张欣欣,石磊,何刚,王朝辉
陕西省粮食生产的减肥潜力及经济环境效益
张欣欣1,石磊2,何刚1,王朝辉1
(1西北农林科技大学资源环境学院/农业部西北植物营养与农业环境重点实验室,陕西杨凌 712100;2陕西省农业农村厅/陕西省耕地质量与农业环境保护工作站,西安 710003)
【目的】农户经营是我国农业的主体,肥料资源的不合理应用是限制作物生产的重要因子。本研究旨在评估主产区农户粮食生产的减肥潜力及经济环境效益。【方法】2018年对陕西省各县(市、区)的主要农作物生产情况进行问卷调查,以三大粮食作物为研究对象,基于产量水平评价农户的施肥现状、减肥潜力、环境代价和经济效益。【结果】农户作物产量存在显著差异,小麦平均产量为4 573 kg·hm-2,高低产量相差2 619 kg·hm-2;玉米平均产量为7 319 kg·hm-2,高低产量相差5 388 kg·hm-2;水稻平均产量为8 340 kg·hm-2,高低产量相差2 893 kg·hm-2。小麦的氮磷钾肥用量分别为177 kg N·hm-2、102 kg P2O5·hm-2和37 kg K2O·hm-2;玉米分别为247 kg N·hm-2、103 kg P2O5·hm-2和47 kg K2O·hm-2;水稻分别为186 kg N·hm-2、88 kg P2O5·hm-2和64 kg K2O·hm-2。3种作物产量与施肥量无显著相关。氮磷肥普遍过量施用、钾肥过量与不足并存,低产农户过量施肥问题严重。对于氮磷钾肥的减施潜力,小麦分别为41%、59%和59%;玉米分别为55%、73%和66%;水稻分别为38%、64%和58%。施用的肥料形态均表现氮以单质肥为主、复合肥为辅;磷钾以复合肥为主;有机肥养分供应量很低。肥料结构均表现为重基施轻追施,氮以基施为主、追施为辅;磷钾肥鲜有追施。生产1.0 t小麦、玉米和水稻的活性氮损失量分别为6.9、3.8和3.3 kg,低产组的活性氮损失强度比高产组分别高52%、85%和74%,降低损失的潜力分别介于16%—33%、31%—50%和4%—38%。小麦、玉米和水稻生产的经济效益分别为4 468、9 091和20 020 元/hm2,高产组比低产组分别高459%、128%和52%;减肥增效后总效益分别为4 919、9 905和20 543 元/hm2,高产组比低产组分别高290%、106%和48%。【结论】基于产量水平深入剖析了陕西省农户的生产行为,低中产组为化肥减量和收益提升的重点。农户氮磷钾肥减施潜力分别为45%、65%和61%;小麦、玉米和水稻因化肥减施而降低活性氮损失的潜力分别为26%、45%和18%;提高环境经济效益的潜力分别为10%、9%和3%。
农户行为;养分管理;粮食作物;产量;环境代价;经济效益;陕西
【研究意义】我国占世界7%的耕地面积而消耗了全球近1/3的化肥[1],化肥过量使用产生一系列的环境问题,如大气、水体、土壤污染,破坏生态环境[2-3]。陕西是农业大省,2017年小麦、玉米和水稻的播种面积分别占粮食作物的35%、38%和4%[4]。农户是粮食作物生产的主体,由于大多数农户存在“多投入多产出”的观点,通常导致化肥投入过量、养分利用率不高[5]。因此,理解农户的施肥行为是采取科学施肥措施,进而提高肥料利用率、保护生态环境的重要前提。【前人研究进展】2002—2015年,我国三大粮食作物过量施肥程度介于33%—43%[6],全国粮食主产区氮肥利用率<30%的样本占总样本的60%以上[7],肥料大多未经作物吸收而残留在土壤或进入大气、水体,严重影响生态系统动态平衡[8]。农户是耕地管理的主体,全球25亿小农户在管理着60%的耕地的同时,也显著影响着粮食生产、资源消耗和生态平衡[9]。农户养分管理主要依据经验,2006—2013年在渭北旱塬的调研结果显示小麦氮磷钾肥用量分别介于102—268 kg N·hm-2、57—167 kg P2O5·hm-2和0—74 kg K2O·hm-2[10],肥料用量差异很大,施肥不合理现象普遍发生。近年来,由于施肥技术、肥料价格、栽培制度等变化,农户的施肥情况也应发生一定改变。进行大规模的农户调研是理解区域尺度施肥现状的基础,是指导农户合理施肥的关键,是评价施肥综合效益的基本,为此2018年在陕西省各县(市、区)组织了大范围的入户调研。活性氮是氮循环过程中重要一环,大量活性氮损失到大气、陆地和水生生态系统中会影响其生产力、功能和生物多样性[11]。而氮肥是活性氮损失的基础物质,施氮量与活性氮损失呈正相关关系[12]。例如,当氮肥用量为148 kg N·hm-2时,活性氮损失为33.6 kg N·hm-2,而当氮肥用量为279 kg N·hm-2时,活性氮损失量增加到84.9 kg N·hm-2[13]。以往研究的环境代价评估大多集中在田间定位试验,而对基于农户调研评价省域尺度上粮食作物生产的环境代价及减排潜力的研究较少。经济效益关系着农户的生计,是决策前必须考虑的核心指标,不同作物的经济效益由于投入与产出不同而差异较大。1990年以来,我国粮食作物的总成本由于土地和生产成本的增加而增加,水稻一直高于大致相当的小麦和玉米,三者经济效益表现出周期性波动[14]。投入成本中,全国小麦、玉米和水稻的平均肥料费为2 191 元/hm2,占总成本的14%,而陕西省的肥料费较小,分别为1 686、1 846和1 657 元/hm2,占总成本的11%、10%和7%[15]。此外,生产资料与产品市场价格的变动也影响农户的经济收入。2012—2017年间,尽管小麦单价上涨7.6%(0.17 元/kg),但机械作业费、人工成本等的上涨抵消了小麦价格上涨,导致农户经济效益下降[15]。【本研究切入点】目前进行的大多数农户调研评价主要集中在特定区域单一作物,而对省域尺度主要粮食作物的生产情况关心较少。此外,面向三大粮食作物和氮磷钾三大肥料元素进行实际调研,基于产量分析其节肥节本增效潜力,对精准施肥、资源高效和生态环境友好具有重要意义。【拟解决的关键问题】本研究利用2018年在陕西省组织的大规模实地调研,通过对现阶段农户主要粮食作物生产的产量与施肥状况、减肥潜力、环境代价与经济效益评价分析,以期更准确地理解农户生产行为并为节本增收增效和农业可持续发展提供科学指导。
陕西省位于我国西北部,南北长880 km、东西宽160—490 km,耕地面积301万hm2。气候差异大,由北向南渐次过渡为温带、暖温带和北亚热带,整体属大陆季风性气候。年平均气温介于8—16℃,年平均降水量介于275—1 270 mm,主要集中在7—9月份。
2018年10—12月在陕西省各县(市、区)对当地种植面积666.7 hm2以上的作物以入户形式开展面对面调研。每县每种作物选择10个种植经验丰富,代表性强的典型农户进行调研,一户一表。调研问卷的指标包括作物类型、产量、户种植面积、当年销售价格、肥料类型、肥料用量、养分含量、施肥时期等。此次调研获得的有效问卷共计2 156份,包括农产品有粮食作物(小麦、玉米、水稻、荞麦、穈子、高粱)、油料、蔬菜、烤烟等,经济作物有茶、桑、果、中药材等。本研究以三大粮食作物为研究对象,样本量分别为:小麦312份、玉米514份、水稻150份,共计976份,调研样本分布见图1。
图1 调研地点分布图
调研农户小麦的产量介于1 800—7 500 kg·hm-2,90%的农户产量集中在2 700—6 375 kg·hm-2。以产量的第5%分位数(2 700 kg·hm-2)和95%分位数(6 450 kg·hm-2)为最低和最高限求极差(3 750 kg·hm-2),然后以等产量间距(1 250 kg·hm-2)分成低产、中产和高产3个范围。小麦产量水平从低到高依次为<3 950kg·hm-2(低产),3 950—5 200 kg·hm-2(中产),>5 200 kg·hm-2(高产)。类似方法划分的玉米产量水平依次为<6 750 kg·hm-2(低产),6 750—9 000 kg·hm-2(中产),>9 000 kg·hm-2(高产);水稻依次为<7 400 kg·hm-2(低产),7 400—8 800 kg·hm-2(中产),>8 800 kg·hm-2(高产)(表1)。
施肥的目的不仅是使作物高产,还需培肥土壤。因此在维持或提升土壤肥力水平上,考虑作物产量对养分的需求,基于输入输出平衡的推荐方法确定不同产量等级的合理施肥量[16-17]。
合理施肥量(Rec)= 产量×养分需求量×调整系数 (1)
式中,产量为调研农户的实际产量;养分需求量指小麦、玉米和水稻的百公斤籽粒养分需求量。受环境和人为因素的影响,区域间作物的养分需求量各异,西北地区冬小麦氮磷钾需求量分别为2.8 kg N·hm-2、0.7 kg P2O5·hm-2和2.4 kg K2O·hm-2[18];玉米分别为1.74 kg N·hm-2、0.32 kg P2O5·hm-2和1.53 K2O·hm-2[19-21];水稻分别为1.71 kg N·hm-2、0.34 kg P2O5·hm-2和1.84 kg K2O·hm-2[22]。调整系数指根据研究区域土壤养分供应能力确定的调整施肥数量高低的参数,西北地区氮、磷和钾的调整系数分别为1.0、1.5和0.3[16]。
对于农户施肥等级评价分类方法,以合理施肥量的40%为变幅,施肥等级从低到高依次为0—0.8 Rec(不足);0.8—1.2 Rec(适中);>1.2 Rec(过量)。
1.5.1 活性氮损失量的估算 粮食作物生产系统中,化学氮肥的施用导致N2O排放、NH3挥发以及NO3-淋溶是活性氮(Nr)损失的主要途径,本研究采用CUI等[9]提出西北地区的经验模式,以N2O排放、NH3挥发以及NO3-淋溶之和估算活性氮损失。
N2O排放(kg N·hm-2):
小麦:Y=0.26e0.0045N;玉米:Y=0.68e0.0035N;水稻:Y=0.32e0.0029N(2)
NH3挥发(kg N·hm-2):
小麦:Y=3.21+0.068N;玉米:Y=2.53+0.058N;水稻:Y=3.83+0.10N (3)
NO3-淋溶(kg N·hm-2):
小麦:Y=4.93e0.0057N;玉米:Y=2.38e0.0041N;水稻:Y=2.25e0.0033N(4)
式中,N表示化学氮肥用量(kg N·hm-2)。活性氮损失强度为活性氮损失量与产量的比值。
1.5.2 经济效益的估算 按照农作物生长过程中的原料、种植、农资和运输四类进行成本—效益分析,计算三大粮食作物的经济效益情况。
投入(yuan/hm2)=种子费+农药费+机械费+肥料费 (5)
产出(yuan/hm2)=当年销售价格(yuan/kg)×产量(kg·hm-2) (6)
经济效益(yuan/hm2)=产出-投入 (7)
式中,投入的肥料按种类分为单质肥、复合肥和有机肥,单质肥中纯氮磷钾肥单价分别为3.8、4.5、5.8元/kg,复合肥单价为3.0元/kg,商品有机肥为1.36元/kg,农家肥为0.3元/kg;小麦、玉米和水稻的种子费分别为954、974和892元/hm2;农药费分别为279、212和197元/hm2;机械作业费分别为2 376、1 607和2 080元/hm2。以上数据均来源全国农产品成本收益汇编(2018版)[15]。
对于肥料养分,单质肥按照养分含量标准计算、复合肥按照实际调查记录值计算、有机肥按照《中国有机肥养分志》折算,用折合的纯养分用量表示。数据采用Microsoft Excel 2010进行汇总、计算、整理;采用IBM SPSS Statistics 22.0进行单因素分析;采用SigmaPlot 12.5进行相关性分析;采用ArcMap 10.5和Origin 9.1绘图。
调研农户的作物产量组间差异显著(表1)。小麦、玉米和水稻的平均产量分别为4 573、7 319和8 340 kg·hm-2,小麦中高产组比低产组分别高41%和81%;玉米分别高44%和101%;水稻分别高22%和45%。3种作物不同产量组间肥料用量差异显著。小麦的氮磷钾肥分别为177 kg N·hm-2、102 kg P2O5·hm-2和37 kg K2O·hm-2,高产组的氮肥用量比低产组增加27%,高中低产组的磷钾肥用量无显著差异;玉米的氮磷钾肥分别为247 kg N·hm-2、103 kg P2O5·hm-2和47 kg K2O·hm-2,高产组的磷钾肥用量比中产组分别增加23%和49%,比低产组分别增加55%和52%,氮肥用量无显著差异;水稻的氮磷钾肥分别为186 kg N·hm-2、88 kg P2O5·hm-2和64 kg K2O·hm-2,中高产组比低产组氮肥用量分别减少18%和17%,磷肥用量分别增加62%和37%,钾肥用量无显著差异。由此可见,小麦高产组的氮肥比平均值投入较高,玉米高产组的磷肥较高,水稻高产组未增加肥料投入。
粮食作物生产的肥料种类表现为,氮肥以单质肥为主,磷钾肥以复合肥为主(表2)。对于小麦、玉米和水稻,单质肥分别占氮肥总投入的48%、61%和56%;复合肥分别占磷肥总投入的67%、64%和57%,占钾肥总投入的66%、60%和70%。表明肥料投入中,单质肥主要是氮肥,磷肥次之,钾肥最少;复合肥以磷钾肥为主,氮肥次之;有机肥的养分供应量很低。粮食作物生产的施肥方式表现为,氮肥以基施为主,小麦的氮肥基追比为8﹕1,玉米为7﹕5,水稻为5﹕2;磷钾肥多以基施形式施用。
表1 主要粮食作物产量及施肥量
表中产量、施氮磷钾量为平均值,同一列不同小写字母表示不同作物不同产量水平间差异达5%的显著水平。下同
Data of yield, NPK rates are average. In same column of a region, different lowercase letters indicate significant differences between means of different yield levels at<5%. The same as below
表2 肥料种类、用量及其基追比
表中同一列不同小写字母表示不同作物不同肥料种类间差异达5%的显著水平;同一行不同中文符号表示不同作物不同肥料基追比间差异达5%的显著水平。ECF指单质肥;CF指复合肥;OM指有机肥。下同
In same column of a region, different lowercase letters indicate significant differences between different fertilizer types about different crops at<5%; In same row of a region, different Chinese symbols indicate significant differences between different fertilizer ratio about different crops at<5%. ECF: Elemental chemical fertilizer; CF: Compound fertilizer; OM: Organic manure. The same as below
分析小麦产量和施肥量发现(图2),氮肥用量36—465 kg N·hm-2,平均177 kg N·hm-2;磷肥0—454 kg P2O5·hm-2,平均102 kg P2O5·hm-2;钾肥0—279 kg K2O·hm-2,平均37 kg K2O·hm-2。氮磷钾肥用量变异很大,变异系数依次为38%、62%和112%,产量与施肥量间无相关性。通过产量对应的肥料合理用量评估实际施肥量显示(图3),不足、适中和过量施氮的农户依次为11%、32%和57%;施磷依次为10%、7%和83%;施钾依次为44%、21%和35%。分析不同产量水平农户的施肥量可知,随产量提高,过量施氮农户由74%降低到34%、适中施氮农户由13%增加到49%,过量施钾农户由47%降低到19%、适中施钾农户由4%增加到43%,过量施磷农户仍然占77%—88%,无显著变化。
图中横虚线分别代表小麦、玉米和水稻的平均产量,竖虚线分别代表氮磷钾肥的平均用量
图3 小麦、玉米和水稻的养分投入分布图
分析玉米发现(图2),氮肥用量为32—695 kg N·hm-2,平均247 kg N·hm-2;磷肥用量为0—606 kg P2O5·hm-2,平均103 kg P2O5·hm-2;钾肥用量为0—324 kg K2O·hm-2,平均47 kg K2O·hm-2。氮磷钾肥用量变异很大,变异系数依次为45%、86%和126%,产量与施肥量间无相关性。通过产量对应的肥料合理用量评估实际施肥量显示(图3),不足、适中和过量施氮的农户依次为10%、9%和81%;施磷依次为13%、13%和74%;施钾依次为45%、14%和41%。分析不同产量水平农户的施肥量可知,随产量提高,过量施氮农户由93%降低到54%、适中施氮农户由4%增加到19%,过量施钾农户由50%降低到31%、适中施钾农户由4%增加到11%,过量施磷农户仍然占59%— 78%,无显著变化。
分析水稻发现(图2),氮肥用量为45—405 kg N·hm-2,平均186 kg N·hm-2;磷肥用量为0—465 kg P2O5·hm-2,平均88 kg P2O5·hm-2;钾肥用量为0—345 kg K2O·hm-2,平均64 kg K2O·hm-2。氮磷钾肥用量变异系数依次为37%、82%和95%,产量与施肥量间无相关性。通过产量对应的肥料合理用量评估实际施肥量显示(图3),不足、适中和过量施氮的小农户依次为19%、25%和56%;施磷依次为28%、7%和65%;施钾依次为45%、7%和48%。分析不同产量水平农户的施肥量可知,随产量提高,过量施氮农户由64%降低到37%、适中施氮农户由24%增加到43%,过量施磷农户占60%—73%,过量施钾农户占40%—48%、无显著变化。综上所述,小麦、玉米和水稻氮磷肥过量施用情况严重、特别是磷肥,而钾肥过量与不足现象并存。合理施肥的占比随产量水平的提高而增加。
比较农户实际施肥量与合理施肥量发现(表3),减少肥料投入的潜力因粮食作物种类和产量水平而异。对于小麦,氮磷钾肥用量可分别减少41%(90 kg N·hm-2)、59%(68 kg P2O5·hm-2)和59%(48 kg K2O·hm-2)。其中,减肥主要对象为低、中产农户。低产农户的氮磷钾肥的减幅分别为48%、72%和66%,中产农户的减幅分别为40%、58%和63%。对于玉米,氮磷钾肥用量可分别减少55%(153 kg N·hm-2)、73%(97 kg P2O5·hm-2)和66%(67 kg K2O·hm-2)。减施肥料的主要对象为低产的农户,氮磷钾肥减幅分别为63%、75%和70%。对于水稻,氮磷钾肥用量可分别减少38%(86 kg N·hm-2)、64%(76 kg P2O5·hm-2)和58%(64 kg K2O·hm-2)。减施肥料的主要对象为低产农户,氮磷钾肥减幅分别为60%、63%和63%。由此可见,粮食作物减施肥料的主要对象为低产农户,减磷潜力最大,氮、钾肥次之。
粮食作物生产的环境代价因作物种类和产量水平而异。小麦、玉米和水稻的活性氮损失强度分别为6.9、3.8和3.3 kg N·t-1。分析不同产量组可知,活性氮损失强度随产量增加而显著降低。与低产组相比,中产组小麦、玉米和水稻的活性氮损失强度分别降低20%、27%和30%,高产组分别降低了34%、46%和43%。通过合理施肥量对应的活性氮损失强度评估其减少损失潜力(表3)。进一步分析减少活性氮损失强度的潜力可知,中低高产组小麦、玉米和水稻的减少潜力分别为16%—33%、31%—50%和4%—38%。其中,中产组的活性氮损失减少潜力分别为24%、43%和19%。由此可见,减少活性氮损失的关键在低产组,三大作物中特别是小麦。
表3 小麦、玉米和水稻的减肥潜力与环境代价
FPex指过量施肥下农户的施肥量;Rec指推荐施肥量;%指减少损失的潜力(% = (FPex-Rec)/FPex)
FPex: Fertilizer rate used by farmer practice under excessive condition; Rec: Recommended fertilizer rate; %: Potential of reducing losses (% = (fertilizer rate used by farmer practice under excessive condition-recommended fertilizer rate)/fertilizer rate used by farmer practice under excessive condition)
粮食作物生产的经济效益因作物种类和产量水平而异(表4)。对于小麦、玉米和水稻生产,总投入分别为5 443、5 013和4 928 yuan/hm2,肥料投入分别占总投入的33%、44%和36%。总产出分别为9 953、14 104和24 947 元/hm2。三大作物的经济效益分别为4 468、9 091和20 020 元/hm2,不同产量组间差异显著;减肥增效分别为4 919(10%)、9 905(9%)和20 543(3%)元/hm2。与低产组相比,小麦、玉米和水稻高产组的总投入分别增加了6%、19%和5%,总产出分别增加32%、26%和12%。经济效益分别增加459%、128%和52%。与玉米和水稻相比,小麦的总投入分别增加了9%和11%,总产出却分别减少了42%和151%,导致经济效益分别减少了50%和78%。结果显示,优化肥料用量和施肥方式、合理调整施肥结构、增加作物产量是提高经济效益的核心途径之一。
表4 小麦、玉米和水稻的经济效益
减肥增效中,纯氮磷钾肥的减少量用纯单质肥的价格分别计算增收效益,%指减肥增效的潜力(%=(减肥增效-经济效益)/经济效益)
In benefit increase, the reduction of pure nitrogen, phosphorus, and potassium fertilizers were calculated benefits separately by the price of pure elemental fertilizers, %: potential of benefit increase through reducing fertilizer use (% = (benefit increase-benefit)/benefit)
分析2018年的976份农户调研数据可知,陕西省的小麦、玉米和水稻平均产量分别为4 573、7 319和8 340 kg·hm-2。小麦产量略高于2011—2015年在渭北旱塬调研结果(4 243 kg·hm-2)[16];玉米产量高于2013—2016年在渭北旱塬调研结果(6 000 kg·hm-2)[23];水稻产量高于2006—2009年在秦巴山区调研结果(7 822 kg·hm-2)[24]。总的来看,粮食作物产量呈上升趋势,这利于应对粮食需求量增加、耕地面积减少带来的挑战。
分析施肥量可知,农户粮食生产氮肥投入最多(152—257 kg N·hm-2)、磷肥次之(63—132 kg P2O5·hm-2)、钾肥较少(35—73 kg K2O·hm-2)。赵护兵等[25]2009—2012年调研渭北旱塬冬小麦生产的氮磷钾肥用量分别为195 kg N·hm-2、128 kg P2O5·hm-2和35 kg K2O·hm-2,也呈现出高氮、中磷、低钾的现象。施肥是提高作物产量的重要措施之一,然而本研究肥料用量与作物产量间未有显著相关性,水稻高产组的氮肥用量甚至低于低产组。近年来,伴随着肥料价格下降、特别是尿素[26],农户为获得高产,长期过量施用化肥导致土壤养分残留量大[27]。我国农田养分盈余问题严重,HUANG等[28]报道我国农田氮素养分盈余2.8—6.6 Tg·a-1,磷素盈余4.1 Tg·a-1[29],钾素赤字2.9—3.9 Tg·a-1[30]。土壤中大量的养分盈余破坏了施肥量与产量间的正相关关系,在降水量少的年份少施化肥甚至可以增加作物产量[31]。另外,氮磷钾肥施用比例与作物需求不平衡,也是导致养分投入高产量却不高的重要原因。此外,调研过程还发现几乎没有农户施用微量元素肥料,这与农民对微肥重要性的认识不足有关。
分析养分来源和施肥方式可知,48%—61%的氮肥来自单质氮肥,57%—67%的磷肥和60%—70%的钾肥来自复合肥。小麦的氮肥基追比为8﹕1,玉米为7﹕5,水稻为5﹕2,磷钾肥以基肥一次性施用为主。这表明农户基肥以复合肥和单质氮肥为主,追施少量单质氮肥。通常认为,小麦的氮肥基追比以2﹕1为宜,玉米和水稻以1﹕2或2﹕3较合理[32-34]。农户的基肥比例偏高、追肥偏低,究其关键原因与西北地区降水少、灌溉缺乏、追肥不易有关[35]。本研究中施肥量与产量间未有显著的相关性,同一施肥水平下作物产量有低有高。作物产量是多因素共同作用的结果,不仅与肥料用量相关,还与肥料类型和施肥方法有关[35]。结合调研结果,陕西省小农户粮食作物生产中存在着氮、磷肥施用过量,钾肥过量与不足并存,重基施、轻追施,重化肥、轻有机肥的普遍现象。优化肥料用量和施用方法、应用有机无机配施[36]、调整复合肥氮磷钾比例等措施利于从省域尺度上改善施肥不合理现象。大规模的针对性培训、大面积的标准示范田展示,利于提高农户的农业知识素养以及科技应用,利于农业可持续发展。
肥料是粮食作物生产主要的养分来源,然而施用的肥料养分未被作物吸收将残留在土壤或损失到作物生产系统外产生土壤[37]、水体[38]和空气污染[3]环境问题。因此,评估施肥现状及减肥潜力对粮食生产和环境安全意义重大。研究结果显示在施肥过量条件下粮食作物生产的减氮磷钾潜力分别在33%—63%、46%—75%和57%—70%,减肥潜力巨大(表3)。进一步分析产量组的肥料用量发现,中低产组过量的氮肥用量占比为64%—93%,过量的磷肥用量占比60%—88%,过量的钾肥用量占比为33%—50%(图3),这意味着减肥的重点在中低产组的农户。同时三大作物产量与氮磷钾肥用量间均不显著相关,表明农户减肥潜力巨大,即在陕西生态环境条件下生产小麦、玉米和水稻,增加或减少施肥不是引起产量差异的主要原因。农户是土地经营的主体,通常认为多投入肥料养分是获得高产的重要保障[39],加之化肥补贴和市场竞争导致其价格偏低[40],是过量施肥的重要原因。采用土壤测试方法可科学指导肥料用量[41],然而我国土地碎片化程度高,每块土地平均0.1 hm2[42],大规模测土后制定科学的施肥量,时间紧、难度大,同时考虑到地块间土壤基础地力差异,笔者认为基于输入输出平衡推荐法、通过产量区间来确定施肥区间更为实际。例如,农户的玉米产量在5 000—7 000 kg·hm-2,根据合理施肥量方程推荐的氮肥用量为87—122 kg·hm-2,推荐的磷肥用量为24—34 kg·hm-2,推荐的钾肥用量为23—32 kg·hm-2,实际的肥料用量农户可根据多年的经验进行微调。
分析不同产量组的环境效应可知,粮食作物生产活性氮损失减少潜力为4%—50%,高产组的减排潜力更低(表3)。尽管高产组通常有高的肥料投入量,但其氮肥利用率较高,故活性氮损失强度比低产组甚至减少34%—46%。WANG等[43]在甘肃张掖也发现当氮肥用量从140 kg N·hm-2提高到221 kg N·hm-2时,并未增加单位产量的活性氮损失量。由此可见,在一定范围内增加氮肥用量以提高作物产量,并不一定提高活性氮损失强度,这说明有效提高氮肥利用效率是增产环保实现双赢的重要保障。此外,不同作物类型的活性氮损失强度差异较大,小麦的活性氮损失是玉米和水稻的1.8—2.1倍(表3),这主要归因于小麦低的产量以及高的籽粒蛋白质含量。总的来看,通过构建综合的土壤-作物管理系统将高产栽培与合理种植相结合是减少活性氮损失的重要途径之一。CUI等[9]证实应用综合的土壤-作物管理系统在减少氮肥用量15%—18%的同时,增加粮食平均产量11%—12%,减少氮损失13%—22%。不同作物类型和产量组间,经济效益差异显著。水稻的经济效益为小麦、玉米的2.7—4.0倍,高的单产和单价是增加收益的主要原因[14]。然而由于生长条件的限制,陕西省水稻种植主要集中在陕南的部分地区,因此分析旱作的小麦和玉米效益是必要的。与玉米相比,小麦的经济收益减少了50%。小麦作为陕西省三大主粮食作物之一,在2000—2017年间种植面积减少了31%(47.4万hm2),产量只提高了7%(30万t)[15]。同时由于市场导向作用,小麦价格存在“天花板”封顶,生产成本却在“地板式”上升,压缩了小麦生产利润空间[44-45],从而导致小麦的经济收益低于玉米。可通过政策支持、补贴等措施扩大小麦种植面积、提高小麦总产和单价,从而提高小麦生产的经济效益。
本研究基于2018年976份调研数据,系统分析了粮食作物生产的产量和施肥现状,减肥、减排潜力及经济效益。小麦、玉米和水稻的平均产量分别为4 573、7 319和8 340 kg·hm-2,平均施氮量分别为177、247和186 kg N·hm-2,平均施磷量分别为102、103和88 kg P2O5·hm-2,平均施钾量分别为37、47和64 kg K2O·hm-2,产量与氮磷钾肥用量间无显著相关性。表明在陕西生态环境条件下生产三大粮食作物,增加或减少施肥不是引起产量差异的主要原因,即农户减肥潜力和活性氮减排潜力巨大。陕西省主要粮食作物减氮、磷和钾肥的潜力分别为33%—63%、46%— 75%和57%—70%,减活性氮损失潜力为4%—50%。小麦、玉米和水稻生产的经济效益分别为4 468、9 091和20 020 yuan/hm2。本研究从减肥节本高效增收为出发点,提出以低中产组农户为化肥减量和收益提升的重点,3种作物均可分别减少氮磷钾肥45%、65%和61%,从而降低26%、45%和18%的活性氮损失,提高10%、9%和3%的经济效益。
[1] LIU J G, DIAMOND J. China’s environment in a globalizing world., 2005, 435(7046): 1179-1186. DOI: 10.1038/4351179a.
[2] KHAN M N, MOBIN M, ABBAS Z K, ALAMRI S A. Fertilizers and their contaminants in soils, surface and groundwater., 2018(5): 225-240. DOI: 10.1016/B978-0-12- 409548-9.09888-2.
[3] GU B J, SUTTON M A, CHANG S X, GE Y, CHANG J. Agricultural ammonia emissions contribute to China’s urban air pollution., 2014, 12(5): 265-266. DOI: 10.1890/14.WB.000.
[4] 陕西省统计局. 陕西统计年鉴. 西安: 中国统计出版社, 2010-2018.
Shaanxi Provincial Bureau of Statistics.. Xi’an: China Statistics Press, 2010-2018. (in Chinese)
[5] WANG P P, ZHANG W D, LI M H, HAN Y J. Does fertilizer education program increase the technical efficiency of chemical fertilizer use? Evidence from wheat production in China., 2019, 11(2): 543. DOI: 10.3390/su11020543.
[6] 孔凡斌, 郭巧苓, 潘丹. 中国粮食作物的过量施肥程度评价及时空分异. 经济地理, 2018, 38(10): 201-210, 240.
KONG F B, GUO Q L, PAN D. Evaluation on over fertilization and its spatial-temporal difference about major grain crops in China., 2018, 38(10): 201-210, 240. (in Chinese)
[7] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924. DOI: 10.3321/j.issn:0564-3929.2008.05.018.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement., 2008, 45(5): 915-924. DOI: 10.3321/j.issn:0564-3929.2008.05.018. (in Chinese)
[8] FOWLER D, STEADMAN C E, STEVENSON D, COYLE M, REES R M, SKIBA U M, SUTTON M A, CAPE J N, DORE A J, VIENO M, SIMPSON D, ZAEHLE S, STOCKER B D, RINALDI M, FACCHINI M C, FLECHARD C R, NEMITZ E, TWIGG M, ERISMAN J W, BUTTERBACH-BAHL K, GALLOWAY J N. Effects of global change during the 21st century on the nitrogen cycle., 2015, 15(24): 13849-13893. DOI: 10.5194/acp-15-13849-2015.
[9] CUI Z L, ZHANG H Y, CHEN X P, ZHANG C C, MA W Q, HUANG C D, ZHANG W F, MI G H, MIAO Y X, LI X L, GAO Q, YANG J C, WANG Z H, YE Y L, GUO S W, LU J W, HUANG J L, LV S H, SUN Y X, LIU Y Y, PENG X L, REN J, LI S Q, DENG X P, SHI X J, ZHANG Q, YANG Z P, TANG L, WEI C Z, JIA L L, ZHANG J W, HE M R, TONG Y A, TANG Q Y, ZHONG X H, LIU Z H, CAO N, KOU C L, YING H, YIN Y L, JIAO X Q, ZHANG Q S, FAN M S, JIANG R F, ZHANG F S, DOU Z X. Pursuing sustainable productivity with millions of smallholder farmers., 2018, 555: 363-366. DOI: 10.1038/nature25785.
[10] 王小英, 陈占飞, 胡凡, 同延安. 陕西省农田化肥投入过量与不足的研究. 干旱地区农业研究, 2017, 36(6): 159-165. DOI: 10.7606/ j.issn.1000-7601.2017.06.24.
WANG X Y, CHEN Z F, HU F, TONG Y A. Study on the excessive and insufficient of chemical fertilizer inputs on farmland in Shaanxi Provinc., 2017, 36(6): 159-165. DOI: 10.7606/j.issn.1000-7601.2017.06.24. (in Chinese)
[11] 王敬国, 林杉, 李保国. 氮循环与中国农业氮管理. 中国农业科学, 2016, 49(3): 503-517. DOI: 10.3864/j.issn.0578-1752.2016.03.009.
WANG J G, LIN B, LI B G. Nitrogen cycling and management strategies in Chinese agriculture., 2016, 49(3): 503-517. DOI: 10.3864/j.issn.0578-1752.2016.03.009. (in Chinese)
[12] CUI Z L, YUE S C, WANG G L, MENG Q F, WU L, YANG Z P, ZHANG Q, LI S Q, ZHANG F S, CHEN X P.Closing the yield gap could reduce projected greenhouse gas emissions: A case study of maize production in China., 2013, 19(8): 2467-2477. DOI: info: doi/10.1111/gcb.12213.
[13] YING H, YE Y L, CUI Z L, CHEN X P. Managing nitrogen for sustainable wheat production., 2017, 162: 1308-1316. DOI: 10.1016/j.jclepro.2017.05.196.
[14] 周洲, 石奇. 我国粮食生产收益影响因素实证分析——基于稻谷、小麦和玉米数据的分阶段回归. 山西农业大学学报(社会科学版), 2018, 17(7): 61-70.
ZHOU Z, SHI Q. Empirical analysis on influencing factors of grain production income in China., 2018, 17(7): 61-70. (in Chinese)
[15] 国家发展和改革委员会价格司. 全国农产品成本收益资料汇编. 北京: 中国统计出版社, 2018.
National Development and Reform Commission.. Beijing: China Statistics Press, 2018. (in Chinese)
[16] 曹寒冰, 王朝辉, 赵护兵, 马小龙, 佘旭, 张璐, 蒲岳建, 杨珍珍, 吕辉, 师渊超, 杜明叶. 基于产量的渭北旱地小麦施肥评价及减肥潜力分析. 中国农业科学, 2017, 50(14): 2758-2768. DOI: 10.3864/ j.issn.0578-1752.2017.14.012.
CAO H B, WANG Z H, ZHAO H B, MA X L, SHE X, ZHANG L, PU Y J, YANG Z Z, Lü H, SHI Y C, DU M Y. Yield based evaluation on fertilizer application and analysis of its reduction potential in Weibei dryland wheat production., 2017, 50(14): 2758-2768. DOI: 10.3864/j.issn.0578-1752.2017. 14.012. (in Chinese)
[17] 张亦涛, 王洪媛, 雷秋良, 张继宗, 翟丽梅, 任天志, 刘宏斌. 农田合理施氮量的推荐方法. 中国农业科学, 2018, 51(15): 2937-2947. DOI: 10.3864/j.issn.0578-1752.2018.15.009.
ZHANG Y T, WANG H Y, LEI Q L, ZHANG J Z, ZHAI L M, REN T Z, LIU H B. Recommended methods for optimal nitrogen application rate., 2018, 51(15): 2937-2947. DOI: 10.3864/j.issn.0578-1752.2018.15.009. (in Chinese)
[18] 曹寒冰. 渭北旱地冬小麦监控施肥技术的优化[D]. 杨凌: 西北农林科技大学, 2014.
CAO H B. Optimization of fertilizer recommendation technology based on soil test for winter wheat on Weibei dayland[D]. Yangling: Northwest A&F University, 2014. (in Chinese)
[19] HOU P, GAO Q, XIE R Z, LI S K, MENG Q F, KIRKBY E A, ROMHELD V, MULLER T, ZHANG F S, CUI Z L, CHEN X P. Grain yields in relation to N requirement: Optimizing nitrogen management for spring maize grown in China., 2012, 129: 1-6. DOI: 10.1016/j.fcr.2012.01.006.
[20] WU L Q, CUI Z L, CHEN X P, YUE S C, SUN Y X, ZHAO R F, DENG Y, ZHANG W, CHEN K R. Change in phosphorus requirement with increasing grain yield for Chinese maize production., 2015, 180: 216-220. DOI: 10.1016/j.fcr.2015. 06.001.
[21] XU X P, HE P, PAMPOLINO M F, CHUAN L M, JOHNSTON A M, QIU S J, ZHAO S C, ZHOU W.Nutrient requirements for maize in China based on QUEFTS analysis., 2013, 150(15): 115-125. DOI: 10.1016/j.fcr.2013.06.006.
[22] XU X P, XIE J G, HOU Y P, HE P, PAMPOLINO M F, ZHAO S C, QIU S J, JOHNSTON A M, ZHOU W. Estimating nutrient uptake requirements for rice in China., 2015, 180: 37-45. DOI: 10.1016/j.fcr.2015.05.008.
[23] 王浩, 董朝阳, 王淑兰, 张玉娇, 师祖姣, 张元红, 王瑞, 李军. 基于春玉米籽粒产量的渭北旱塬区农户施肥现状评价. 植物营养与肥料学报, 2018, 24(3): 590-598.
WANG H, DONG Z Y, WANG S L, ZHANG Y J, SHI Z J, ZHANG Y H, WANG R, LI J. Evaluation on fertilization of farmer practice based on grain yield of spring maize in Weibei dryland., 2018, 24(3): 590-598. (in Chinese)
[24] 王小英, 刘芬, 同延安, 赵佐平. 陕南秦巴山区水稻施肥现状评价. 应用生态学报, 2013, 24(11): 3106-3112.
WANG X Y, LIU F, TONG Y A, ZHAO Z P. Present situation of rice fertilization in Qin-Ba mountainous area of southern Shaanxi, China., 2013, 24(11): 3106-3112. (in Chinese)
[25] 赵护兵, 王朝辉, 高亚军, 张卫峰. 西北典型区域旱地冬小麦农户施肥调查分析. 植物营养与肥料学报, 2013, 19(4): 840-848.
ZHAO H B, WANG Z H, GAO Y J, ZHANG W F. Investigation and analysis of dryland winter wheat fertilizer application in northwest typical areas., 2013, 19(4): 840-848. (in Chinese)
[26] 张素敏, 蒋云峰, 邓蜀平. 中国尿素市场分析与趋势展望. 中国市场, 2015, 42: 104-106.
ZHANG S M, JIANG Y F, DENG S P. The urea market analysis and tendency forecast in China., 2015, 42: 104-106. (in Chinese)
[27] NING C C, GAO P D, WANG B Q, LIN W P, JIANG N H, CAI K Z. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content., 2017, 16(8): 1819-1831.
[28] HUANG Y, TANG Y H. An estimate of greenhouse gas (N2O and CO2) mitigation potential under various scenarios of nitrogen use efficiency in Chinese croplands., 2010, 16: 2958-2970. DOI: 10.1111/j.1365-2486.2010.02187.x.
[29] LUN F, LIU J G, CIAIS P, NESME T, CHANG J F, WANG R, GOLL D, SARDANS J, PENUELAS J, OBERSTEINER M. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency., 2018, 10(1): 1-8. DOI: 10.5194/essd-10-1-2018.
[30] 程琳琳. 中国农田生态系统钾素平衡与钾肥需求[D]. 北京: 中国农业大学, 2007.
CHENG L L. Potassium balance and potassium fertilizer demand in Chinese farmland ecosystem[D]. Beijing: China Agricultural University, 2007. (in Chinese)
[31] 戴健. 旱地冬小麦产量、养分利用及土壤硝态氮对长期施用氮磷肥和降水的响应[D]. 杨凌: 西北农林科技大学, 2016.
DAI J. Responses of winter wheat yield, nutrient utilization and nitrate in soil to long term nitrogen and phosphor us fertilization and precipitation on dryland[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
[32] 赵护兵, 王朝辉, 高亚军, 张卫峰. 陕西省农户小麦施肥调研评价. 植物营养与肥料学报, 2016, 22(1): 245-253.
ZHAO H B, WANG Z H, GAO Y J, ZHANG W F. Investigation and evaluation of household wheat fertilizer application in Shaanxi Province.2016, 22(1): 245-253. (in Chinese)
[33] 魏晓军. 玉米氮肥基追比肥效试验. 农业科技与信息, 2018, 12: 38-39.
WEI X J. Test about ratio of basal fertilizer on maize.2018, 12: 38-39. (in Chinese)
[34] 张福锁, 陈新平, 陈清. 中国主要农作物施肥指南. 北京: 中国农业大学出版社, 2009: 28-33.
ZHANG F S, CHEN X P, CHEN Q.. Beijing: China Agricultural University Press, 2009: 28-33. (in Chinese)
[35] 王艺颖, 刘春力. 陕西省主要粮食作物生产成本收益研究——以小麦、玉米为例. 中国农业资源与区划, 2016, 37(6): 143-148. DOI: 10.7621/cjarrp.1005-9121.20160623.
WANG Y Y, LIU C L.Research on the cost-benefit of major cereal crops production in Shaanxi province—Taking wheat, Maize as Examples., 2016, 37(6): 143-148. DOI: 10.7621/cjarrp.1005-9121. 20160623. (in Chinese)
[36] 马臣, 刘艳妮, 梁璐, 翟丙年, 张昊青, 王朝辉. 有机无机肥配施对旱地冬小麦产量和硝态氮残留淋失的影响. 应用生态学报, 2018, 29(4): 1240-1248. DOI: 10.13287/j.1001-9332.201804.023.
MA C, LIU Y N, LIANG L, ZHAI B N, ZHANG H Q, WANG Z H. Effects of combined application of chemical fertilizer and organic manure on wheat yield and leaching of residual nitrate-N in dryland soil., 2018, 29(4): 1240-1248. DOI: 10.13287/j.1001-9332.201804.023. (in Chinese)
[37] GUO J H, LIU X J, ZHANG Y, SHEN JL, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K W T, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands., 2010, 327(5968): 1008-1010. DOI: 10.1126/science.1182570.
[38] FEDOROFF N V, BASTTISTI D S, BEACHY R N, COOPER P J M, FISHCHHOFF D A, HODGES C N, KNAUF V C, LOBELL D, MAZUR B J, MOLDEN D, REYNOLDS M P, RONALD P C, ROSEGRANT M W, SANCHEZ P A, VONSHAK A, ZHU J K. Radically rethinking agriculture for the 21st Century., 2010, 327(5967): 833-834. DOI: 10.1126/science.1186834.
[39] WU L, CHEN X P, CUI Z L, WANG G L, ZHANG W F.Improving nitrogen management via a regional management plan for Chinese rice production.,2015, 10(9): 1-11. DOI: 10.1088/1748-9326/10/9/095011.
[40] 周克清, 杨昭. 化肥施用与涉肥财税优惠政策: 回顾与展望. 税务与经济, 2019, 222(1): 76-81.
ZHOU K Q, YANG Z. Application of fertilizer and preferential fiscal and tax policies related to fertilizer: Review and prospect., 2019, 222(1): 76-81. (in Chinese)
[41] 章孜亮, 刘金山, 王朝辉, 赵护兵, 杨宁, 杨荣, 曹寒冰. 基于土壤氮素平衡的旱地冬小麦监控施氮. 植物营养与肥料学报, 2012, 18(6): 1387-1396.
ZHANG Z L, LIU J S, WANG Z H, ZHAO H B, YANG N, YANG R, CAO H B. Nitrogen recommendation for dryland winter wheat by monitoring nitrate in 1 m soil and based on nitrogen balance., 2012, 18(6): 1387-1396. (in Chinese)
[42] JU X T, GU B J, WU Y Y, GALLOWAY J N. Reducing China’s fertilizer use by increasing farm size., 2016, 41: 26-32. DOI: 10.1016/j.gloenvcha.2016.08.005.
[43] WANG Q, LI F R, ZHAO L, ZHANG E H, SHI S L, ZHAO W Z, SONG W X, VANCE M M. Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland., 2010, 337: 325-339. DOI: 10.1007/s11104- 010-0530-z.
[44] 程国强. 创新农业补贴方式加大政策支持力度. 黑龙江粮食, 2015(3): 5.
CHENG G Q. Innovate agricultural subsidies to increase policy support., 2015(3): 5. (in Chinese)
[45] 王燕青, 李隆玲, 武拉平. 农民种粮是否有利可图?——基于粮食种植成本收益分析. 农业经济与管理, 2016(1): 69-79.
WANG Y Q, LI L L, WU L P. Is it profitable for farmers to grow grain?——Based on the cost-benefit analysis of grain cultivation., 2016(1): 69-79. (in Chinese)
Potential of Fertilizer Reduction and Benefits of Environment and Economic for Cereal Crops Production in Shaanxi Province
ZHANG XinXin1, SHI Lei2, HE Gang1, WANG ZhaoHui1
(1College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agro-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi;2Department of Agriculture and Rural Affairs of Shaanxi Province/Cultivated Land Quality and Agricultural Environmental Protection Station in Shaanxi Province, Xi’an 710003)
【Objective】The management of farmers is the main mode of agricultural production in China, and the unreasonable application of fertilizer resources is the crucial factor in limiting the production of crops. This study was aimed to assess the potential of fertilizer reduction and benefits of environment and economic, which was very important for agricultural sustainable development in the main crop production regions.【Method】In 2018, a questionnaire survey was conducted on the production of major crops in counties (cities and districts) of Shaanxi Province. The three major crops were taken as research objects to evaluate farmers’ fertilization status, fertilizer reduction potential, environmental costs and economic benefits based on yield level.【Result】There were significant differences in farmers’ crop yields. The average yield of wheat was 4 573 kg·hm-2, and the difference between high and low yield was 2 619 kg·hm-2; the average yield of maize was 7 319 kg·hm-2, and the difference between high and low yield was 5 388 kg·hm-2; the average yield of rice was 8 340 kg·hm-2, and the difference between high and low yield was 2 893 kg·hm-2. The nitrogen, phosphorus and potassium rate of wheat was 177 kg N·hm-2, 102 kg P2O5·hm-2and 37 kg K2O·hm-2, respectively; maize was 247 kg N·hm-2, 103 kg P2O5·hm-2and 47 kg K2O·hm-2; rice was 186 kg N·hm-2, 88 kg P2O5·hm-2and 64 kg K2O·hm-2. There is no significant relationship between yield and fertilizer application. The problems of excessive application of nitrogen and phosphate fertilizer, excessive and insufficient potassium fertilizer coexist, and excessive fertilization in low-yield farmers was serious. The reduction potential of nitrogen, phosphorus, potassium in wheat was 41%, 59% and 59%, respectively; maize was 55%, 73% and 66%, respectively; for rice, it was 38%, 64% and 58%, respectively. The forms of fertilizers applied showed that nitrogen was mainly chemical fertilizers and supplemented by compound fertilizers; phosphorus and potassium were mainly compound fertilizers; the organic manure supplied very low nutrient. The application of basal fertilizer usually
more attention, while topdressing was often overlooked on fertilizer structure, nitrogen was mainly based on basal application and supplemented by topdressing; phosphorus and potassium fertilizers were rarely applied topdressing. Losses of reactive nitrogen to produce 1.0 t wheat, maize and rice were 6.9, 3.8 and 3.3 kg N, respectively. Compared with the high-yield group, the reactive nitrogen loss intensity of wheat, maize and rice in the low-yield group increased by 52%, 85% and 74%; the potential of loss reduction ranges of wheat, maize and rice in low-yield group were 16%-33%, 31%-50% and 4%-38%, respectively. The economic benefits of wheat, maize and rice production were 4 468, 9 091 and 20 020 yuan/hm2, respectively. Compared with the low-yield group, the economic benefits of wheat, maize and rice in high-yield group increased 455%, 128% and 52%, respectively. The benefit increases were 4 919, 9 905 and 20 543 yuan/hm2. Compared with the low-yield group, the benefit increases of wheat, maize and rice in high-yield group increased 290%, 106% and 48%, respectively.【Conclusion】The household production behavior was analyzed deeply based on the production level in Shaanxi province. The low and middle yield levels were the focus of fertilizer reduction and benefit improvement. The average reduction potential of nitrogen, phosphorus, and potassium fertilizers for the three crops was 45%, 65% and 61%, respectively, reducing the potential of active nitrogen loss were 26%, 45% and 18%, respectively. The potential to improve environment economic benefits were 10%, 9% and 3%, respectively.
household behavior; nutrients management; cereal crops; yield; environmental cost; economic benefit; Shaanxi Province
2019-12-04;
2020-03-03
国家重点研发计划(2018YFD0200408)、国家自然科学基金(31902120)、西北农林科技大学科研启动项目(2452018110)
张欣欣,E-mail:zhangxinxin029@126.com。通信作者何刚,E-mail:hegang029@nwafu.edu.cn。通信作者王朝辉,E-mail:w-zhaohui@263.net
(责任编辑 李云霞)