问题类似,可以考虑采用动态规划模型等研究方法,以优化渠系冰期输水阶段闸门调度过程。周茜[24]根据水库多阶段决策过程的特性,在传统优化算法的基础上,提出并行多核动态规划方法,应用于并联水库群中长期发电运行控制问题,寻得优化调度方案;张宇航等[25]采用引入收敛因子的粒子群算法求解梯级水电站长期优化调度问题,取得了满意的结果。遗传算法也常被用于求解动态规划模型,单宝英等[26]建立一种基于遗传算法与方案优选的多目标优化问题求解方法,得到了较为满意的方案;陈立华等[27]根据梯级水电站优化调度特点,建立遗传算法求解多阶段最优化问题的数学模型,验证了该算法在解决水库群优化问题方面的优越性和有效性。因此,运用遗传算法进行调水工程闸门群优化调度,可为渠道冰期运行调度问题的研究提供一种新的思路。

刘孟凯[16]建立了南水北调中线冰期输水自动化控制模型,并对冰情模拟参数进行了验证。经分析,该模型模拟得到的水力响应结果在封冻期较大,不利于工程封冻期运行安全,且水力响应尚有通过闸门群联合调度优化的空间。因此,本文基于前期研究基础,考虑封冻期渠系水力响应特性,在PI控制器基础上引入寻优反馈(Optimization Feedback,OF),并采用遗传算法,建立封冻期渠系闸门群优化调度模拟模型,最后通过在南水北调中线古运河节制闸至北拒马河节制闸之间的渠系上进行仿真试验,对OF控制器进行全面的分析与论证,促进OF控制器的应用。

1 渠系自动化控制模拟模型

1.1 工程背景

本研究以南水北调中线工程总干渠为研究背景。该工程安阳以北渠段每年有不同程度的冰情发生,尤其是石家庄古运河节制闸至北拒马河节制闸之间渠段的冰情最为严重,冰盖厚度较厚,且有冰塞发生(黄国兵等[28]通过原型观测发现石家庄古运河节制闸至北拒马河节制闸间一隧洞进口处发生严重冰塞,冰塞体厚度1.5 m以上,最大厚度达到2.3 m)。因此,研究选用石家庄古运河节制闸至北拒马河节制闸之间渠段为研究对象,该渠段长227.4 km,由14个闸门分隔成的13个渠池组成[16],如图1所示。

注:1~13为渠池编号。 Note: 1-13 are the pool No..

1.2 模型概化

将工程概化成连接水库、下游末端及沿程用水户的渠系,一个渠系是闸门群分隔而成的串联渠池系统,通过闸门群的联合调度实现渠系适时适量供水,如图2所示,其中,QQ均为已知的取水流量。对于恒定流状态的渠系,相关变量存在如式(1)和(2)的关系[29]。

Q()=Q()+Q()(1)

Q()=Q(+1)(2)

注:Qdown为渠系下游末端需水流量,m3·s-1;Qd(i)、Qu(i)、Qout(i)分别为渠池i的下游闸过闸流量、上游闸过闸流量和区间分水流量,m3·s-1;i=1,2,3,…n为渠池和闸门编号,渠池编号与其上游端闸门编号一致。

1.3 自动化控制模型

渠系自动化控制模型框架流程如图3所示,渠系因冰情变化而引发水位和流量波动,造成水位和流量偏离控制目标,需要在控制器作用下引导闸门群开度调整,最后促使渠系回到控制目标下的稳定运行状态。

图3 闸门群优化模型框架

其中,模型采用明渠非恒定流方程模拟渠系在形成浮动冰盖和明渠流状态下的水力响应,控制方程如下[30]:

连续方程:

动量方程:

式中为水位,m;为水深,m;为流量,m3/s;为水面宽,m;为过水断面面积,m2;为谢才系数;为时间变量,s;为空间变量,m;q为区间入流量,m3/s;v为侧向入流在水流方向的平均流速,m/s,常忽略不计;为水流沿轴线方向的流速,m/s;为渠道底坡坡降;为水力半径,m;为重力加速度,m/s2。

当渠道内形成浮动冰盖,有冰盖部分的渠道湿周和糙率均包含冰盖的影响,求解时以每个渠池上游闸和下游闸过闸流量为双边界条件,采用pressman四点隐式差分求解[16]。

2 控制器设计

基于常用的PI控制器,引入OF控制器优化闸门群调度过程,实现有效抑制封冻期水力响应过大的目标。

2.1 PI控制器

本研究建立的渠系自动化控制模型在应对渠系封冻时,若渠系水位偏离控制目标较小,则采用增量式PI控制器,由控制断面处的实时水位波动,通过反馈环节产生该渠池上游端节制闸的闸门流量调节时段增量[31],促使控制目标的实现与稳定:

式中Δ为渠池上游端节制闸闸门流量调节时段增量,m³/s;Y为实时水位,m;Y为目标水位,m;K为比例系数;K为积分系数。

根据闸门过流公式反算求出闸门开度,该渠池上游端节制闸的闸门开度调节时段增量为

式中Δ为渠池上游端节制闸闸门开度调节时段增量,m;Δ为闸门前后水头差,m;为闸门当前开度,m。

2.2 OF控制器

本研究建立的渠系自动化控制模型在应对渠系封冻时,若渠系任一渠池的水位偏离控制目标较大,则全部闸门同步调整控制器为OF控制器,通过联合调度减小水位偏差。

2.2.1 数学模型

以渠池下游末端水位波动的最大值最小为目标,建立数学模型,目标函数如式(7)所示。

式中为渠系各渠池下游末端水位波动的最大值,m;为渠池编号;L为渠池下游末端时刻实时模拟水位,m;0it为渠池下游末端目标水位,m。

模型主要考虑流量约束、闸门开度约束和闸门调节速率约束。其中流量约束如下:

式中i为最下游未封冻渠池编号,为渠池个数,Q为第个渠池上游端处在第时段的流量,m³/s;Q1为第1个渠池上游端处在第时段的流量,m³/s;0i为第个渠池上游端处在第时段的设计流量,m³/s。

闸门开度约束为

G≤maxi(9)

式中G和maxi分别为第渠池上游闸的实时闸门开度和设计最大闸门开度,m。假设闸门操作死区为0。

闸门调节速率约束为

v<maxi(10)

式中v和maxi分别为第渠池上游闸的实时闸门调节速率和速率上限,m/s。

2.2.2 模型求解

OF控制器采用遗传算法求解,求解步骤涉及基因编码、初始化种群、目标函数计算、子代种群生成等内容的循环,采用允许误差作为群体进化终止条件,最终得到符合约束条件的求解域内目标函数最优值,作为下一时刻闸门群开度调度目标,具体如图4所示。

子代种群生成时涉及基因交叉、基因变异和子代约束3项内容。

模型设定基因交叉作为子代形成的基本形式。采用双点交叉[32]方式,在随机交叉概率下(0≤≤1),得到一对新子代个体。

基因变异是针对基因交叉后不满足约束条件的个体进行的子代筛选操作。针对子代个体中不符合约束条件的基因Q2(),作以Q2(1)为基点的小幅度的随机扰动,设定对于封冻渠池采用负向扰动,对于未封冻渠池采用正向扰动。

在生成子代过程中,需要对新生成子代进行满足约束判断与限制,约束包括模型约束和流量变幅约束。流量变幅约束是针对遗传算法求解特性,避免产生闸门调度大幅突变而设置的约束。流量变幅约束又分为2个阶段,分别为基因交叉阶段约束和基因变异阶段约束,通过流量变幅幅度限制百分数实现流量约束,其中基因交叉阶段约束变量为1,基因变异阶段封冻渠池和非封冻渠池的约束变量分别为2和3。只有通过所有约束检验的子代方为合格子代。

图4 遗传算法求解流程示意图

3 模型应用

假设渠系在封冻前处于稳定输水状态,为了接近工程近年实际冬季输水流量[21],取Q=20 m3/s,Q(9)= 10 m3/s,Q(4)=20 m3/s,各渠池均采用下游常水位运行方式,控制目标为闸前设计水位,且为了满足所有用水户用水需求,维护用户利益,假设在封冻期,各分水口分水流量始终保持初始分水流量。

同时,为了突出OF控制器作用效果和适应极端工况的能力,模拟工况设定为渠池11、12、13在模拟开始2 h后短时间内形成覆盖整个渠池水面,厚20 cm的冰盖,且新生冰盖糙率在模拟时段始终为0.015,与渠道糙率相同。

模型中参数取值为:PI控制器参数K=0,K=0.4;OF控制器参数=10,=0.5,随机扰动流量=[0,0.01]1=7%2=4%3=10%,E=0.14 m,=500;闸门调控时间步长为5 min,非恒定流模拟时间步长为1 min。

3.1 水力响应特性对比

分别采用PI控制器与PI+OF控制器进行封冻期闸门群调度模拟,得到应用不同控制器条件下的渠系典型渠池水力响应偏差过程,如图5所示,其中水位偏差是指模拟实时水位偏离初始稳定水位。

注:PI为比例积分控制器;OF为寻优反馈控制器。水位偏差为正值表示水位上升,为负值表示水位降低。下同。

由于渠池11~13短时间内形成封冻,过流能力减少,在下游常水位运行方式下,为了维持原有的目标输水流量,必然造成渠池上游闸后水位大幅抬升,必须执行开闸指令,增大渠池蓄量,使水力坡度增大到能在当前糙率和过水断面下通过目标输水流量的水位状态,然后再通过回调闸门使整个渠系稳定,下游控制断面处的水位回到控制目标位置。其余未封冻渠池的目标状态蓄量不增加,为了更快满足下游渠池对蓄量的要求,这些渠池消耗自身的蓄量满足下游水量需求,水位处于下降状态。所以出现部分渠池闸后水位抬升,而部分渠池闸后水位下降的现象。

图5显示,PI控制器调控下,渠池11水位波动最大,上游最大水位偏差约为0.36 m,下游水位最大偏差约为−0.22 m,越靠近上游的渠池,其水力响应所受影响越小;PI+OF控制器调控下,渠池11最大水位偏差约为0.28 m,与仅用PI控制器调节相比,降低约21%,下游水位最大偏差约−0.14 m,偏差减小约36%,其他渠池的最大水位偏差也均有不同幅度的减小,统计如表1所示。结果显示,PI+OF控制器作用下的渠系水力响应,非封冻渠池上下游水位偏差与仅PI控制器调节时相比分别至少减小了11%和14%,对于封冻渠池的上下游水位偏差也分别减小了3.5%和7%;同时,对于渠系水位恢复稳定耗时,除渠池10上游水位恢复耗时增加外,其余渠池均表现为提前,模拟工况下的耗时缩减量约在0.3~2.9 h。综合表明,PI+OF控制器具有抑制水位波动过大和尽早稳定水位的效果。

表1 PI+OF控制器调控效果

图6为2种控制器作用下的各渠池进出口流量差对比图,结果显示,2种控制器造成的渠池进出流量差变化趋势类似,但幅度和时间不同。具体表现为,封冻的渠池11~13表现为进口流量大;而未封冻渠池的进出口流量差表现为先负后正的趋势,且随着距离封冻渠池距离的增大,其正负2个方向的波动幅度也逐渐减小。对比图6a、6b可知,OF控制器可通过优化各渠池进出口流量调整过程,减小进出口流量差调整幅度与时间,达到快速逼近目标蓄量目的,进而减小水位波动幅度,但OF控制器加大了渠池9进出口流量差调整的波动性,这与工程布置、封冻与未封冻渠池流量差调整需求相反等因素有关。

图6 不同控制器作用下各渠池进出口流量差

3.2 闸门群调度过程对比

图7为2种控制器作用下的渠系典型闸门开度调度过程,结果表明,与PI控制器相比,OF控制器减小了各闸门的最大开度,其中渠池11闸门最大开度减小近20%,且在0~10 h范围内,OF控制器容易造成闸门群操作较为频繁,且单次操作幅度较大,但下游渠池闸门最大开度较PI控制器明显减小,在维持渠池蓄量平衡、减小水位波动和缩短稳定耗时等方面发挥积极作用。说明了OF控制器在模型方面设定闸门相关约束,在求解方面设定流量调节幅度限制的必要性和可行性。

图7 不同控制器作用下闸门群开度

4 参数敏感性分析

4.1 流量变幅约束参数

在基因交叉阶段,在PI+OF控制器作用下,不同参数流量变幅约束参数1条件下,渠池13上、下游最大水位偏差及启动OF控制器时间与迭代次数如表2所示。随着参数取值增大,上、下游最大水位偏差绝对值都在增大,但其增幅越来越小,到27%与57%工况下的最大偏差和迭代次数均一样,上游最大偏差说明此时参数变化对结果影响非常小,对结果的整体影响幅度也较小,同时所需的迭代次数基本一致;该参数不影响OF控制器启动时间。综合而言,本模拟工况参数1取7%。

表2 参数d1对模拟结果的影响

注:1为基因交叉阶段流量变幅约束幅度,是对基因交叉之后的子代检验。

Note:1is the constraint range of flow variation in gene crossover stage, which is used to offspring test after gene crossing.

对于基因变异阶段流量变幅约束参数2、3,在第3节采用参数2=4%3=10%基础上,进行单因子敏感性测试,发现,当参数2、3分别增大时,渠池与上一时间段过闸流量改变幅度范围增大,导致寻优难度增加,寻优很难朝着更接近目标的方向进行,模拟均出现在某一时刻停滞不前,最终无法完成求解过程。因此推荐本模型设定的参数2、3取值。

4.2 随机扰动流量

对模型参数随机扰动流量进行单因子敏感性分析,模拟结果如图8所示。结果显示,随着范围增大,渠池2上下游水位波动明显增加,∈[0,1]时的上游最大水位偏差值增加,且到达稳定状态耗时增大,对渠系的安全运行以及快速恢复稳定不利;参数的改变对下游渠池的影响较小,渠池13在3种条件下的图像曲线几乎完全重合。对水位影响,具有从上游渠池至下游渠池依次减小的规律;3种情况下遗传算法寻优过程相似,对迭代次数无明显影响。若的范围小于[0,0.01],经模拟发现所有渠池水位偏差图像均与取[0,0.01]时重合,迭代次数也几乎无影响。而范围过小,则会限制变异过程中的基因多样性,导致搜索空间不足。因此,在保证搜索空间的情况下,从降低最大水位偏差和快速恢复稳定两方面综合考虑,建议的取值范围在[0,0.01]。

注:q为变异运算中的随机扰动流量。

5 结 论

本文基于改善渠系封冻期水力响应过程,减小冰塞风险角度,在常规PI控制器基础上,引入OF控制器,并基于遗传算法,建立了封冻期渠系闸门群优化调度模拟模型,并以南水北调中线古运河节制闸至北拒马河节制闸之间的渠系为例,经对比常规PI控制器与PI+OF控制器,表明PI+OF控制器能显著降低渠系各渠池的最大水位偏差,其中下游最大水位偏差减小近36%,且系统恢复稳定时刻提前近2.9 h,有利于促进封冻期减小冰塞风险;该方法降低水位偏差的原因是通过各渠池进出口流量控制,更好的协调了各渠池间的蓄量调整需求问题;该模型减小了各闸门的最大开度,但对于部分渠池增大了单次闸门开度调整幅度,因闸门开度与速率约束,闸门开度调整均具有可操作性;在遗传算法求解过程中,随机扰动流量对寻优方向有影响作用,不宜设置过大,而流量变幅约束参数,对水位波动幅度和寻优迭代次数影响均较为有限。

[1]刘孟凯,关惠,黄明海. 封冻期渠系运行方式研究[J]. 南水北调与水利科技,2020,18(4):195-201.

Liu Mengkai, Guan Hui, Huang Minhai. Study on operation mode of canal system under formation of ice cover[J]. South-to-North Water Transfers and Water Science & Technology,2020,18(4):195-201.(in Chinese with English abstract)

[2]张大伟. 南水北调中线干线水质水量联合调控关键技术研究[D]. 上海:东华大学,2014.

Zhang Dawei. Research on the Key Technology of the Regulation of Water Quality and Quantity of the Middle Route of South-to-North Water Diversion[D]. Shanghai: Donghua University, 2014. (in Chinese with English abstract)

[3]崔巍,陈文学,姚雄,等. 大型输水明渠运行控制模式研究[J]. 南水北调与水利科技,2009,7(5):6-10,19.

Cui Wei, Chen Wenxue, Yao Xiong, et al. Research on canal control of large scale water transfer project[J]. South-to-North Water Transfers and Water Science & Technology, 2009, 7(5): 6-10, 19. (in Chinese with English abstract)

[4]刘孟凯,王长德,冯晓波. 长距离控制渠系结冰期的水力响应分析[J]. 农业工程学报,2011,27(2):20-27.

Liu Mengkai, Wang Changde, Feng Xiaobo. Analysis on the hydraulic response of long distance canal control system during ice period[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2011, 27(2): 20-27.(in Chinese with English abstract)

[5]刘孟凯,冯晓波,王长德,等. 2步法改善长距离渠系结冰盖期的水力响应[J]. 华中科技大学学报:自然科学版,2011,39(7):99-103.

Liu Mengkai, Feng Xiaobo, Wang Changde, et al. Improvement of hydraulic behaviors of long distance canal system during ice cover formation by two steps method[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2011, 39(7): 99-103. (in Chinese with English abstract)

[6] 管光华,廖文俊,毛中豪,等. 渠系前馈蓄量补偿控制时滞参数算法比较与改进[J]. 农业工程学报,2018,34(24):72-80.

Guan Guanghua, Liao Wenjun, Mao Zhonghao, et al. Comparison and improvement of time delay parameter algorithm for feedforward volume compensation control in canal system[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2018, 34(24): 72-80. (in Chinese with English abstract)

[7]Hashemy S M, Monem M J, Maestre J M, et al. Application of an in-line storage strategy to improve the operational performance of main irrigation canals using model predictive control[J]. Journal of Irrigation and Drainage Engineering, 2013, 139(8): 635-644.

[8]Shahdany S M H, Firoozfar A R, et al. Providing a reliable water level control in main canals under significant inflow fluctuations at drought periods within canal automation[J]. Water Resources Management, 2017, 31(11): 3343-3354.

[9]Kong Lingzhong, Lei Xiaohui, Wang Mingna, et al. A regulation algorithm for automatic control of canal systems under emergency conditions[J]. Irrigation and Drainage, 2019, 68(4): 646-656.

[10]叶雯雯,管光华,李一鸣,等. 串联输水明渠PID多指标自适应算法及仿真研究[J]. 中国农村水利水电,2019(1):120-126.

Ye Wenwen, Guan Guanghua, Li Yiming, et al. The simulation of PID multi-index adaptive algorithm on tandem water transfer open channel[J]. China Rural Water and Hydropower, 2019(1): 120-126. (in Chinese with English abstract)

[11]黄凯,管光华,刘大志,等. 串联渠系PID改进积分与微分环节仿真研究[J]. 灌溉排水学报,2017,36(2):1-11.

Huang Kai, Guan Guanghua, Liu Dazhi, et al. Simulation for PID controller of modified integral and differential on tandem canal system[J]. Journal of Irrigation and Drainage, 2017, 36(2): 1-11. (in Chinese with English abstract)

[12]李晨. 南水北调中线渠池水力控制研究[D]. 邯郸:河北工程大学,2014.

Li Chen. The Middle Route of South-To-North Water Transfer Canal Water Force Control Research[D]. Handan: Hebei University of Engineering, 2014. (in Chinese with English abstract)

[13]Rokaya P, Lindenschmidt K L. Correlation among parameters and boundary conditions in river ice models[J]. Modeling Earth Systems and Environment, 2020, 6(5): 499-512.

[14]Yang W L, Wang J, Sui J Y, et al. A modified muskingum flow routing model for flood wave propagation during river ice thawing-breakup period[J]. Water Resources Management: An International Journal-Published for the European Water Resources Association (EWRA), 2019, 33(2): 4865-4878.

[15]穆祥鹏,陈云飞,吴艳,等. 冰水二相流渠道流冰输移演变规律及其安全运行措施研究[J]. 南水北调与水利科技,2018,16(5):144-151.

Mu Xiangpeng, Chen Yunfei, Wu Yan, et al. Research on ice transport evolution rules and safe operation measures of ice-water two-phase flow canal[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(5): 144-151. (in Chinese with English abstract)

[16]刘孟凯. 南水北调中线工程总干渠冰期输水调控仿真研究[J]. 农业工程学报,2019,35(16):95-104.

Liu Mengkai. Operation simulation model for middle route of south-to-north water transfer project during ice period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 95-104. (in Chinese with English abstract)

[17]Liu M K, Feng X B, Wang C D, et al. Regulating a long-distance canal system with floating ice cover in the winter[J]. Journal of Cold Regions Engineering, 2015, 29(1): 4014009.

[18]韩延成,初萍萍,梁梦媛,等. 冰盖下梯形及抛物线形输水明渠正常水深显式迭代算法[J]. 农业工程学报,2018,34(14):101-106.

Han Yancheng, Chu Pingping, Liang Mengyuan, et al. Explicit iterative algorithm of normal water depth for trapezoid and parabolic open channels under ice cover[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 101-106. (in Chinese with English abstract)

[19]温世亿,杨金波,段文刚,等. 南水北调中线2014-2015年度冬季冰情原型观测[J]. 人民长江,2015,46(22):99-102.

Wen Shiyi, Yang Jinbo, Duan Wengang, et al. Ice prototype monitoring of Middle Route Project of South- to-North Water Diversion in winter of 2014 to 2015[J]. Yangtze River, 2015, 46(22): 99-102. (in Chinese with English abstract)

[20]段文刚,黄国兵,杨金波,等. 长距离调水明渠冬季输水冰情分析与安全调度[J]. 南水北调与水利科技,2016,14(6):96-104.

Duan Wengang, Huang Guobing, Yang Jinbo, et al. Ice regime analysis and safe dispatch research on long distance water diversion project in winter[J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(6): 96-104. (in Chinese with English abstract)

[21]李芬,李昱,李敏,等. 基于模糊评价模型的南水北调中线冰害风险空间分布[J]. 南水北调与水利科技,2017,15(1):132-137.

Li Fen, Li Yu, Li Min, et al. Spatial distribution of ice hazards in middle route of South-to-North Water Transfer Project based on fuzzy evaluation model[J]. South-to-North Water Transfers and Water Science & Technology, 2017, 15(1): 132-137. (in Chinese with English abstract)

[22]吴艳,周富强,穆祥鹏,等. 基于水温实测资料的冰期水内冰演变的计算方法[J]. 水力发电学报,2017,36(11):94-101.

Wu Yan, Zhou Fuqiang, Mu Xiangpeng, et al. Calculation methods of frazil evolution in canals during icing period based on measured water temperature[J]. Journal of Hydroelectric Engineering, 2017, 36(11): 94-101. (in Chinese with English abstract)

[23]赵新,张雅卓,王旭. 融冰期加厚冰盖糙率物理模型试验研究[J]. 南水北调与水利科技,2012,10(3):4-6,26.

Zhao Xin, Zhang Yazhuo, Wang Xu. Research on the roughness of thickened ice cover during the ice-melting period based on physical model experiments[J]. South-to-North Water Transfers and Water Science & Technology, 2012, 10(3): 4-6, 26. (in Chinese with English abstract)

[24]周茜. 并行动态规划算法及其在水库(群)优化调度中的应用[D]. 北京:华北电力大学,2014.

Zhou Xi. Parallel Dynamic Programming Algorithm and Its Application in Reservoir Group Optimal Operation[D]. Beijing: North China Electric Power University, 2014. (in Chinese with English abstract)

[25]张宇航,唐超,姚李孝. 基于改进粒子群算法的梯级水电站长期优化调度研究[J]. 陕西电力,2016,44(6):59-63.

Zhang Yuhang, Tang Chao, Yao Lixiao. Long term optimal scheduling of cascade hydropower stations based on improved particle swarm optimization algorithm[J]. Shaanxi Electric Power, 2016, 44(6): 59-63. (in Chinese with English abstract)

[26]单宝英,郭萍,张帆,等. 基于遗传算法与方案优选的多目标优化模型求解方法[J]. 中国农业大学学报,2019,24(6):157-165.

Shan Baoying, Guo Ping, Zhang Fan, et al. A multi-objective optimization model solving method based on genetic algorithm and scheme evaluation[J]. Journal of China Agricultural University, 2019, 24(6): 157-165. (in Chinese with English abstract)

[27]陈立华,梅亚东,董雅洁,等. 改进遗传算法及其在水库群优化调度中的应用[J]. 水利学报,2008,39(5):550-556.

Chen Lihua, Mei Yadong, Dong Yajie, et al. Improved genetic algorithm and its application in optimal dispatch of cascade reservoirs[J]. Journal of Hydraulic Engineering, 2008,39(5): 550-556. (in Chinese with English abstract)

[28]黄国兵,杨金波,段文刚. 典型长距离调水工程冬季冰凌危害调查及分析[J]. 南水北调与水利科技,2019,17(1):144-149.

Huang Guobing, Yang Jinbo, Duan Wengang. Investigation and analysis of ice hazard in operation of typical long distance water transfer project in winter[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(1): 144-149. (in Chinese with English abstract)

[29]刘孟凯,莫庸,杨佳,等. 暴雨条件下的长距离渠系水力响应特性研究[J]. 南水北调与水利科技,2018,16(1):151-157.

Liu Mengkai, Mo Yong, Yang Jia,et al. Hydraulic response of long-distance canal system under the effect of rainstorm[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(1): 151-157. (in Chinese with English abstract)

[30]刘孟凯,冯晓波,王长德,等. 基于平封冰盖生消模拟的长距离渠系冰期自动化控制模型[J]. 水力发电学报, 2013,32(3):93-100.

Liu Mengkai, Feng Xiaobo, Wang Changde, et al. Mathematical model for automatic operation of long distance canal system with juxtaposition ice cover formation and decaying[J]. Journal of Hydroelectric Engineering, 2013, 32(3): 93-100. (in Chinese with English abstract)

[31]刘孟凯,邢领航,黄明海,等. 长距离渠系融冰期自动化控制模式研究[J]. 水利学报,2013,44(9):1080-1086.

Liu Mengkai, Xing Linghang, Huang Minghai, et al. An automatic operation mode for the long distance canal system in ice melting period[J]. Journal of Hydraulic Engineering, 2013, 44(9): 1080-1086. (in Chinese with English abstract)

[32]耿治平. 基于遗传算法的南水北调工程(山东段)水资源优化配置和实时调度研究[D]. 合肥:合肥工业大学,2006.

Geng Zhiping. Research on the Optimization of Water Resource Allocation and Real-time Dispatch of Water Resources of the East Route of the South-to-North Water Transfer Project (Segment of Shsn Dong) by Genetic Algorithms[D]. Hefei: Hefei University of Technology, 2006. (in Chinese with English abstract)

Improved design of opening controller of gate group during freezing period for the Middle Route of South-to-North Water Transfer Project

Liu Mengkai1, Guan Hui1, Guo Hui2, Bi Sheng2

(1.,,430081,;2,430010,)

Middle Route of the South-to-North Water Transfer Project was constructed into a large-scale series canal system in a centralized automatic control mode for an operation management. There are the striking characteristics of long water transmission lines, and large scale of water transfer. Specifically, the height difference is 100 m from Danjiangkou Reservoir to Beijing. The water distribution can be achieved by adjusting the control gate using artesian water delivery, without any online regulation reservoir along the canal line. Therefore, a highly accurate adjustment is necessary for the flow regulation and control of the gate group during the operation and scheduling process, in order to realize the safe timely water delivery in an appropriate way. Many difficulties have arisen on the hydraulic control and dispatch of the main canal, due to numerous buildings along the main canal, while, the variations in water demand of each water diversion gate. Furthermore, a large hysteresis of hydraulic response usually occurred, due to the limitation from the propagation speed of the water wave. Accordingly, the change in the flow of any water diversion or control gate along the canal line can cause water level fluctuations within a certain channel range, showing a strong coupling effect. As such, the risk of ice jam can increase significantly, because of large hydraulic fluctuations during the freezing period, particularly on large-scale series canal systems. How to reduce hydraulic fluctuations through joint dispatching of gate groups can efficiently restrain the occurrence of ice jams during the freezing period in this case. In this study, taking the minimum deviation of water level as the objective function, an adjustment system was designed, including two control links, a conventional PI controller, and an optimization controller, while, combining with a genetic algorithm, a simulation model for the optimal dispatching of the sluice gate group was established suitable for the frozen period of the canal, considering the flow restriction between the canal pools, gate opening, and adjusting rate constraint. An optimization controller was comprehensively demonstrated, according to the verified modeling effect and the parameter sensitivity, based on the simulation experiment of control gates in the canal system between the ancient and the north Juma River currently. The simulation results show that the maximum deviation of water level can be significantly reduced under the simulated operating conditions, when adding an optimization controller in the system, compared with the only PI controller. Specifically, the maximum deviation of downstream water level decreased by nearly 36%, whereas, the recovery time of system was nearly 2.9 h ahead of time, indicating that the proposed model has a positive effect on suppressing the excessive hydraulic response, and stabilizing the water level during the freezing period. This will be beneficial to reduce the risk of ice jam. The reason was that the decrease in the deviation of the water level can be implemented via the flow control at the inlet and outlet of each channel pool, while better coordinating the need for storage adjustment between channels. The maximum opening of each gate can be reduced, but the adjustment amplitude of a single gate opening increased for some channels. The adjustment of gate opening degree can be feasible, due to the constraint of gate opening and adjustment rate. In the solving process of genetic algorithm, the specific value of random disturbance flow was recommended relatively small, due possibly to a negative effect on the optimization direction. In the constraint parameter of flow range,, there was only a limited influence on the fluctuation range of water level, and the number of optimization iterations.

genetic algorithm; simulation; freezing period; gate group; controller; operational safety

刘孟凯,关惠,郭辉,等. 南水北调中线工程封冻期闸门群开度控制器改进设计[J]. 农业工程学报,2020,36(17):90-97.doi:10.11975/j.issn.1002-6819.2020.17.011 http://www.tcsae.org

Liu Mengkai, Guan Hui, Guo Hui, et al. Improved design of opening controller of gate group during freezing period for the Middle Route of South-to-North Water Transfer Project[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 90-97. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.17.011 http://www.tcsae.org

2020-04-29

2020-07-23

国家重点研发计划课题(2016YFC0401810);国家自然科学基金资助项目(51779196;51309015)

刘孟凯,博士,副教授,主要从事工程管理研究。Email:mengkailiu@whu.edu.cn

10.11975/j.issn.1002-6819.2020.17.011

TV91

A

1002-6819(2020)-17-0090-08

猜你喜欢
闸门南水北调开度
大跨度桁架平面闸门静动力特性分析
分节制造平面闸门现场拼焊、防腐及质量控制
水下机器人在长河坝电站导流洞闸门堵漏中的应用
掘进机用截止阀开度对管路流动性能的影响
增大某车型车门开度的设计方法
重型F级燃气轮机IGV开度对压气机效率的影响
浅谈软开度对舞蹈的影响
用好南水北调征地移民资金
找准入口,打开思路的闸门
大事件 高占位 精制作——湖北日报南水北调中线一期工程正式通水报道评述