张亚飞,彭福田,肖元松,罗静静,杜安齐
钾肥袋控缓释对桃产量、品质及土壤氯离子含量的影响
张亚飞,彭福田,肖元松,罗静静,杜安齐
(山东农业大学园艺科学与工程学院/作物生物学国家重点实验室,山东泰安 271018)
【目的】研究袋控缓释不同比例的氯化钾和硫酸钾对桃树叶片光合、果实产量品质及土壤氯离子残留的影响,为桃园科学合理施用钾肥提供参考依据。【方法】以晚熟桃‘瑞蟠21’/毛桃[() Franch.]为试材,进行连续2年的大田试验。设5个处理:不施钾肥(Control)、100%硫酸钾(PC 0)、30%氯化钾+70%硫酸钾(PC 30)、60%氯化钾+40%硫酸钾(PC 60)和100%氯化钾(PC 100),做成袋控缓释肥,每年3月初施肥,于每年的4、6、8、10月中旬测定0—20 cm和20—40 cm土层中速效钾及氯离子含量的动态变化;在桃树第一次快速生长期(S1)、硬核期(S2)、第二次快速生长期(S3)和成熟期(S4)分别测定叶片中速效钾和氯离子含量及叶片SPAD值、净光合速率;果实成熟后测定果实氯离子含量和品质,并统计产量。【结果】果园不施氯处理0—20和20—40 cm土层中平均氯离子含量分别为34.03和38.78 µg·g-1;随着氯化钾投入量的增加,果园土壤不同深度的氯离子含量均呈增加趋势,PC 30、PC 60和PC 100处理0—20 cm和20—40 cm土层中氯离子平均含量依次为:37.98、39.55、41.61和45.62、51.17、58.87 µg·g-1,但连续施用袋控缓释氯化钾不会造成土壤中氯离子的累积。叶片中氯离子含量也随着施氯量的增加而增加。PC 30、PC 60和PC 100处理叶片中氯离子含量分别比PC 0高6.35%、24.30%和32.22%;其中PC 30处理4个时期叶片中氯离子含量分别为234.29、243.16、233.81和233.20 µg·g-1,显著提高了叶片的SPAD值和净光合速率,但PC 60和PC 100处理降低了叶片光合能力。施钾各处理土壤中速效钾的含量前期水平较高,后逐渐降低。PC 30、PC 60和PC 100处理钾释放高峰出现在6月,PC 0处理则在8月达到高峰。叶片中的钾含量在S3期达到最高值,而后逐渐降低,S4期叶片中钾含量最低。各施钾处理叶片中速效钾含量无显著变化。说明袋控缓释不同比例的钾肥中钾的释放速率对叶片钾的吸收没有显著影响。与PC 0相比,PC 30果实中氯离子含量无显著变化,平均含量55.0 µg·g-1,PC 60和PC 100处理果实中氯离子含量平均比PC 0处理高10.40%和28.45%。连续施肥处理2年,PC30处理的单果重和单株产量较对照有小幅增加;PC 60和PC 100处理则显著降低了果实单果重和产量。施用低量的氯化钾对果实品质没有显著影响,但连续施用中高量的氯化钾会降低果实品质。【结论】采用肥料袋控缓释的方法,用30%的氯化钾替代硫酸钾,不会造成土壤中氯离子的累积,并可以促进桃叶片光合作用,提高产量,不会引起果实品质下降和树体毒害,因此,生产中采用袋控缓释技术可以用适量的氯化钾替代硫酸钾。
袋控缓释;桃;氯化钾;硫酸钾;产量;品质
【研究意义】氯是植物进行光合作用的重要元素,一般情况下植物不易发生缺氯症;相反,当土壤中氯含量达到一定临界值,就会对植物产生毒害作用,引起叶片黄化、产量和品质降低。生产中桃树对钾肥的需求量较大,但由于桃树是“忌氯”果树,目前在桃树上一般施用价格较高的硫酸钾,这就缩小了更为经济的氯化钾的施用范围,增加了生产投入成本。氯在土壤中以离子态的形式存在,具有较强的移动性[1],氯离子的迁移受土壤水移动影响较大,耕作层土壤中氯离子残留量较少[2-3]。毛知耘等[4]提出“作物的土壤氯容量”概念,即植物的耐氯临界值与土壤含氯量之差,氯容量越大,则施用含氯化肥的可能性和用量越大。近年来的研究发现,在苹果、柑橘等“忌氯”果树中可以施用一定量的氯化钾,并不会对果树产生毒害作用[5-6]。果园中若用氯化钾部分替代硫酸钾,可降低肥料成本投入,提高经济效益,具有良好的应用前景,研究不同钾肥施用量对桃树产量和品质等方面的影响,能够为氯化钾的科学施用提供参考和借鉴。【前人研究进展】在棉花[7-8]中的研究发现控释尿素和一定量的氯化钾不仅提高盐碱地棉花的叶片光合、产量和肥料利用率,而且增加了土壤中氮素和钾素的含量。硝化作用是土壤氮素转化的主要途径之一,施用含氯肥料还可以降低土壤中硝化细菌的种群丰富度,从而减缓硝化作用,减少氮的损失[9-10]。王兴梅等[5,11]研究了氯化钾对苹果产量、品质和土壤氯素分布的影响,发现氯离子含量垂直分布受水分影响较大,水浇地果园土壤中氯离子下移明显;投入中低量(0—763 kg∙hm-2)的氯后,对苹果产量品质没有不良影响。朱宗瑛[6]研究表明柑橘吸收的氯离子50%以上都积累在叶片中,对果实中氯离子含量影响较小,但是在整个经济寿命期中,叶片氯离子含量不会达到毒害水平。此外,在西瓜[12]、马铃薯[13]、烤烟[14]等忌氯作物中均可施用一定量的含氯肥料。【本研究切入点】我国桃树栽培面积约800 000 hm2,钾肥需求量大,施用氯化钾可显著节约生产成本的投入。前期大田试验发现,土壤中撒施氯化钾,桃树叶片出现黄化、生长受到抑制;而袋控缓释肥由于肥效期长、养分释放速率与果树的需肥规律基本吻合[15],可以实现养分的稳定供应,在果树生产上的应用已初见成效[15-17]。为此,采用袋控缓释技术,研究氯化钾中氯的释放特征及其在桃树上的施用效果。【拟解决的关键问题】本研究以‘瑞蟠21’晚熟蟠桃为试材,进行连续2年的定点试验,袋控缓释不同比例的氯化钾和硫酸钾,研究其对桃树叶片光合、果实产量、品质及土壤氯离子残留的影响,为桃园科学合理施用钾肥提供理论依据。
试验以4年生‘瑞蟠21’/毛桃 [() Franch.]为试材,于2017年3月至2018年11月在山东农业大学南校区试验站进行,株行距2 m×5 m。供试土壤为黏壤土,基本理化性质:有机质8.73 g∙kg-1、碱解氮42.35 mg∙kg-1、速效磷51.03 mg∙kg-1、速效钾76.79 mg∙kg-1、氯含量33.82 µg∙g-1、土壤pH 6.8。
供试化肥为普通尿素(N含量46%)、磷酸氢二铵(P2O546%, N含量18%)、硫酸钾(K2O含量50%)、氯化钾(K2O含量60%,氯含量45.2%)。根据笔者实验室前期探索的袋控肥配方,尿素、磷酸二铵和硫酸钾以41﹕14﹕40的质量比复混,然后借用工业流水线做成袋控缓释肥,控释袋的正反面均打有3排微孔,微孔直径0.2 mm,微孔间距0.5 cm,袋宽9 cm,袋长15 cm。
供试桃树于2014年定植,按“Y”字型树形整形修剪,常规管理,进行夏季和冬季修剪;每年果园施腐熟有机肥7.5 t∙hm-2,采用喷灌系统进行正常水分管理;2017年和2018年3月初进行施肥处理。试验设5个处理(表1):(1)对照 Control,不施钾(空白);(2)PC 0,100% K2SO4;(3)PC 30,30% KCl+70% K2SO4;(4)PC 60,60% KCl+40% K2SO4;(5)PC 100,100% KCl。各处理养分含量一致,每处理3个小区,每小区6株,每株桃树施用10包袋控缓释肥,肥料采用放射沟法施用,即距树干30 cm向外挖2条放射沟,宽15—20 cm、深20—30 cm、长40—60 cm,每条放射沟中均匀摆放5包袋控缓释肥。
1.3.1 叶片SPAD值及净光合速率测定 桃果实的生长发育主要包括4个阶段,即第一次快速生长期(S1)、硬核期(S2)、第二次快速生长期(S3)和成熟期(S4)。分别在4个时期用叶绿素仪(SPAD-502)测定功能叶片的叶绿素相对含量(SPAD),采用CIRAS-3便携式光合仪(PPSystens,英国),在晴天的上午10:00—11:00时测定功能叶片的净光合速率(Pn),重复7次。
表1 施肥处理和施肥量
1.3.2 桃树叶片中速效钾含量测定及叶片和果实中Cl-测定方法 于S1(5月)、S2(7月)、S3(9月初)和S4期(9月底)采集叶片。选择生长中等的当年生枝条,取中部第7—9片成熟叶,从树冠各个方向对称采集,每个处理采集50片左右,组成混合样。洗净、烘干后备用。
在每个处理果树的各个部位均匀采摘果实20个。洗净后将果实切成小块,充分混匀后用四分法缩分至所需的数量,干燥、磨细后备用。
叶片研磨过筛,经浓H2SO4-H2O2联合消煮,K含量用FP6410型火焰光度计测定。叶片和果实中氯离子含量采用沸水提取、H2O2消解前处理、离子色谱法测定的步骤[18]。重复3次。
1.3.3 土壤中速效钾和氯离子含量测定方法 于每年的4、6、8、10月中旬,每处理随机选择3株,避开当年施肥区,随机采集0—20 cm和20—40 cm土层土壤样品,按四分法留出所需的土样,自然风干混匀后进行测定。
土壤氯离子含量测定采用莫尔法[19]。土壤中速效钾含量测定采用乙酸铵浸提—火焰光度计法[19]。
1.3.4 果实产量、品质的测定 试验树结果后,每年果实采收时统计产量。并在每株树冠的中上部方向取5个果实,共30个,测定果实品质。用百分之一天平测定果实单果质量;酸碱滴定法测定果实中可滴定酸含量;采用手持TD-45测糖仪测定可溶性固形物含量;用GY-2硬度计测定果实硬度。
试验数据采用Excel 2010进行图表绘制,用SPSS20软件对数据进行单因素方差分析及最小显著差异性检验(Duncan’s新复极差法,<0.05)。
试验果园不施氯处理土壤中氯离子含量基本稳定,0—20 和20—40 cm土层中平均氯离子含量为34.03和38.78 µg∙g-1。施氯处理土壤中氯离子含量随着施氯量的增加而增加,当年呈现先升高后降低的趋势,6月份含量最高,而后降低;PC 30、PC 60和PC 100处理各土层土壤中氯离子平均含量依次为:37.98、39.55、41.61和45.62、51.17、58.87µg∙g-1,20—40 cm土层中氯离子含量均高于0—20 cm土层。第一年施氯后各层土壤中氯离子含量在第二年施氯前(2018/03)基本可以降低到土壤中稳定水平,且第二年土壤中氯离子平均含量与第一年无明显变化,连续施用袋控缓释氯化钾不会造成土壤中氯离子的累积(图1)。
图1 土壤中氯离子含量的动态变化
连续2年袋控缓释不同比例的氯化钾和硫酸钾土壤中速效钾含量的动态变化有所差异,如图2所示。每年在施肥后的4月、6月、8月和10月中旬取土测定养分含量,年动态变化相似:施钾各处理土壤中速效钾含量前期水平较高,后呈逐渐降低的趋势。施氯处理(PC 30、PC 60和PC 100)比单施硫酸钾处理(PC 0)钾释放快,前者释放高峰出现在6月,后者则在8月达到高峰(图2)。
叶片中的钾含量在第二次果实膨大期(S 3)达到最高值,而后逐渐降低,成熟期(S4)叶片中钾含量最低。对照处理叶片速效钾含量显著较低,各施钾处理叶片中速效钾含量无显著变化(图3)。说明施氯处理钾的释放速率对叶片钾的吸收没有显著影响。
桃树叶片SPAD值在果实不同发育期具有逐渐增大的趋势,在成熟期达到最大值。不施钾肥对照处理(Control)在各个生育期的SPAD值均最低(表2)。低氯处理(PC 30)较单施硫酸钾处理(PC 0)处理显著提高了桃叶片的SPAD值,中氯处理(PC 60)在S1期和S2期叶片SPAD值高于对照PC 0处理,在S3期和S4期叶片SPAD值反而低于PC 0处理,高氯处理(PC 100)的桃树叶片SPAD值仅在S1期高于PC 0处理,后期则低于PC 0处理。
袋控缓释不同比例的氯化钾和硫酸钾显著影响了桃树叶片的净光合速率(表3)。PC 30处理较PC 0处理显著提高了叶片的净光合速率,而PC 60和PC 100处理仅在S1期提高了叶片的净光合速率,在S2、S3和S4期叶片净光合速率则低于PC 0处理。总的来说,PC 30处理的桃树叶片SPAD值及净光合速率基本都是最高的,能够改善叶片光合能力,说明袋控缓释氯化钾对桃树叶片并不会造成损伤,但过高含量的氯离子反而降低了叶片光合能力。
产量是衡量施肥效果的重要指标,不施钾肥处理(Control)的桃树单果重下降,平均单株产量逐年降低(表4)。第一年低氯(PC 30)和中氯(PC 60)
图2 土壤中速效钾含量的动态变化
不同小写字母表示差异达5%显著水平。下同
表2 2017和2018年不同处理各时期的SPAD值
表3 2017和2018年不同处理各时期的叶片净光合速率
处理单果重和单株产量均有小幅度增加,但并未达到显著水平,而高氯处理(PC 100)则显著降低了果实单果重和产量。连续两年施用含氯肥料后,PC 30处理的单果重和单株产量仍有小幅增加;但是PC 60和PC 100处理则显著降低了果实单果重和产量。袋控缓释低量的氯化钾能提高桃产量,但中、高量的氯化钾则无益于桃产量形成,连续施用还会降低产量。
果实成熟时,对其进行取样并测定品质指标,如表4所示,不施钾肥处理(Control)的果实硬度较大,可滴定酸含量较低,其他各处理果实硬度和可滴定酸含量没有显著性差异。施肥第一年,PC 30、PC 60和PC 0相比,果实中可溶性固形物含量没有显著变化,PC 100处理果实中可溶性固形物含量显著降低;施肥第二年,PC 60和PC 100处理果实中可溶性固形物含量均显著降低,PC 30处理可溶性固形物含量变化不明显。连续施用中高量的氯化钾会降低果实品质,但是用低量的氯化钾对果实品质没有显著影响。
表4 袋控缓释氯化钾对桃果实产量和品质的影响
如图4所示,不施钾肥处理(Control)和单施硫酸钾处理(PC 0)叶片中氯离子含量均最低,且两个处理之间无明显差异。低氯处理(PC 30)叶片中氯离子含量分别为234.29、243.16、233.81和233.20 µg∙g-1,平均比PC 0高6.35%,PC 30处理在第一年的S1和S2期叶片中氯离子含量显著高于PC0处理(分别高11.18%和10.63%),而在S3和S4期则没有显著变化;第二年则相反,S1和S2期氯离子含量没有明显变化,而S3和S4期叶片中氯离子含量显著高于PC 0处理(分别高6.59%和9.19%)。中氯(PC 60)和高氯(PC 100)处理叶片中氯离子含量显著增高,平均比PC 0处理高24.30%和32.22%。叶片中氯离子含量随着施氯量的增加而增加。
图4 桃树叶片氯离子含量
桃成熟时,连续两年不施钾肥处理(Control)和单施硫酸钾处理(PC 0)果实中氯离子含量平均在54.35 µg∙g-1,低氯处理(PC 30)果实中氯离子含量无显著变化,平均含量55.0 µg∙g-1,中氯(PC 60)和高氯(PC 100)处理果实中氯离子含量升高,平均氯离子含量分别为60.31和70.65 µg∙g-1,比PC 0处理果实中氯离子含量高10.40%和28.45%(图5)。此外PC 60处理和PC 100处理第二年果实中氯离子含量明显高于第一年果实中氯离子含量,分别高6.49%和7.40%,而PC 30处理果实中氯离子含量与第一年相比无明显变化。
图5 桃果实中氯离子含量
桃树根系分布较浅,90%以上的根系分布在0—40 cm土层,负责吸收养分的细根在20—30 cm土层密度最大[20]。若大量氯离子存于果园土壤中,会对桃树根系产生高盐胁迫,使树体产生渗透胁迫和离子毒害。本研究供试果园土壤氯含量33.82 mg∙kg-1,处于低水平(土壤氯离子含量<50 mg∙kg-1)。因土壤胶体带负电荷,施入土壤中的氯不易被土壤胶体吸附,而易随水向下层土壤迁移[21],降雨量和含氯肥料施用是氯在土壤中的淋失和累积的主要原因[1]。本研究中氯化钾投入量越高,土壤中氯离子含量越高,随着植物的吸收和降雨量的增加,土壤中氯离子含量呈现先升高后降低的趋势,受淋溶作用明显。与前人研究结果一致,水浇地果园土壤中氯离子下移作用明显强于旱地果园。而且,连续施用袋控缓释氯化钾不会造成土壤中氯离子的累积,袋控缓释不同用量氯化钾后土壤中氯离子含量均在30—75 mg∙kg-1。袋控缓释肥料的释放速率与土壤中养分浓度有直接关系,随着土壤中养分被植物吸收利用,肥料缓慢地释放出来,保证了土壤中养分含量的稳定[17,22]。因此,袋控缓释氯化钾不会造成土壤中氯离子的骤然增加,土壤中氯离子含量相对稳定,不会对桃树正常生长造成不良影响。
氯是植物所必需的微量营养元素,主要以Cl-的形式在植物体内存在,植物体内正常浓度为0.2%—2%(以干物质计)[23]。本研究中叶片中氯离子含量随着施氯量的增加而增加,最高含量小于300 µg∙g-1,根据观察没有造成叶片黄化等明显的氯中毒现象。王兴梅[5]研究发现施用氯化钾肥料显著增加了苹果成熟期叶片SPAD值,有利于叶绿素的形成;杨修一[24]研究发现70%树脂包膜氯化钾+30%硫酸钾+50%树脂包膜尿素+50%尿素处理显著提高了棉花叶片SPAD值及光合强度(Pn)、气孔导度(Gs)、胞间二氧化碳浓度(Ci)和蒸腾速率(Tr),能够改善叶片光合能力,防止棉花植株早衰。本研究也发现PC 30处理的桃树叶片SPAD值及净光合速率基本为最高,但过高含量的氯离子反而降低了叶片光合能力。氯在植物中参与水的光解,在光合放氧过程中起活化作用,此外氯在光合作用中促进辅酶II的还原,有利于CO2的固定同化[25-26],因此,适量的氯有利于光合作用。过高氯含量则破坏植物体内一些细胞及亚细胞结构,例如线粒体基质和脊结构被破坏、细胞质网状化、颗粒状毒素产生、胞内基质变浓,严重时出现质壁分离现象[27-28],高氯会导致植物光合作用下降。此外有研究[29]显示,砧木对氯离子胁迫响应存在基因型差异,筛选抗氯胁迫的砧木有利于含氯肥料的使用。
钾是影响作物产量的一个重要元素,适量钾素可促进果实肥大和成熟,提高果实产量。前人研究发现施用氯化钾可以提高西瓜、柑橘、棉花等作物的产量[6,8,12]。本研究中施氯处理比单施硫酸钾处理钾释放速率快,前者释放高峰出现在6月,后者则在8月,原因在于氯化钾溶解性比硫酸钾好。8月上旬,‘瑞蟠21’进入果实膨大期,对养分需求较高,各施氯处理在果实膨大期土壤中钾含量虽然略低于单施硫酸钾处理,但由于控释袋的缓释作用,可以使土壤中有效养分含量保持较高水平[17],且各施钾处理叶片中速效钾含量无显著变化,说明其浓度仍能满足‘瑞蟠21’对钾的需求,因此,钾的释放速率对产量影响不大。但由于氯对光合的促进作用,第一年PC 30和PC 60单果重和单株产量均有小幅度增加,PC 100由于氯的负面影响降低了单果重和产量;此外由于氯离子对硝化细菌的毒害作用,氯可以抑制硝化作用,减少土壤中的氮素损失,这也可能是PC 30提高产量的一个原因。然而第二年PC 60处理显著降低了果实单果重和产量,猜测氯在植株体内(根系、枝条)可能具有一定累积效应,第一年施用的氯,叶片和果实中的氯由于落叶和果实采收而被带走,但枝条和根系中的氯仍留在植株体内,可能会对第二年的树体产生影响。因此,施用氯化钾肥料应少量或隔年施用效果较好。
果实品质是桃市场竞争力的关键,在柑橘[6]、西瓜[12]上的研究发现施用氯化钾可以提高可溶性固形物、可滴定酸及维生素C含量,并未对苹果[5,30]品质造成显著影响。本研究中PC 30对果实可溶性固形物没有显著影响,PC 100处理及PC 60连续两年处理的果实中可溶性固形物显著降低,同时测定果实中氯离子含量发现PC 30处理果实中氯离子含量无显著变化,PC 60和PC 100处理果实中氯离子含量升高,且第二年比第一年分别高6.49%和7.40%,这也证实了氯离子在植株体内的累积效应。因此,连续施用中高量的氯化钾会降低果实品质,但是低量的氯化钾对果实品质没有显著影响。
采用肥料袋控缓释的方法,用30%的氯化钾替代硫酸钾,不会造成土壤中氯离子的累积,并可以促进桃叶片光合作用,提高产量,且不会引起果实品质的下降和树体的毒害。因此,生产中可以根据果园土壤中的氯含量,用部分氯化钾替代硫酸钾,以节省生产成本。
[1] 郭全恩, 王益权, 郭天文, 马忠明, 刘军, 南丽丽. 半干旱地区果园土壤Cl-迁移积累与环境因子的关系. 核农学报, 2009, 23(5): 853-857.
GUO Q E, WANG Y Q, GUO T W, MA Z M, LIU J. NAN L L. Relationship between chlorine ion transfer/accumulation and environmental factors in orchards soil of semi-arid region., 2009, 23(5): 853-857. (in Chinese)
[2] BARI G, HAMID A. Salt tolerance of rice varieties and mutant strains., 1988, 31(4): 282-284.
[3] FERREIRA P A, ROBEIRO A C, SANTOS C R D, HENRIQUES HBP, CAIXETA T J. Vertical movement of nitrate, ammonium, chloride and potassium in irrigated soil columns., 1990: 152-166.
[4] 毛知耘, 周则芳, 石孝均, 刘洪斌. 植物氯素营养与含氯化肥科学施用.中国工程科学, 2000, 2(6): 64-66.
MAO Z Y, ZHOU Z F, SHI X J, LIU H B. Chlorine nutrition of plant and application of chlorine-containing fertilizers., 2000, 2(6): 64-66. (in Chinese)
[5] 王兴梅. 含氯肥料对苹果产量品质及土壤氯素分布特征的影响[D]. 杨凌: 西北农林科技大学, 2018.
WANG X M. Effects of chlorine-containing fertilizer on yield and quality of apple and distribution characteristics of chlorine in soil [D]. Yangling: Northwest A&F University, 2018. (in Chinese)
[6] 朱宗瑛. 施用含氯肥料对柑橘产量品质及土壤氯离子残留的影响[D]. 武汉: 华中农业大学, 2018.
ZHU Z Y. Effects of applying chloride-containing fertilizers on yield and quality of citrus and soil chloride content [D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[7] YANG X Y, GENG J B, LI C L, ZHANG M, CHEN B C, TIAN X F, ZHENG W K, LIU Z G, WANG C. Combined application of polymer coated potassium chloride and urea improved fertilizer use efficiencies, yield and leaf photosynthesis of cotton on saline soil., 2016, 197: 63-73.
[8] YANG X Y, LI C L, ZHANG Q, LIU Z G, GENG J B, ZHANG M. Effects of polymer-coated potassium chloride on cotton yield, leaf senescence and soil potassium., 2017, 212: 145-152.
[9] 马凌云, 王月, 蔡芳芳, 张诗雨, 罗培宇, 杨劲峰, 韩晓日. 长期施用含氯化肥对棕壤硝化作用及氨氧化微生物的影响. 植物营养与肥料学报, 2019, 25(5): 824-831.
MA L Y, WANG Y, CAI F F, ZHANG S Y, LUO P Y, YANG J F, HAN X R. Effects of long-term application of chlorinated fertilizer on nitrification and ammonia oxidizing microorganisms in brown soil., 2019, 25(5): 824-831. (in Chinese)
[10] 辜运富, 张小平, 涂仕华, 孙锡发, Kristina Lindstroem. 长期定位施肥对紫色水稻土硝化作用及硝化细菌群落结构的影响. 生态学报, 2008, 28(5): 2123-2130.
GU Y F, ZHANG X P, TU S H, SUN X F, Kristina L. Effects of long-term fertilization on nitrification and nitrobaceria community in a purple paddy soil under rice wheat rotations., 2008, 28(5): 2123-2130. (in Chinese)
[11] 王兴梅, 杨莉莉, 高义民, 同延安. 不同含氯肥料用量对黄土区苹果产量、品质及氯素分布的影响. 西北农林科技大学学报, 2019, 47(3): 77-84.
WANG X M, YANG L L, GAO Y M, TONG Y A. Effects of chlorine-containing fertilizer dosage on yield, quality of apple and Cl-distribution in loess area., 2019, 47(3): 77-84. (in Chinese)
[12] 王芳. 氯化钾对西瓜产量品质和土壤中氯离子残留的影响[D]. 北京: 中国农业科学院, 2006.
WANG F. Effect of potassium chloride on yield and quality of watermelon and soil chloride content [D]. Beijing: Chinese Academy of Agricultural Sciences, 2006. (in Chinese)
[13] 孙业民, 张俊莲, 李真, 李自龙, 李朝周. 氯化钾对干旱胁迫下马铃薯幼苗抗旱性的影响及其机制研究. 干旱地区农业研究, 2014, 32(3): 29-34.
SUN Y M, ZHANG J L, LI Z, LI Z L, LI C Z. Effect of potassium chloride on drought resistance of potato seedlings., 2014, 32(3): 29-34. (in Chinese)
[14] 曾睿, 陈春, 何忠俊, 李成学, 合勐麟. 不同供氯水平对烤烟生长发育和养分吸收的影响. 中国土壤与肥料, 2010(2): 55-58, 62.
ZENG R, CHEN C, HE Z J, LI C X, HE M L. Effects of chlorine application levels on growth and nutrient absorption of flue-cured tobacco., 2010(2): 55-58, 62. (in Chinese)
[15] XIAO Y S, PENG F T, ZHANG Y F, WANG J, ZHUGE Y P, ZHANG S S, GAO H F. Effect of bag-controlled release fertilizer on nitrogen loss, greenhouse gas emissions, and nitrogen applied amount in peach production., 2019, 234: 258-274.
[16] 张亚飞, 罗静静, 彭福田, 王国栋, 郜怀峰. 黄腐酸钾与化肥控释袋促进桃树生长及氮肥吸收利用. 植物营养与肥料学报, 2017, 23(4): 998-1005.
ZHANG Y F, LUO J J, PENG F T, WANG G D, GAO H F. Fulvic acid potassium and nutrient-controlled release paperbag enhance peach tree growth, nitrogen absorption and utilization., 2017, 23(4): 998-1005. (in Chinese)
[17] 张亚飞, 罗静静, 彭福田, 郜怀峰, 王国栋, 孙希武. 肥料袋控缓释对桃树根系生长、氮素吸收利用及产量品质的影响. 中国农业科学, 2017, 50(24): 4769-4778.
ZHANG Y F, LUO J J, PENG F T, GAO H F, WANG G D, SUN X W. Effects of fertilizer being bag-controlled released on root growth, nitrogen absorption and utilization, fruit yield and quality of peach trees., 2017, 50(24): 4769-4778. (in Chinese)
[18] 朱江, 程丽娅, 郎朗. 离子色谱法测定植物样品中氯的前处理方法研究. 分析实验室, 2015, 34(8): 922-925.
ZHU J, CHENG L Y, LANG L. Study on the pretreatment method in the determination of chlorine in plant samples using ion chromatography., 2015, 34(8): 922-925. (in Chinese)
[19] 鲍士旦. 土壤农化分析. 第3版. 北京: 中国农业出版社, 2000.
BAO S D.. Beijing: China Agriculture Press, 2000. (in Chinese)
[20] 徐艳如. 桃根系分布特点及其对不同施肥处理的反应[D]. 泰安: 山东农业大学, 2011.
XU Y R. Peach root distribution character and its response to different kinds of fertilizer [D]. Tai’an: Shandong Agricultural University, 2011. (in Chinese)
[21] ROMINGER R S, SMITH D, PETERSON L A. Influence of high rates of topdressed KCl and K2SO4on recovery of K, Cl, and SO4-S by alfalfa and residual amount remaining in the soil., 1977, 8(6): 489-507.
[22] 彭福田, 彭勇, 周鹏, 张守仕. 肥料袋控缓释对沾化冬枣氮素利用率与生长结果的影响. 园艺学报, 2006, 33(2): 223-228.
PENG F T, PENG Y, ZHOU P, ZHANG S S. Effect of fertilizer being bag-controlled release on nitrogen utilization rate, growth and fruiting of Zhanhua winter date (Mill var.Rehd)., 2006, 33(2): 223-228. (in Chinese)
[23] HAVLIN J L, TISDALE S L, NELSON W L, BEATON J D.., 1985.
[24] 杨修一. 控释尿素和氯化钾对盐碱地棉花生长发育及土壤肥力的影响[D]. 泰安: 山东农业大学, 2018.
YANG X Y. Effects of controlled-release urea and potassium chloride on cotton growth and soil fertility in saline soil [D]. Tai’an: Shandong Agricultural University, 2018. (in Chinese)
[25] 孟庆伟, 高辉远. 植物生理学. 第2版. 北京: 中国农业出版社, 2017.
MENG Q W, GAO H Y.. Beijing: China Agriculture Press, 2017. (in Chinese)
[26] 李永忠, 罗彭涛. 氯在烟草体内的生理代谢功能及其应用. 云南农业大学学报, 1995, 10(1): 57-61.
LI Y Z, LUO P T. Physiologic and metabolic functions of chloride in tobacco and its application in the production., 1995, 10(1): 57-61. (in Chinese)
[27] WHITE P J, BROADLEY M R. Chloride in soils and its uptake and movement within the plant: A review., 2001, 88(6): 967-988.
[28] 卢红霞. 氯(Cl-)对马铃薯的某些生理效应及对土壤中氮肥行为的影响[D]. 杭州: 浙江大学, 2001.
LU H X. Studies on the influence of Cl-on physiological effects of potato & nitrogenous fertilizer transformation in soil culture [D]. Hangzhou: Zhejiang University, 2001. (in Chinese)
[29] Sykes S R. Chloride and sodium excluding capacities of citrus rootstock germplasm introduced to Australia from the People's Republic of China., 2011, 128(4): 443-449.
[30] Szewczuk A, Komosa A, Gudarowska E. Effect of soil potassium levels and different potassium fertilizers on yield, macroelement and chloride nutrion status of apple trees in full fruition period., 2011, 10(1): 83-94.
Effects of Potassium Fertilizers Being Bag-Controlled Released on Fruit Yield and Quality of Peach Trees and Soil Chloride Content
ZHANG YaFei, PENG FuTian, XIAO YuanSong, LUO JingJing, DU AnQi
(College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong)
【Objective】The effects of mixtures of potassium fertilizers being bag-controlled released on the photosynthesis, fruit yield and qualities of peach trees and the chloride content in soil were studied to provide reference for scientific application of potassium fertilizers in peach orchard.【Method】Late-ripening peach ‘Ruipan 21’/(Carr) Franch. were used as research materials, and a 2-year field trial was conducted with five types of fertilizers being bag-controlled released, including without potassium fertilizer (Control), 100% potassium sulfate (PC 0), 30% potassium chloride and 70% potassium sulfate (PC 30), 60% potassium chloride and 40% potassium sulfate (PC 60) and 100% potassium chloride (PC 100). It was fertilized at the beginning of March every year, the soil dynamic changes of available potassium and chloride content in 0-20 and 20-40 cm soil layer were determined in the middle of April, June, August and October of each year. The potassium and chloride content, SPAD values and photosynthetic rates in leaves were determined in the first rapid growth stage (S1), the hard core stage (S2), the second rapid growth stage (S3) and the maturity stage (S4) of peach trees, and the chloride content in fruit and the yield and qualities were investigated.【Result】The average Cl-content in the 0-20 and 20-40 cm soil layer was 34.03 and 38.78 µg·g-1in the orchard without chlorine treatment. With the increase of potassium chloride, the Cl-content in different soil layers showed an increasing trend. The average content of Cl-in the 0-20 and 20-40 cm soil layer under PC 30, PC 60 and PC 100 were 37.98, 39.55, 41.61, 45.62, 51.17 and 58.87 µg·g-1, respectively. However continuous application of bag-controlled potassium chloride for two years did not result in the accumulation of Cl-in soil. The content of Cl-in the leaves also increased with the increase of the amount of chlorine applied. The content of Cl-under PC 30, PC 60 and PC 100 was 6.35%, 24.30% and 32.22% higher than that under PC 0. Among them, the content of Cl-in the leaves of the four stages treated by PC 30 was 234.29, 243.16, 233.81 and 233.20 µg·g-1, respectively. Moreover, PC 30 treatment significantly increased the SPAD value and net photosynthetic rate of leaves, while PC 60 and PC 100 treatment reduced the photosynthetic capacity of leaves. The content of available potassium in soil was higher in the early stage and decreased gradually later. The potassium release peak under PC 30, PC 60 and PC 100 treatments occurred in June, while the peak under PC 0 treatments occurred in August. The potassium content in the leaves reached the highest value in the second fruit growth stage (S 3), then decreased gradually, and the potassium content in the leaves at the maturity stage (S4) was the lowest. There was no significant change in the content of available potassium in leaves under different potassium treatments, indicating that the release rate of potassium chloride treatment had no significant effect on potassium absorption in leaves. The Cl-content between PC 30 and PC 0 fruits had no significant difference, with an average content of 55.0 µg·g-1. But the Cl-content increased by 10.40% and 28.45% under PC 60 and PC 100, compared with PC 0 on average. For two consecutive years, the single fruit weight and yield treated with PC30 increased slightly, and which of PC 60 and PC 100 treatments were significantly reduced. The application of low potassium chloride had no significant effect on fruit quality, however medium or high potassium chloride could reduce the fruit quality.【Conclusion】Using the method of fertilizer being bag-controlled release, replacing potassium sulfate with 30% potassium chloride resulted in no accumulation of Cl-in the soil, and could promote leaves photosynthesis, increase yield, and did not cause the decline of fruit quality and toxicity of the tree. Therefore, the proper amount of potassium chloride could be used instead of potassium sulfate in the peach orchard following the model of fertilizers being bag-controlled release.
bag-controlled release fertilizer;peach; potassium chloride; potassium sulfate; yield; quality
2020-03-07;
2020-05-08
国家现代农业产业技术体系建设专项(CARS:31-3-03)、山东省“双一流”建设奖补资金(SYL2017YSTD10)
张亚飞,E-mail:yuanyizhangyafei@163.com。通信作者彭福田,E-mail:pft@sdau.edu.cn
(责任编辑 赵伶俐)