相吉山,刘鹏鹏,桑伟,崔凤娟,韩新年,聂迎彬,孔德真,邹波,徐红军,穆培源
新疆春小麦品种基因等位变异及其对新疆拉面加工品质的影响
相吉山1,刘鹏鹏2,桑伟2,崔凤娟2,韩新年2,聂迎彬2,孔德真2,邹波2,徐红军2,穆培源2
(1赤峰学院农业科学研究院/蒙东农业生态保护与动植物资源开发利用实验室,内蒙古赤峰 024000;2新疆农垦科学院作物研究所/谷物品质与遗传改良兵团重点实验室,新疆石河子 832000)
【目的】检测新疆春小麦品种等位变异分布规律,分析不同基因型春小麦品种籽粒硬度的差异,探讨对春小麦品种主要品质性状和新疆拉面加工品质的影响,明确籽粒硬度影响新疆拉面加工品质的分子遗传基础及机理。【方法】以386份新疆春小麦品种资源为材料,用分子标记检测籽粒硬度,测定品质性状(籽粒性状、磨粉品质、面粉品质、面团特性、淀粉糊化特性等),制作新疆拉面并进行评鉴。【结果】等位变异分布规律:在新疆春小麦品种资源中,有2种等位变异,分别为(占比86.79%)、(13.21%);有3种等位变异,分别为(64.77%)、(32.12%)和(3.11%);有6种基因型组合,分别为(58.81%)、(25.39%)、(2.59%)、(5.96%)、(6.74%)和(0.52%)。对春小麦品种品质性状的影响:的籽粒蛋白含量、灰分含量、白度、湿面筋含量、Zeleny沉淀值均显著高于;籽粒硬度、黄度(b*值)、面筋指数、峰值时间、8分钟面积、稀懈值均显著低于。与其他等位变异相比,的白度、湿面筋含量,的出粉率、黄度(b*值),的籽粒硬度、面筋指数均最高且达显著差异水平。与其他基因型组合相比,的白度,的籽粒硬度、面筋指数、8分钟面积,的淀粉稀懈值,的籽粒蛋白含量、出粉率、面粉的湿面筋含量均最高且达显著差异水平。对新疆拉面加工品质的影响:的拉面手感、粘弹性、总分极显著低于;的拉面手感最好,、和的粘弹性最高;、的总分最高。【结论】突变会使新疆春小麦胚乳质地变硬、主要品质性状显著升高,促进新疆拉面的拉面手感和粘弹性等性状得到显著改善,最终促使新疆拉面的加工品质(总分)显著提升;变异对新疆拉面加工品质的影响不显著。、是优质新疆拉面小麦品种品质改良中重点选择的基因型组合类型。
新疆春小麦;品种资源;;品质性状;新疆拉面
【研究意义】籽粒硬度作为国际通用小麦(L.)分类指标之一,是决定磨粉品质和食品加工品质的主要因素[1],也是决定小麦品质优劣、贸易价格和最终用途的重要指标,已成为小麦品质改良的重要目标性状之一[2-3]。【前人研究进展】小麦籽粒硬度决定磨粉能耗、润麦加水量和出粉率,也影响面粉色泽和灰分含量[4]。硬质麦胚乳与麸皮的分离程度高、筛理性好、出粉率较高、面粉白度高;软质麦筛分效果差、出粉率较低[5]。籽粒硬度基因和()变化会影响Puroindolin蛋白的变化,Puroindolin蛋白的变化将直接影响小麦胚乳质地的变化。籽粒硬度基因变化的主要来源为和编码区单核苷酸的替代、缺失或的缺失[6]。迄今为止,在普通小麦和近缘植物中已经发现了23种变异类型([7-18])和31种变异类型([7,9-10,13-14,19-26]、[27]、[28]、[29]、、和[18]),其中,(野生型)是中国小麦最为常见的变异类型[22]。目前,研究一致认为,普通小麦的不表达、或发生突变,均会导致小麦胚乳质地变硬[2,30]。新疆拉面(Xinjiang hand-stretched noodle,XHSN)属手工鲜食白盐面条(white salted noodle,WSN),与兰州拉面[31]在面条配方、外观形态、食用方法、佐餐食料等方面有着本质的区别,是新疆地区独具特色的面条种类,深受广大消费者的喜爱。新疆小麦面粉年产量的80%都用于制作新疆拉面[32]。哈力旦·依克热木等[33]对部分新疆小麦品种进行检测,发现有2种突变类型和;王亮等[34]对新疆小麦品种籽粒硬度及进行研究,发现有6种突变类型,其中的籽粒硬度最高,最低,并且、和3种硬质类型的籽粒硬度没有显著性差异;丛花等[35]对新疆小麦地方品种籽粒硬度及进行研究,发现有9种突变类型,以为主导类型;(野生型)的籽粒硬度显著低于突变型,的籽粒硬度最高。【本研究切入点】突变会导致籽粒硬度发生变化[2,30],籽粒硬度影响加工品质[1,4-5]。目前,针对新疆小麦的研究主要围绕等位变异检测[33]及其对籽粒硬度的影响[34-35],有关与加工品质关系的研究鲜见报道。【拟解决的关键问题】本研究以386份新疆春小麦品种资源为材料,利用已开发的分子标记检测,并测定品质性状和新疆拉面加工品质,分析不同等位变异对籽粒硬度、品质性状和新疆拉面加工品质的影响,为新疆小麦品质改良以及优质新疆拉面品种选育提供参考信息。
供试材料为新疆农垦科学院作物所小麦研究室收集整理的386份新疆春小麦品种资源,包括地方品种54份、国外引进品种(系)22份、国内引进品种(系)103份、新疆自育品系152份和新疆审定品种55份。2012—2013年,将供试材料在新疆农垦科学院作物研究所农业试验站(新疆石河子)进行2年种植试验。人工撒播,行长1.8 m,行距0.25 m,每个材料种植5行。田间管理同大田,正常成熟后及时收获,人工收割、机器脱粒,室温存放1个月后用于磨粉。面粉样品室温存放1个月后用于品质测定。
2013—2014年,在新疆农垦科学院作物研究所/谷物品质与遗传改良兵团重点实验室进行籽粒及面粉品质的测定。使用瑞典Perten公司4100型单粒谷物特性测定仪(SKCS)按AACC 55-31方法测定籽粒硬度。使用丹麦FOSS公司1241型近红外谷物成分分析仪按AACC 39-11方法和AACC 08-01方法测定籽粒蛋白质含量(14%水分基,下同)以及面粉灰分含量。使用德国Brabender公司Quandrmat Senior磨进行面粉磨制并计算出粉率,即所得面粉与全粉(面粉和麸皮总和)的比值。使用日本KONICA MINOLTA公司Minolta CR-310型色差仪测定面粉色泽,采用D65CIEL*、a*、b*的色度系统,L*值表示黑-白(亮)度,值越大越白(亮);a*值表示绿-红色,值越大越红;b*值表示蓝-黄色,值越大越黄;使用杭州大成光电仪器有限公司WSB-IV智能白度测定仪测量面粉白度,该仪器测量物体表面的兰光白度,值越大表明白度高。使用瑞典Perten公司2200型面筋仪按国标GB/T14608-2006方法测定湿面筋含量,面筋指数为强面筋含量占总面筋含量的比值。使用中国农业大学BAU21型沉淀值测定仪按AACC56-61A方法测定Zeleny沉淀值。使用美国National manufacturing公司10 g电子型和面仪按AACC54-40A方法测定和面仪参数,软件Mixsmart自动处理数据、绘图和显示结果。主要使用图谱中线(midline)的几个参数:峰值时间(midline peak time)、峰值高度(midline peak value)、8分钟宽度(8 min width)和8分钟面积(8 min integral)。使用瑞典Perten公司TECMASTER快速黏度测试仪(RVA)按照AACC76-21的方法测定淀粉糊化参数,黏度单位为里泊(cp),RVA参数包括峰值黏度(peak viscosity)、低谷黏度(trough viscosity)、稀懈值(breakdown)、最终黏度(final viscosity)和反弹值(setback)。按照新疆农垦科学院作物研究所和谷物品质与遗传改良兵团重点实验室制定的《新疆拉面实验室制作及评价方法》[44],对上述样品进行新疆拉面的制作和评鉴,明确供试材料的拉面加工品质优劣。
2014—2015年,每个供试材料选3粒有代表性的种子,按照Lagudah等[36]方法提取基因组DNA,参考王亮等[34]方法检测供试材料籽粒硬度基因()。根据每个品种(系)DNA检测结果判断该品种(系)的类型。对出现3粒种子带型不一致的材料,进行二次取样,重新检测,以2次检测一致的结果为准。
采用SAS8.0软件对2年的检测结果进行测验及方差分析。
利用目前已开发的小麦分子标记,检测386份新疆春小麦品种资源(表1和表2)。结果显示,在新疆春小麦品种中,位点存在和等位变异类型,占比分别为86.79%和13.21%;位点存在、和等位变异类型,占比依次为64.77%、32.12%和3.11%。基因型组合类型有、、、、和,占比依次为58.81%、25.39%、2.59%、5.96%、6.74%和0.52%。说明、和是新疆春小麦品种资源的主要基因型和基因型组合。
分别对不同基因型品种的品质性状进行成组数据的测验和单因素方差分析,比较不同基因型和不同基因型组合对新疆春小麦品种品质性状的影响。
2.2.1对籽粒性状和磨粉品质的影响 在不同基因型品种间(表3),的籽粒蛋白含量和面粉灰分含量极显著高于;面粉白度显著高于;籽粒硬度和面粉b*值分别极显著和显著低于。在不同基因型品种间,的面粉白度极显著高于;的籽粒出粉率极显著高于;和的面粉b*值显著高于;的籽粒硬度显著高于和。在不同基因型组合品种间,的面粉白度显著高于;和的籽粒出粉率显著高于和;的籽粒硬度极显著高于其他组合;的籽粒蛋白含量极显著高于其他组合。说明显著影响春小麦籽粒硬度、蛋白含量、出粉率以及面粉灰分含量、黄度(b*值)、白度。
2.2.2对小麦品种面粉品质和面团特性的影响 在不同基因型品种间(表4),的湿面筋含量和Zeleny沉淀值分别极显著和显著高于,而面筋指数极显著低于;在不同基因型品种间,的湿面筋含量极显著高于,的面筋指数极显著高于;在不同基因型组合品种间,和的面筋指数极显著高于,的总面筋含量极显著高于、、和。说明显著影响春小麦品种面粉的湿面筋含量、面筋指数和Zeleny沉淀值。
2.2.3对和面仪指标的影响 在不同基因型品种间(表4),的峰值时间、8分钟面积显著、极显著低于;在不同基因型品种间,的8分钟面积极显著高于;在不同基因型组合品种间,的8分钟面积极显著高于。说明显著影响春小麦品种面团特性中的峰值时间和8分钟面积。
表1 新疆春小麦品种Pins分子标记检测结果
表2 新疆春小麦品种Pins不同组合类型的数量及其比例
表3 Pins对新疆春小麦品种籽粒性状和磨粉品质的影响
**和大写字母表示经LSD法多重比较差异极显著(<0.01),*和小写字母表示经LSD法多重比较差异显著(<0.05)。下同
** and capital letters indicate significant difference at<0.01 according to LSD multiple-comparison, * and lowercase letters indicate significant difference at<0.05 according to LSD multiple-comparison. the same as below
表4 Pins对新疆春小麦品种面粉品质和面团特性的影响
2.2.4 Pins对淀粉糊化特性的影响 在Pina不同基因型品种间(表5),Pina-D1a的稀懈值极显著低于Pina-D1b;在Pinb不同基因型品种间,淀粉糊化特性的差异不显著;在Pina/Pinb不同基因型组合品种间,Pina-D1b/Pinb-D1b、Pina-D1b/Pinb-D1a、Pina-D1a/ Pinb-D1b和Pina-D1a/Pinb-D1a的稀懈值显著高于Pina-D1b/Pinb-D1p。说明Pins显著影响春小麦淀粉的稀懈值。
在Pina不同基因型品种间(表6),Pina-D1b的拉面手感、粘弹性、总分显著高于Pina-D1a;在Pinb不同基因型品种间,新疆拉面加工品质的差异不显著;Pina/Pinb不同基因型组合品种间,Pina-D1b/Pinb-D1p的拉面手感显著高于Pina-D1a/Pinb-D1b、Pina-D1a/ Pinb-D1p和Pina-D1a/Pinb-D1a;Pina-D1a/Pinb-D1p、Pina-D1b/Pinb-D1a和Pina-D1b/Pinb-D1b的粘弹性显著高于Pina-D1a/Pinb-D1a、Pina-D1b/Pinb-D1p;Pina- D1b/Pinb-D1b和Pina-D1b/Pinb-D1a的总分显著高于Pina-D1b/Pinb-D1p、Pina-D1a/Pinb-D1b和Pina-D1a/ Pinb-D1a。说明Pins显著影响新疆拉面加工品质的拉面手感、粘弹性和总分。
表5 Pins对新疆春小麦品种淀粉糊化特性的影响
表6 Pins对春小麦品种新疆拉面加工品质的影响
在已经发现的23种变异类型和31种变异类型中,(野生型)是中国小麦中最为常见的变异类型[37]。Ma等[38]对来自中国、美国、澳大利亚、欧洲、日本小麦品种的检测发现,在中国和国外品种中,最常见的基因型是/;在中国地方品种中,最常见的基因型是/。本研究发现,新疆春小麦品种资源中,存在2种等位变异,其中(野生型)占比最高(86.79%);存在3种等位变异,其中(野生型)占比最高(64.77%);基因型组合有6种,其中(野生型)占比最高(58.81%)。与Ma等[38]的检测结果相似。
籽粒硬度是最重要的小麦品质性状之一,是形成小麦籽粒硬度的基础。PINA蛋白的缺失或编码PINB蛋白的基因突变均造成小麦胚乳质地变硬[39]。本研究发现,新疆春小麦和的籽粒硬度显著高于野生型;和的籽粒硬度极显著高于其他组合,说明的突变会显著提高春小麦的籽粒硬度,拥有的品种比拥有品种的籽粒硬度值高[40]。本研究还发现,的不同变异类型会显著影响籽粒蛋白质含量,其中的籽粒蛋白质含量极显著低于野生型,而的籽粒蛋白质含量极显著高于其他组合。
已有研究表明,不同小麦品种的品质性状和加工品质不同[2]。的出粉率、面粉颗粒大小、亮度(L*值)、红度(a*值)、面团形成时间、延展性均高于,但灰分含量、吸水率较低[30];具有更高的灰分含量和红度(a*值)[41]。的破损淀粉率高于其他组合,但亮度(L*值)较低;的出粉率、黄度(b*值)低于其他组合,但亮度(L*值)较高[2]。与野生型()面粉颜色和淀粉糊化特性间均有显著差异;的峰值黏度最高;并且野生型的面条亮度(L*值)、黄亮度(L*-b*)值和软硬度分值显著高于,但黄度(b*值)显著较低[42]。的面团吸水率比高,但出粉率和面团形成时间明显比后者偏低[43]。本研究发现的出粉率最高且差异达显著水平,这与Nagamine等[43]的研究结果一致。的面粉白度最高且差异达显著水平,这与Eagles等[42]的研究结果相似。
新疆拉面是独具特色的面条种类,深受新疆各族人民的喜爱。以往的研究发现[44-45],不同小麦品种对新疆拉面加工品质的影响存在差异。Chen等[46]认为的面条红度(a*值)、粘弹性和评价总分高于和野生型。Eagles等[42]认为的面条品质优于和。本研究还发现的拉面手感、粘弹性、总分极显著低于,这与Chen等[46]的研究结果不同。和的总分最高且差异达极显著水平,这与Eagles等[42]的研究结果不同。说明新疆拉面加工品质不同于其他类型的面条,且影响不同类型面条加工品质的分子基础各异。因此,在选育优质新疆拉面加工品质品种时,应重点关注、基因型组合。
新疆拉面加工品质是春小麦品种籽粒特性、磨粉品质、面粉品质、面团流变学特性、淀粉糊化特性等品质性状共同作用的结果,拉面手感、表面状况和色泽是制约新疆拉面加工品质的关键因素[45]。本研究发现,新疆春小麦突变后,籽粒特性(籽粒硬度)、面粉品质(面粉黄度和面筋指数)、面团流变学特性(峰值时间和8分钟面积)、淀粉糊化特性(稀懈值)等品质性状显著升高,使得新疆拉面的拉面手感和粘弹性等性状得到显著改善,最终促使新疆拉面的加工品质(总分)显著提升。
在新疆春小麦种质资源中,和均以野生型为主。突变会使新疆春小麦胚乳质地变硬、主要品质性状显著升高,促进新疆拉面的拉面手感和粘弹性等性状得到显著改善,最终促使新疆拉面的加工品质(总分)显著提升。突变对新疆拉面加工品质的影响不显著在优质新疆拉面小麦品种选育时,应优先选择突变型材料。、是优质新疆拉面小麦品种改良中重点选择的基因型组合。
[1] Pomeranz Y, Willams P C. Wheat hardness: Its genetic, structure and biochemical background, measurement, and significance. In ‘Advances in cereal science and technology’.
, 1990: 471-548.
[2] Ma D Y, Zhang Y, Xia X C, Morris C F, He Z H. Milling and Chinese raw white noodle qualities of common wheat near-isogenic lines differing in puroindoline b alleles., 2009, 50: 126-130.
[3] Erkinbaev C, Derksen K, Paliwal J. Single kernel wheat hardness estimation using near infrared hyperspectral imaging., 2019(98): 250-255.
[4] 胡瑞波, 田纪春. 小麦主要品质性状与面粉色泽的关系. 麦类作物学报, 2006, 26(3): 96-101.
HU R B, TIAN J C. Relationship between main quality characteristics and wheat flour color., 2006, 26(3): 96-101. (in Chinese)
[5] 周艳华, 何中虎, 阎俊, 张艳, 王德森, 周桂英. 中国小麦硬度分布及遗传分析. 中国农业科学, 2002, 35(10): 1177-1185.
ZHOU Y H, HE Z H, YAN J, ZHANG Y, WANG D S, ZHOU G Y. Distribution of grain hardness in Chinese wheat and genetic analysis., 2002, 35(10): 1177-1185. (in Chinese)
[6] Lillemo M, Simeone M C, Morris C F. Analysis of puroindoline a and b sequences fromcv. ‘Penawawa’ and related taxa., 2002, 126: 321-331.
[7] Giroux M J, Morris C F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin., 1997, 95: 857-864.
[8] Morris C F, Bhave M. Reconciliation of D-genome puroindoline allele designations with current DNA sequence data., 2008, 48: 277-287.
[9] Massa A N, Morris C F, Gill B S. Sequence diversity of puroindoline-a, puroindoline-b, and the grain softness protein genes incross., 2004, 44: 1808-1816.
[10] Gedye K R, Morris C F, Bettge A D. Determination and evaluation of the sequence and textural effects of the puroindoline a and puroindoline b genes in a population of synthetic hexaploid wheat., 2004, 109: 1597-1603.
[11] Ikeda T M, Ohnishi N, Nagamine T, Oda S, Hisatomi T, Yano H. Identification of new puroindoline genotypes and their protein products among wheat cultivars., 2004, 41: 1-6.
[12] Gazza L, Nocente F, Ng P K W, Pogna N E. Genetic and biochemical analysis of common wheat cultivars lacking puroindoline a., 2005, 110: 470-478.
[13] Chen F, He Z H, Xia X C, Xia L Q, Zhang X Y, Lillemo M, Morris C F. Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars., 2006, 112: 400-409.
[14] Chang C, Zhang H P, Xu J, Li W H, Liu G T, You M S, Li B Y. Identification of allelic variations of puroindoline genes controlling grain hardness in wheat using a modified denaturing PAGE., 2006, 152: 225-234.
[15] Chen F, Zhang F Y, Xia X C, Dong Z D, Cui D Q. Distribution of puroindoline alleles in bread wheat cultivars of the Yellow and Huai valley of China and discovery of a novel puroindoline a allele without PINA protein.. 2012, 29: 371-378.
[16] Chen F, Li H, Cui D Q. Discovery, distribution and diversity ofgenes in bread wheat from five countries (L.)., 2013, 125: 1-13.
[17] Ramalingam A, Palombo E A, Bhave M. Thegenes in wheat comprise a multigene family with great sequence diversity and important variants., 2012, 56: 171-180.
[18] Kumar R, Arora S, Singh K, Garg M. Puroindoline allelic diversity in Indian wheat germplasm and identification of new allelic variants., 2015, 65(4): 319-326.
[19] Lillemo M, Morris C F. Aleucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe., 2000, 100: 1100-1107.
[20] Morris C F, Lillemo M, Simeone M C, Giroux M J, Babb S L, Kimberlee K K. Prevalence of puroindoline grain hardness genotypes among historically significant North American spring and winter wheats., 2001, 41: 218-228.
[21] Simeone M, Gedye K R, Mason-Gamer R, Gill B S, Morris C F. Conserved regulator elements identified from a comparative puroindoline gene sequence survey ofanddiploid taxa., 2006, 44: 21-33.
[22] Xia L Q, Chen F, He Z H, Chen X M, Morris C F. Occurrence of puroindoline alleles in Chinese winter wheats., 2005, 82: 38-43.
[23] Chen F, He Z H, Xia X C, Lillemo M, Morris C F. A new puroindoline b mutation presented in Chinese winter wheat cultivar Jingdong 11., 2005, 42: 267-269.
[24] Ram S, Jain N, Shoran J, Singh R. New frame shift mutation in puroindoline b in Indian wheat cultivars Hyb65 and Ni5439., 2005, 14: 45-48.
[25] Chen F, Yu Y X, Xia X C, He Z H. Prevalence of a novel puroindoline b allele in Yunnan endemic wheats (ssp.King)., 2007, 156: 39-46.
[26] Wang J, Sun J J, Liu D C, Yang W L, Wang D W, Tong Y P, Zhang A M. Analysis ofandalleles in the micro-core collections of Chinese wheat germplasm by ecotilling and identification of a novelallele., 2008, 48: 836-842.
[27] Li G, He Z, Lillemo M, Sun Q, Xia X. Molecular characterization of allelic variations atandloci in Shandong wheat landraces, historical and current cultivars., 2008, 47: 510-517.
[28] Tanaka H, Morris C F, Haruna M, Tsujimoto H. Prevalence of puroindoline alleles in wheat from eastern Asia including the discovery of a new SNP in puroindoline b., 2008, 6: 142-152.
[29] Wang L, Li G Y, Xia X C, He Z H, Mu P Y. Molecular characterization ofandallelic variations in Xinjiang landraces and commercial wheat cultivars., 2008, 164: 745-752.
[30] Martin J M, Sherman J D, Lanning S P, Talbert L E, Giroux M J. Effect of variation in amylase content and puroindoline composition on bread quality in a hard spring wheat population., 2008, 85: 266-269.
[31] 周显青, 张玉荣. 拉面的实验室制作及评价方法的研究. 中国粮油学报, 2000, 15(4): 53-56.
Zhou X Q, Zhang Y R. Laboratory procedure and evaluation of hand-extended noodles., 2000, 15(4): 53-56. (in Chinese)
[32] 芦静, 张新忠, 吴新元, 黄天荣. 小麦品质性状与面制食品加工特性相关性研究. 新疆农业科学, 2002, 39 (5): 290-292.
LU J, ZHANG X Z, WU X Y, HUANG T R. Investigation on correlation between quality characters of wheat and processing quality of flour food., 2002, 39(5): 290-292. (in Chinese)
[33] 哈力旦·依克热木, 芦静, 周安定, 曾潮武, 曹俊梅, 梁晓东, 刘联正, 范贵强, 张新忠, 黄天荣, 高永红, 吴新元. 新疆部分小麦材料籽粒硬度基因等位变异的分子鉴定及其分布. 新疆农业科学, 2016, 53(6): 981-986.
Halidan Y, LU J, ZHOU A D, ZENG C W, CAO J M, LIANG X D, Liu L Z, FAN G Q, ZHANG X Z, HUANG T R, GAO Y H, WU X Y. Distribution and molecular identification of kernel hardness gene alleles in part of wheat germplasms of Xinjiang., 2016, 53(6): 981-986. (in Chinese)
[34] 王亮, 穆培源, 桑伟, 徐红军, 庄丽, 邹波. 新疆小麦品种籽粒硬度及puroindoline基因等位变异的分子检测. 麦类作物学报, 2010, 30(1): 17-22.
WANG L, MU P Y, SANG W, XU H J, ZHUANG L, ZOU B. Kernel hardness and allelic variations of Puroindoline genes in Xinjiang wheat cultivars., 2010, 30(1): 17-22. (in Chinese)
[35] 丛花, 王宏飞, 章艳凤, 严勇亮, 池田达哉, 高田兼则, 长峰司. 新疆小麦地方品种籽粒硬度及其Puroindoline基因等位变异研究. 新疆农业科学, 2011, 48(6): 1056-1063.
CONG H, WANG H F, ZHANG Y F, YAN Y L, Tatsuya I, Kanenori T, Tsukasa N. Identification of the allelic variation of puroindoline alleles in Xinjiang wheat landraces., 2011, 48(6): 1056-1063. (in Chinese)
[36] Lagudah E S, Appels R, McNeil D. The Nor-D3 locus of: natural variation and genetic linkage to makers on chromosome 5., 1991, 34: 387-395.
[37] Xia L Q, Chen F, He Z H, Chen X M, Morris C F. Occurrence of puroindoline alleles in Chinese winter wheat., 2005, 82: 38-43.
[38] Ma X L, Sajjad M, Wang J, Yang W L, Sun J Z, Li X, Zhang A M, Liu D C. Diversity, distribution ofgenes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm., 2017, 17(1): 158.
[39] Morris C F. Puroindolines: the molecular genetic basis of wheat grain hardness., 2002, 48: 633-647.
[40] 杨保安, 张建伟, 张福彦, 陈建峰, 程仲杰, 陈晓杰, 崔党群. 81份国外小麦品种(系)Puroindoline基因分子鉴定与分析. 核农学报, 2014, 28(5): 2014, 28(5): 817-824.
YANG B A, ZHANG J W, ZHANG F Y, CHEN J F, CHENG Z J, CHEN X J, CUI D Q. Molecular identification and analysis of puroindoline alleles in 81 foreign wheat varieties., 2014, 28(5): 817-824. (in Chinese)
[41] 陈锋, 夏先春, Manila William, Morten Lillemo, Richard Trethowan, Roberto J Peňa, 何中虎. CIMMYT小麦puroindoline 基因型的进一步鉴定与分析. 中国农业科学, 2006, 39(8): 1518-1525.
CHEN F, XIA X C, Manila W, Morten L, Richard T, Roberto J P, HE Z H. Determination and evaluation of puroindoline alleles in CIMMYT wheats., 2006, 39(8): 1518-1525. (in Chinese)
[42] Eagles H A, Cane K, Eastwood R F, Hollamby G J, Kuchel H, Martin P J, Cornish G.B. Contributions of glutenin and puroindoline genes to grain quality traits in Southern Australian wheat breeding programs., 2006, 57: 179-186.
[43] Nagamine T, Ikeda T M, Yanagisawa T, Yanaka M, Ishikawa N. The effects of hardness alleleon the flour quality of wheat for Japanese white salty noodles., 2003, 37: 337-342.
[44] 穆培源, 桑伟, 王亮, 庄丽, 王祥军, 芦静, 徐红军, 韩新年, 于芳祥. 新疆市售小麦面粉制作新疆拉面的加工品质特性及其专用粉品质评价指标的研究. 麦类作物学报, 2007, 27(6): 1034-1046.
MU P Y, SANG W, WANG L, ZHUANG L, WANG X J, LU J, XU H J, HAN X N, YU F X. Study on processing quality of commercial wheat flours in Xinjiang for Xinjiang Hand-Stretched Noodle and quality evaluation parameters of specific flour., 2007, 27(6): 1034-1046. (in Chinese)
[45] 桑伟, 穆培源, 徐红军, 庄丽, 王亮, 于芳祥, 韩新年, 聂迎彬, 邹波. 新疆春小麦品种主要品质性状及其与新疆拉面加工品质的关系. 麦类作物学报, 2008, 28: 772-779.
SANG W, MU P Y, XU H J, ZHUANG L, WANG L, YU F X, HAN X N, NIE Y B, ZOU B. Main quality traits of the spring wheat cultivars from Xinjiang and their correlations with processing quality of Xinjiang hand-stretched noodle., 2008, 28: 772-779. (in Chinese)
[46] Chen F, He Z H, Chen D S, Zhang C L, Zhang Y, Xia X C. Influence of puroindoline alleles on milling performance and qualities of Chinese noodles, steamed bread and pan bread in spring wheats., 2007, 45: 59-66.
Allelic Variations ofGenes in Xinjiang Spring Wheat Varieties and Their Influence on Processing Quality of Xinjiang hand-stretched noodles
XIANG JiShan1, LIU PengPeng2, SANG Wei2, CUI FengJuan2, HANXinNian2, NIE YingBin2, KONG DeZhen2, ZOUBo2, XU HongJun2, MU PeiYuan2
(1Academy of Agricultural Sciences, Chifeng University/Key Laboratory of Agro-ecological Protection & Exploitation and Utilization of Animal and Plant Resources in Eastern Inner Mongolia, Chifeng 024000, Inner Mongolia;2Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Sciences/Key Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi 832000, Xinjiang)
【Objective】The objectives of this study were to detect the allelic variations ofgenes in Xinjiang spring wheat varieties, analyze the difference of grain hardness among differentgenotypes of spring wheats, and explore the effects ofgenes on different quality characters and the processing quality of Xinjiang hand-stretched noodles.【Method】First, the allelic variations ofgenes in 386 Xinjiang spring wheats varieties were detected with molecular markers. Second, the quality characters of these materials were determined, including milling quality, gluten quality, dough character, and starch gelatinization character. Third, the processing qualities of Xinjiang hand-stretched noodles were evaluated. 【Result】The allelic variations ofgenes: in Xinjiang spring wheat varieties, there were two alleles (and) atlocus with proportions of 86.79% and 13.21%, respectively, three alleles (,,) atlocus with proportions of 64.77%, 32.12%, and 3.11%, respectively, and six genotype combinations (,,,,,) forwith proportions of 58.81%, 25.39%, 2.59%, 5.96%, 6.74%, and 0.52%, respectively. The effect ofgene on the quality characters of Xinjiang spring wheat: the grain protein content, and flour ash content, whiteness, and wet gluten content, Zeleny sedimentation value withwere significantly higher than those with(<0.05), whereas the grain hardness, flour yellowness (b*), gluten index, mid line peak time, 8 min integral, and starch breakdown ofwere significantly lower than those of(<0.05). Among different alleles of, the flour whiteness and weak gluten content of, the grain flour yield and flour yellowness (b*) of, and the grain hardness and flour gluten index ofwere significantly higher than those of other alleles(<0.05). Among different genotype combinations of, the flour whiteness of, the grain hardness, flour gluten index, and dough 8 min integral of, the starch breakdown of, and the grain protein content, flour yield, and flour wet gluten content ofwere significantly higher than those of other genotype combinations(<0.05 or<0.01). The effect ofgenes on processing qualities of Xinjiang hand-stretched noodles: the stretch feeling, viscoelasticity, and total score ofwere significantly lower than those of(<0.01). The stretch feeling ofwas significantly higher than those of other genotype combinations(<0.01). The viscoelasticity of,, andwere significantly higher than those of other genotype combinations(<0.05). The total score ofandwere significantly higher than those of other genotype combinations(<0.01). 【Conclusion】 The mutation ofgene can significantly(<0.05) increase the grain hardness and the total score of Xinjiang hand-stretched noodles. But the mutation ofgene had no significant effect on the processing qualities of Xinjiang hand-stretched noodles.andare the key genotype combinations of high quality breeding for Xinjiang hand-stretched noodles.
Xinjiang spring wheats; germplasms;gene; quality characters; Xinjiang hand-stretched noodles
2019-11-20;
2020-03-10
国家自然科学基金(31260324,31560391,U1178306)、新疆兵团农业领域攻关项目(2012BB047,2016AC027,2019AB021)、国家重点研发计划育种专项(2017YFD0101003)
相吉山,E-mail:xiangjsh@163.com。刘鹏鹏,E-mail:nkylpp@163.com。相吉山和刘鹏鹏为同等贡献作者。通信作者穆培源,E-mail:mupy@163.com
(责任编辑 李莉)