基于Matlab的人脸识别实现

2020-10-21 12:24赵宇
大东方 2020年3期
关键词:人脸识别

赵宇

摘 要:人脸识别是模式识别和机器视觉领域非常重要的一个课题,具有重要的理论价值和广泛的应用场景。采用人脸识别演绎模式识别和机器视觉中一些重要的概念和算法,能够使学生理论联系实际,培养利用理论知识解决实际工程问题的能力。利用 Matlab GUI 组件,设计实现了能够与用户交互人脸识别教学平台,其中包括图像读写,预处理,特征提取和特征匹配等模块,较好的展示了人脸识别的主要步骤,使学生直观的掌握人脸识别的相关概念、理论和算法。

关键词:人脸识别;Matlab;GUI

一、绪论

1.1  研究背景

在进行人工智能的研究中,人们一直想做的事情就是让机器具有像人类一样的思考能力,以及识别事物、处理事物的能力,因此從解剖学、心理学、行为感知学等各个角度来探求人类的思维机制、以及感知事物、处理事物的机制,并努力将这些机制用于实践,如各种智能机器人的研制。人脸图像的机器识别研究就是在这种背景下兴起的,因为人们发现许多对于人类而言可以轻易做到的事情,而让机器来实现却很难,如人脸图像的识别,语音识别,自然语言理解等。如果能够开发出具有像人类一样的机器识别机制,就能够逐步地了解人类是如何存储信息,并进行处理的,从而最终了解人类的思维机制。

同时,进行人脸图像识别研究也具有很大的使用价依。如同人的指纹一样,人脸也具有唯一性,也可用来鉴别一个人的身份。现在己有实用的计算机自动指纹识别系统面世,并在安检等部门得到应用,但还没有通用成熟的人脸自动识别系统出现。人脸图像的自动识别系统较之指纹识别系统、DNA鉴定等更具方便性,因为它取样方便,可以不接触目标就进行识别,从而开发研究的实际意义更大。并且与指纹图像不同的是,人脸图像受很多因素的干扰:人脸表情的多样性;以及外在的成像过程中的光照,图像尺寸,旋转,姿势变化等。使得同一个人,在不同的环境下拍摄所得到的人脸图像不同,有时更会有很大的差别,给识别带来很大难度。因此在各种干扰条件下实现人脸图像的识别,也就更具有挑战性。

国外对于人脸图像识别的研究较早,现己有实用系统面世,只是对于成像条件要求较苛刻,应用范围也就较窄,国内也有许多科研机构从事这方而的研究,并己取得许多成果。

1.2  人脸图像识别的应用前景

人脸图像识别除了具有重大的理论价值以及极富挑战性外,还其有许多潜在的应用前景,利用人脸图像来进行身份验证,可以不与目标相接触就取得样本图像,而其它的身份验证手段,如指纹、眼睛虹膜等必须通过与目标接触或相当接近来取得样木,在某些场合,这些识别手段就会有不便之处。

1.3  识别系统的构成

人类似乎具有“与生俱来”的人脸识别能力,赋予计算机同样的能力是人类的梦想之一,这就是所谓的“人脸识别”系统。假设我们把照相机、摄像头、扫描仪等看作计算机的“眼睛”,数字图像可以看作计算机观察到的“影像”,那么AFR赋予计算机根据其所“看到”的人脸图片来判断人物身份的能力。

1.3.1  人脸图像的获取

一般来说,图像的获取都是通过摄像头摄取,但摄取的图像可以是真人,也可以是人脸的图片或者为了相对简单,可以不考虑通过摄像头来摄取头像,而是直接给定要识别的图像。

1.3.2  人脸的检测

人脸检测的任务是判断静态图像中是否存在人脸。若存在人脸,给出其在图像中的坐标位置、人脸区域大小等信息。而人脸跟踪则需要进一步输出所检测到的人脸位置、大小等状态随时间的连续变化情况。

1.3.3  特征提取

通过人脸特征点的检测与标定可以确定人脸图像中显著特征点的位置(如眼睛、眉毛、鼻子、嘴巴等器官),同时还可以得到这些器官及其面部轮廓的形状信息的描述。

根据人脸特征点检测与标定的结果,通过某些运算得到人脸特征的描述(这些特征包括:全局特征和局部特征,显式特征和统计特征等)。

二、图像处理的Matlab实现

图像是人类获取信息、表达信息和传递信息的重要手段。利用计算机对图像进行去除噪声、增强、复原、分割、提取特征等的理论、方法和技术称为数字图像处理。数字图像处理技术已经成为信息科学、计算机科学、工程科学、地球科学等诸多方面的学者研究图像的有效工具。数字图像处理主要包括图像变换、图像增强、图像编码、图像复原、图像重建、图像识别以及图像理解等内容。

2.1  图像处理的基本操作

读取和显示图像可以通过imread()和imshow()来实现;图像的输出用imwrite()函数就可以很方便的把图像输出到硬盘上;另外还可以用imcrop()、imrisize()、imrotate()等来实现图像的裁剪、缩放和旋转等功能。

2.2  图像类型的转换

Matlab支持多种图像类型,但在某些图像操作中,对图像的类型有要求,所以要涉及到对图像类型进行转换。Matlab图像处理工具箱为我们提供了不同图像类型相互转换的大量函数,如mat2gray()函数可以将矩阵转换为灰度图像,rgb2gray()转换RGB图像或颜色映像表为灰度图像。在类型转换的时候,我们还经常遇到数据类型不匹配的情况,针对这种情况,Matlab工具箱中,也给我们提供了各种数据类型之间的转换函数,如double()就是把数据转换为双精度类型的函数。

2.3  图像增强

图像增强的目的是为了改善图像的视觉效果,提高图像的清晰度和工艺的适应性,以及便于人与计算机的分析和处理,以满足图像复制或再现的要求。图像增强的方法分为空域法和频域法两大类,空域法主要是对图像中的各个像素点进行操作;而频域法是在图像的某个变换域内对整个图像进行操作,并修改变换后的系数,如傅立叶变换、DCT变换等的系数,然后再进行反变换,便可得到处理后的图像。

2.4  边缘检测

数字图像的边缘检测是图像分割、目标区域识别、区域形状提取等图像分析领域十分重要的基础,也是图像识别中提取图像特征的一个重要属性。边缘检测算子可以检查每个像素的邻域并对灰度变化率进行量化,也包括对方向的确定,其中大多数是基于方向导数掩模求卷积的方法。常用的有Sobel算子,Prewitt算子,Roberts算子,Log算子等。Matlab工具箱中提供的edge()函数可以进行边缘检测,在其参数里面,可以根据需要选择合适的算子及其参数。

(作者单位:河北大学 生命科学学院)

猜你喜欢
人脸识别
人脸识别的“国标”来了
中科视拓开放商业版本人脸识别算法
人脸识别好用但不能滥用
荣耀畅玩7C:人脸识别
iPhoneX来了!
“人脸识别”人工智能测谎仪研发成功