杜宇笑 李鑫格 王 雪 刘小军 田永超 朱 艳 曹卫星 曹 强
不同产量水平稻茬小麦氮素需求特征研究
杜宇笑 李鑫格 王 雪 刘小军 田永超 朱 艳 曹卫星 曹 强*
南京农业大学国家信息农业工程技术中心 / 智慧农业教育部工程研究中心 / 农业农村部农作物系统分析与决策重点实验室 / 江苏省信息农业重点实验室, 江苏南京 210095
明确长江中下游地区不同产量水平稻茬小麦氮素需求特征, 可为小麦施肥管理提供理论依据。本研究通过在江苏开展的多年多点不同品种、氮肥水平以及播期播量的小麦试验, 构建不同产量水平的实测数据集, 分析不同产量水平下单位籽粒需氮量、干物质积累量、植株氮积累量、氮浓度(植株氮浓度、秸秆氮浓度、籽粒氮浓度)、收获指数、氮收获指数和氮营养指数的变化规律。结果表明, 不同产量水平下单位籽粒需氮量无显著差异, 中低产的单位籽粒需氮量最高, 其值为27.8 kg t–1; 低产水平最低, 其值为24.8 kg t–1。随着产量水平的提高, 成熟期干物质积累量、植株氮积累量、植株氮浓度均呈上升趋势, 不同产量水平间差异显著。小麦产量与植株氮积累量呈显著正相关, 播种期—拔节期、拔节期—开花期和开花期—成熟期的干物质积累量和氮积累量均随着产量的提高而提高, 但不同生育阶段的植株干物质积累和氮积累占比呈现不同变化趋势。秸秆和籽粒氮浓度均随产量水平的提高而提高, 高产水平下的秸秆氮浓度与中产无显著差异, 但显著高于中低产和低产水平; 而对于籽粒氮浓度, 除中产和中低产水平外均存在显著差异。收获指数随产量水平的提高而逐渐提高, 其变化范围为0.39~0.49, 其中低产和中低产显著低于中产和高产; 而不同产量水平间氮收获指数无显著差异, 其变化范围为0.60~0.96。氮营养指数随着产量水平的提高逐渐提高, 且在不同产量水平间差异显著, 高产水平的氮营养指数较高, 部分值大于1, 表明有的试验氮肥供应过量。随着产量水平的提高, 单位籽粒需氮量呈现先增加后下降趋势, 而干物质积累量、植株氮积累量、植株氮浓度、秸秆氮浓度和籽粒氮浓度均逐渐提高, 其中秸秆氮浓度增幅高于籽粒氮浓度, 田间施肥应注意避免小麦对氮素的奢侈吸收。收获指数和氮收获指数的变化范围与前人研究一致, 生长后期较高的干物质积累量和植株氮积累量是小麦获得高产的主要原因, 利用氮营养指数可以对小麦田间氮肥管理起到较好的指导作用。
产量水平; 单位籽粒需氮量; 收获指数; 氮营养指数
小麦是我国重要的粮食作物之一, 随着人们对粮食需求的不断增加, 提高小麦产量与品质对于保障国家粮食安全具有极其重要的意义。氮素对小麦产量和品质的形成至关重要。然而, 农民习惯施氮量远高于小麦实际氮素需求量, 造成作物需求与氮素供给不匹配, 氮肥利用效率降低, 且增施氮肥对小麦的增产作用明显减小, 不能充分发挥作物产量潜力[1], 而农业环境问题却日渐突出。如何在确保作物高产优质的同时提高资源利用效率并降低对环境的影响, 是目前迫切需要解决的重点和难点[2-3]。
小麦的氮素需求规律受作物遗传特征、农田气候环境、土壤理化特性以及田间管理技术等因素的综合影响[4]。前人研究表明, 不同产量水平的小麦氮积累量具有显著差异[5-6]。于振文等[7]研究发现, 黄淮麦区小麦单位籽粒需氮量为23.7~34.0 kg t–1, 对应产量范围为6.3~9.8 t hm–2。而当产量高于9 t hm–2, 其单位籽粒需氮量为26.3~31.3 kg t–1, 在超高产条件下小麦需氮量呈先增加后降低趋势[8]。氮肥施用量影响小麦植株氮素累积, 高氮条件下的植株氮积累量高于低氮, 施氮量过高易造成小麦氮素奢侈吸收, 反之, 氮肥亏缺会限制小麦氮素累积[9-11]。有不少研究表明, 籽粒氮浓度与产量间具有较强的负相关关系, 随着产量的提高, 单位籽粒需氮量会逐渐下降。如何平衡小麦产量与氮素吸收之间的关系, 是获得高产优质小麦的重要研究方向[11-13]。不同产量水平小麦的氮浓度、收获指数和氮收获指数等均有较大差异, 也对小麦的养分吸收产生重要影响[14]。前人对如何诊断小麦田间氮素营养状况的研究较多, 多数研究者认为氮营养指数是快速准确诊断小麦植株氮素营养状况的优良指标, 对田间氮肥的施用具有指导作用[15-17]。小麦氮素需求特征的研究主要集中在北方旱茬麦区, 对长江中下游的稻茬小麦研究较少。因此, 明确长江中下游地区不同产量水平稻茬小麦的氮素需求, 阐明各氮素指标变化特征, 对小麦施肥管理及保障农田生态环境具有重要意义[18]。
本研究所用数据来源于2010—2019年在江苏省开展的多年多点不同品种、氮肥水平以及播期播量的小麦田间试验, 共有171个数据。试验前茬作物均为水稻, 供试品种均为江苏省主栽小麦品种。氮肥基追比为5∶5, 追肥时期为拔节期。钾肥和磷肥作为基肥在播种前全部施用。其余栽培管理同一般高产田。所用数据的相关试验详情如表1和表2所示。
表1 各试验设计与产量范围
表2 小麦生育期降雨量和试验田块土壤基础理化指标
小麦植株干物质积累量: 在小麦起身期、拔节期、开花期、成熟期等关键生育期进行破坏性取样, 每个小区内随机取20株, 去掉根, 将茎叶穗等器官分开装袋, 于105℃杀青30 min, 80℃烘至恒重后称重, 计算出单位土地面积的地上部干物质积累量。
各器官干物重(t hm–2) = 干物重(g)/单茎数×分蘖数(m–2)/100
植株干物重(t hm–2) = 茎干物重(t hm–2)+叶干物重(t hm–2)+穗干物重(t hm–2)
植株氮浓度: 将称完重的样品用磨样机粉碎, 用万分之一天平称取磨好的小麦样品0.1500 g, 在消煮炉中进行消煮, 之后通过流动分析仪, 使用凯氏定氮法测定小麦茎、叶、穗的氮素含量。氮浓度计算公式为:
氮浓度(%) = N-measured×定容体积/0.1500 g×100
植株氮浓度(%) = [(茎干物重(t hm–2)×茎氮浓度(%)+叶干物重(t hm–2)×叶氮浓度(%)+穗干物重(t hm–2)×穗氮浓度(%)]/[(茎干物重(t hm–2)+叶干物重(t hm–2)+穗干物重(t hm–2)]
其中, N-measured指流动分析仪测得的结果, 定容体积为0.1 L。
植株氮积累量: 获得的地上部各器官干物质积累量与植株各器官氮含量的乘积即氮积累量。各器官的氮积累量之和为植株氮积累量。计算公式为:
氮积累量(kg hm–2) = 氮浓度(%)×干物重(t hm–2)×10
植株氮积累量(kg hm–2) = 茎氮积累量(kg hm–2)+叶氮积累量(kg hm–2)+穗氮积累量(kg hm–2)
收获指数: 籽粒干重与地上部干物重的比值。计算公式为:
收获指数= 籽粒产量(t hm–2)/成熟期干物质积累量(t hm–2)
氮收获指数: 籽粒中的氮积累量与地上部植株氮积累总量的比值。计算公式为:
氮收获指数=籽粒氮积累量(kg hm–2) /成熟期植株氮积累量(kg hm–2)
单位籽粒需氮量: 生产1 t籽粒产量, 小麦植株的氮素积累量。计算公式为:
单位籽粒需氮量(kg t–1) = 植株氮积累量(kg hm–2) /籽粒产量(t hm–2)
临界氮浓度: 达到地上部生物量所需的最小氮浓度[19], 根据赵犇等[15]提出的公式进行计算:
NC= 4.33×PDM–0.45
Nc代表临界氮浓度, PDM代表植株干物重。
氮营养指数(NNI)是实际氮浓度(Na)与临界氮浓度(Nc)的比值, 根据Lemair等[17]提出的公式进行计算:
NNI = Na/Nc
NNI=1代表氮营养处于最佳状态, NNI<1表明氮营养供应不足, NNI>1表明氮营养供应充足甚至过量。
本研究的样本数据分为4个产量水平: 低产水平<4.5 t hm–2, 4.5 t hm–2≤中低产水平<6.0 t hm–2, 6.0 t hm–2≤中产水平<7.5 t hm–2, 高产水平≥7.5 t hm–2。用Origin 2018进行数据分析和作图, 用IBM SPSS Statistic 25统计软件进行单因素方差分析。
本研究中稻茬小麦产量变化范围为2.7~9.1 t hm–2, 平均产量为6.4 t hm–2(表3)。比2017年我国小麦平均产量(5.5 t hm–2)高16.4%, 比2017年世界小麦平均产量(3.5 t hm–2)高82.9%。
小麦植株氮积累量与籽粒产量呈显著线性正相关,= 26.60− 7.44。69%的小麦籽粒产量的提高归因于植株氮积累量的增加(图1-A)。本研究中, 低产、中低产、中产和高产的单位籽粒需氮量分别为24.8、27.8、25.5和25.7 kg t–1(图1-B), 不同产量水平间无显著差异。
表3 不同产量水平样本描述性统计分析
图1 籽粒产量与植株氮积累量的关系(A)和不同产量水平单位籽粒需氮量(B)
图(A)中实线表示拟合曲线,***显著性为< 0.001; 图(B)中实线表示平均值, 虚线表示中值, 箱型边界表示75%和25%的四分位数, 上下边缘表示90和10百分位数, 圆点表示最大值和最小值, ns代表不同产量水平间无显著差异(< 0.05)。
The solid lines in Fig. A represent the fitting curve,***indicates significantly difference at< 0.001; the solid and dashed lines indicate mean and median, respectively in Fig. B. The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the dots indicate the maximum and minimum, and the ns represents that there was no significant difference among different yield levels (< 0.05).
不同产量水平小麦植株干物质积累量、氮积累量和氮浓度, 随着产量水平的提高呈增加趋势(图2)。收获期, 不同产量水平的干物质积累量分别为9.1、13.2、14.5和17.2 t hm–2, 植株氮积累量分别为85.9、148.4、174.3和210.3 kg hm–2, 植株氮浓度分别为0.90%、1.08%、1.18%和1.25%, 且不同产量水平间均有显著差异。通过分析不同生育阶段植株干物质积累量和氮积累量占成熟期总积累量的比例(图3)可知, 从低产到中产播种—拔节期和拔节—开花期阶段的干物质积累占比逐渐降低, 而在开花—成熟期阶段的占比逐渐上升, 而中产到高产则呈相反趋势。对于氮积累量而言, 从低产到高产播种—拔节期阶段的占比逐渐降低, 拔节—开花期阶段的占比逐渐提高; 而开花—成熟期阶段的占比呈先提高后降低趋势。不同阶段的干物质积累量和氮积累量逐渐增加。
不同产量水平的氮收获指数均值分别为0.82、0.83、0.85和0.84, 且不同产量水平间差异不显著(图4)。不同产量水平的收获指数分别为0.39、0.42、0.49和0.49, 呈现逐渐上升趋势, 且中产和高产的收获指数显著高于低产和中低产。随着产量水平的提高, 秸秆氮浓度和籽粒氮浓度均逐渐提高, 秸秆氮浓度分别为0.32%、0.39%、0.41%和0.46%, 且除中产外, 其余产量水平间均有显著差异。不同产量水平的籽粒氮浓度分别为1.44%、1.66%、1.72%和1.87%, 中产和中低产间无显著差异, 其余产量水平均有显著差异, 即高产水平显著高于中产和中低产, 中产和中低产显著高于低产的籽粒氮浓度。
图2 不同产量水平下干物质积累量(A)、植株氮积累量(B)和植株氮浓度(C)的变化规律
图中实线表示平均值, 虚线表示中值, 箱型边界表示75%和25%的四分位数, 上下边缘表示90和10百分位数, 圆点表示最大值和最小值, 同一图片中的不同小字母(a, b, c, d)表示产量水平间有显著差异(< 0.05)。
The solid and dashed lines indicate mean and median, respectively. The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the dots indicate the maximum and minimum, different small letters (a, b, c, d) in the same figure represent that there was significant difference in different yield levels (< 0.05).
图3 不同产量水平不同生育阶段干物质积累量(A)和氮积累量(B)占成熟期总积累量的百分比
图中GS0代表播种期, GS31代表拔节期, GS65代表开花期, GS100代表成熟期。
GS0 indicates sowing stage, GS31 indicates jointing stage, GS65 indicates flowering stage, and GS100 indicates maturity stage.
图4 不同产量水平下氮收获指数(A)、收获指数(B)、秸秆氮浓度(C)和籽粒氮浓度(D)的变化规律
图中实线表示平均值, 虚线表示中值, 箱型边界表示75%和25%的四分位数, 上下边缘表示90和10百分位数, 圆点表示最大值和最小值, 同一图片中的不同小字母(a, b, c, d)表示产量水平间显著差异, ns表示4个产量水平间无显著差异(< 0.05)。
The solid and dashed lines indicate mean and median, respectively. The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the dots indicate the maximum and minimum, different small letters (a, b, c, d) in the same figure represent that there was significant difference in different yield levels, and the ns represent that there was no significant difference among different yield levels (< 0.05).
本研究基于赵犇等[15]建立的小麦临界氮浓度稀释曲线计算得出氮营养指数。由图5可知, 产量与氮营养指数呈线性正相关关系(2= 0.71), 不同产量水平的氮营养指数分别为0.53、0.76、0.86和0.98, 即随产量水平的提高而提高, 且不同产量水平间差异显著。
氮肥是小麦获得高产的重要因素, 有研究指出,随着产量的提高植株氮积累量也逐渐提高, 且两者呈显著幂函数关系[14], 李瑞珂等[4]也认为, 高产水平的氮积累量显著高于低产水平。近年来对小麦氮素积累的研究不断深入, 单位籽粒需氮量成为指导小麦田间施肥的重要指标, 该指标对确定小麦施氮量具有重要作用[14]。本研究中稻茬小麦单位籽粒需氮量变化范围为10.3~51.0 kg t–1, 均值为25.9 kg t–1, 对应产量范围为2.7~9.1 t hm–2。1985—1995年中国小麦单位籽粒需氮量为15.1~50.5 kg t–1, 均值为24.6 kg t–1, 对应产量范围0.4~8.7 t hm–2[20]。2000—2011年中国小麦单位籽粒需氮量为10.9~88.7 kg t–1, 均值为26.4 kg t–1, 对应产量范围为0.2~12.0 t hm–2[21]。华北地区旱地小麦的单位籽粒需氮量变化范围为14.4~37.5 kg t–1, 均值为23.7 kg t–1, 对应产量范围1.6~11.8 t hm–2[11]。而英法等国小麦在高氮条件下, 单位籽粒需氮量均值为31.1 kg t–1, 对应产量范围5.49~9.65 t hm–2; 而低氮条件下均值为14.4 kg t–1,对应产量范围为3.87~6.86 t hm–2[9]。其中, 本研究稻茬小麦的单位籽粒需氮量高于1985—1995年中国小麦的单位籽粒需氮量, 但低于2000—2011年中国小麦和英法等国小麦的单位籽粒需氮量, 与华北地区旱地小麦单位籽粒需氮量相近。本研究稻茬小麦单位籽粒需氮量随着产量水平的提高呈现先提高后降低趋势, 但4个产量水平间无显著差异。岳善超[11]研究表明, 华北地区旱地小麦在适宜施氮条件下, 随着产量水平的提高, 单位籽粒需氮量逐渐下降; 但在不同施氮条件下, 单位籽粒需氮量与2000—2011中国小麦的变化趋势一致, 呈现随施氮量提高而逐渐提高的趋势。出现该差异主要是不同年份小麦品种、种植模式以及生态条件不同造成的。
图5 不同产量水平小麦氮营养指数变化规律(A)及其与籽粒产量的相关关系(B)
图(A)中实线表示平均值, 虚线表示中值, 箱型边界表示75%和25%的四分位数, 上下边缘表示90和10百分位数, 圆点表示最大值和最小值, 不同小字母(a, b, c, d)表示产量水平间有显著差异(< 0.05); 图(B)中实线表示拟合曲线,***显著性为< 0.001。
The solid and dashed lines in Fig. A indicate mean and median, respectively. The box boundaries indicate the 75% and 25% quartiles, the whisker caps indicate 90th and 10th percentiles, and the dots indicate the maximum and minimum, and different small letters (a, b, c, d) represent that there was significant difference in different yield levels (< 0.05); the solid line in Fig. B represents the relationship,***indicates significantly difference at< 0.001.
有不少研究者认为, 小麦成熟期植株干物质积累量、氮积累量和氮浓度均随产量的提高而提高, 且植株氮积累量和干物质积累量的提高同步, 高产小麦具有更高的养分吸收能力[14,22-23]。不同产量水平小麦在不同生育阶段的干物质积累量和氮积累量具有显著差异[18,24]。相关研究发现, 拔节至开花期是小麦生长和养分吸收的重要生育阶段, 孕穗期的干物质积累量与产量之间呈显著正相关关系[25-26]。周玲等[24]和Meng等[27]研究发现, 高产水平小麦花前的干物质积累量与中产相近, 而花后则远高于中产水平小麦。Meng等[27]和黄明等[28]认为, 高产小麦成熟期氮积累量较中产和低产分别高17%和57%, 随着产量水平的提高, 出苗—拔节期的氮积累比例显著降低, 而拔节—开花期和开花—成熟期的氮积累量和氮积累比例均增加或显著增加。小麦在拔节后期具有较强的干物质和产量形成能力, 拔节—开花期的氮积累量对产量形成的影响最大[2]。氮肥施用应集中在中后期, 以满足小麦氮素需求[27]。本研究中, 高产水平下播种—拔节期和拔节—开花期阶段的干物质积累和氮积累比例呈增加趋势, 而在开花—成熟期阶段则先增加后降低, 这与高产小麦具有较高的干物质积累量和氮积累量有关。
随着产量水平的提高, 收获指数逐渐提高。岳善超[11]认为, 华北地区旱地小麦在优化施氮田间管理条件下, 收获指数从低产的0.39增加到超高产的0.48, 对应产量范围为3.2~11.8 t hm–2。山东省小麦收获指数范围为0.40~0.49, 对应产量范围为5.2~9.4 t hm–2[29]。河北地区小麦收获指数范围为0.47~0.50, 对应产量范围为6.9~9.7 t hm–2[30]。英格兰冬小麦收获指数范围为0.37~0.76, 对应产量范围为2.1~11.8 t hm–2[31]。本研究稻茬小麦的收获指数范围为0.39~0.49, 对应产量范围为2.7~9.1 t hm–2, 与华北地区旱地小麦的研究结果一致, 但低于河北省小麦和英格兰小麦的收获指数, 这与其较高的产量有关。Barraclough等[31]认为, 不同小麦品种的收获指数间有差异, 但产量间差异并不明显。理论上小麦的收获指数可以达到0.64[32]。许多研究者[29,33-34]研究发现, 收获指数主要是生物量生产和异速生长的结果, 较高的收获指数是获得高产的原因之一, 提高收获指数能有效提高产量。收获指数不仅与品种和地区有关, 还与管理条件有关, 在干燥条件下, 小麦收获指数较低, 高水分条件下, 收获指数较高[34]。本研究的氮收获指数范围为0.60~0.96, 该结果与多个相关研究的结果较为一致, 且多数研究认为不同产量水平间的氮收获指数变化范围为0.69~0.98, 产量之间差异不显著, 主要与小麦品种有关[11,29,31]。
本研究中籽粒和秸秆氮浓度变化范围分别为1.44%~1.87%和0.32%~0.46%。华北地区旱地小麦在优化施氮田间管理条件下, 籽粒和秸秆氮浓度变化范围分别为1.43%~2.80%和0.29%~1.05%[11], 英格兰冬小麦的籽粒氮浓度为1.08%~2.79%[31]。本研究的籽粒和秸秆氮浓度均低于华北地区和英格兰冬小麦。岳善超的研究结果表明, 随着产量水平的提高籽粒氮浓度逐渐降低, 造成该趋势的主要原因是籽粒中氮积累速率小于同化物积累速率。但是在不同施氮水平下, 随着产量提高籽粒和秸秆氮浓度逐渐提高[11,13]。张青松等[14]认为, 从低产到高产籽粒氮浓度逐渐下降, 但产量再提高, 籽粒氮浓度会逐渐提高。Triboi等[12]研究发现, 在限氮条件下, 籽粒氮浓度对产量变化较为敏感, 产量与籽粒氮浓度之间有较强的负相关关系。在缺氮条件下, 增施氮肥会增加产量, 但对籽粒氮浓度影响不大; 继续增施氮肥, 产量和氮浓度会同时增加; 而再增加施氮量, 籽粒氮浓度会逐渐提高, 而产量不会提高[35]。本研究中籽粒和秸秆氮浓度均随着产量提高呈逐渐上升趋势, 这主要与本研究数据来源中氮肥试验较多有关。籽粒和秸秆氮浓度从低产到高产分别提高了29%和46%, 秸秆氮浓度的增幅高于籽粒氮浓度, 这也表明较高的氮肥施用量易造成小麦氮素的奢侈吸收[11]。氮营养指数是诊断小麦田间氮肥供应的重要指标, 氮营养指数和产量均随施氮量的增加而增加[36-37]。本研究中, 氮营养指数与产量的相关性较大, 氮营养指数随着产量水平的提高逐渐提高, 该结果与前人研究一致。高产水平和中产水平小麦的氮营养指数接近1甚至高于1, 表明氮肥供应充足; 中低产和低产水平的氮营养指数偏低, 在小麦生长关键阶段适当增施氮肥利于小麦进一步提高产量[16,38]。
不同产量水平稻茬小麦单位籽粒需氮量间无显著差异, 小麦籽粒产量与植株氮积累量并不是等比例增加。拔节—开花期阶段是小麦干物质积累量和氮积累量最高的阶段, 该阶段保证充足的养分供应有利于小麦取得高产。秸秆氮浓度、籽粒氮浓度和氮营养指数均随着产量水平的提高而提高, 主要与施氮量增加有关, 并且籽粒氮浓度的增幅低于秸秆氮浓度, 意味着过量施氮易造成小麦的奢侈吸收。
[1] Cui Z L, Chen X P, Zhang F S. Current nitrogen management status and measures to improve the intensive wheat-maize system in China., 2010, 39: 376–384.
[2] 阳显斌, 张锡洲, 李廷轩, 余海英, 吴德勇. 不同产量水平小麦的氮吸收利用差异. 核农学报, 2010, 24: 1073–1079. Yang X B, Zhang X Z, Li T X, Yu H Y, Wu D Y. Difference of nitrogen uptake and utilization in wheat cultivars with different grain yield level., 2010, 24: 1073–1079(in Chinese with English abstract).
[3] 田昌玉, 孙文彦, 林治安, 赵秉强, 李志杰. 氮肥利用率的问题与改进. 中国土壤与肥料, 2016, (4): 9–16. Tian C Y, Sun W Y, Lin Z A, Zhao B Q, Li Z J. Problems and improvements of recovery efficiency of applied N., 2016, (4): 9–16 (in Chinese with English abstract).
[4] 李瑞珂, 汪洋, 安志超, 武庆慧, 王改革, 仝瑞芳, 叶优良. 不同产量类型小麦品种的干物质和氮素积累转运特征. 麦类作物学报, 2018, 38: 1359–1364. Li R K, Wang Y, An Z C, Wu Q H, Wang G G, Tong R F, Ye Y L. The transport characteristics of dry matter and nitrogen accumulation in different wheat cultivars., 2018, 38: 1359–1364 (in Chinese with English abstract).
[5] 赵雪飞, 王丽金, 李瑞奇, 李雁鸣. 不同灌水次数和施氮量对冬小麦群体动态和产量的影响. 麦类作物学报, 2009, 29: 1004–1009. Zhao X F, Wang L J, Li R Q, Li Y M. Effect of irrigation times and nitrogen application rate on population dynamics and grain yield of winter wheat., 2009, 29: 1004–1009 (in Chinese with English abstract).
[6] Yan S C, Wu Y, Fan J L, Zhang F C, Zheng J, Qiang S C, Guo J J, Xiang Y Z, Zou H Y, Wu L F. Dynamic change and accumulation of grain macronutrient (N, P and K) concentrations in winter wheat under different drip fertigation regimes., 2020, 250: 1–13.
[7] 于振文, 田奇卓, 潘庆民, 岳寿松, 王东, 段藏禄, 段玲玲, 王志军, 牛运生. 黄淮麦区冬小麦超高产栽培的理论与实践. 作物学报, 2002, 28: 577–585. Yu Z W, Tian Q Z, Pan Q M, Yue S S, Wang D, Duan Z L, Duan L L, Wang Z J, Niu Y S. Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow River and Huaihe River districts., 2002, 28: 577–585 (in Chinese with English abstract).
[8] 党红凯, 李瑞奇, 李雁鸣, 孙亚辉, 张馨文, 刘梦星. 超高产冬小麦对氮素的吸收、积累和分配. 植物营养与肥料学报, 2013, 19: 1037–1047. Dang H K, Li R Q, Li Y M, Sun Y H, Zhang X W, Liu M X. Absorption, accumulation and distribution of nitrogen in super-highly yielding winter wheat., 2013, 19: 1037–1047 (in Chinese with English abstract).
[9] Gaju O, Allard V, Martre P, Snape J W, Heumez E, LeGouis J, Moreau D, Bogard M, Griffiths S, Orford S, Hubbart S, Foulkes M J. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes., 2011, 123: 139–152.
[10] Fowler D B. Crop nitrogen demand and grain protein concentration of spring and winter wheat., 2003, 95: 260–265.
[11] 岳善超. 小麦玉米高产体系的氮肥优化管理. 中国农业大学博士学位论文, 北京, 2013. pp 25–37. Yue S C. Optimum Nitrogen Management for High-yielding Wheat and Maize Cropping System. PhD Dissertation of China Agricultural University, Beijing, China, 2013. pp 25–37 (in Chinese with English abstract).
[12] Triboi E, Martre P, Girousse C, Ravel C, Triboi-Blondel A M. Unravelling environmental and genetic relationships between grain yield and nitrogen concentration for wheat., 2006, 25: 108–118.
[13] Bogard M, Allard V, Brancourt-Hulmel M, Heumez E, Machet J M, Jeuffroy M H, Gate P, Martre P, Le Gouis J. Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat., 2010, 61: 4303–4312.
[14] 张青松, 卢殿君, 岳善超, 占爱, 崔振岭. 华北地区高产冬小麦氮磷钾养分需求特征. 中国农业科学, 2018, 51: 3840–3851. Zhang Q S, Lu D J, Yue S C, Zhan A, Cui Z L. Characteristics of N, P and K nutrient demand of high-yielding winter wheat in north China plain., 2018, 51: 3840–3851 (in Chinese with English abstract).
[15] 赵犇, 姚霞, 田永超, 刘小军, 曹卫星, 朱艳. 基于临界氮浓度的小麦地上部氮亏缺模型. 应用生态学报, 2012, 23: 3141–3148. Zhao B, Yao X, Tian Y C, Liu X J, Cao W X, Zhu Y. Accumulative nitrogen deficit models of wheat aboveground part based on critical nitrogen concentration., 2012, 23: 3141–3148 (in Chinese with English abstract).
[16] 曹强, 田兴帅, 马吉锋, 姚霞, 刘小军, 田永超, 曹卫星, 朱艳. 中国三大粮食作物临界氮浓度稀释曲线研究进展. 南京农业大学学报, 2019, 32: 1148–1159. Cao Q, Tian X S, Ma J F, Yao X, Liu X J, Tian Y C, Cao W X, Zhu Y. Research progress in critical nitrogen dilution curve of three main grain crops in China., 2019, 32: 1148–1159 (in Chinese with English abstract).
[17] Lemaire G, Jeuffroy M H, Gastal F. Diagnosis tool for plant and crop N status in vegetative stage theory and practices for crop N management., 2008, 28: 614–624.
[18] 丁锦峰, 杨佳凤, 王云翠, 陈芳芳, 封超年, 朱新开, 李春燕, 彭永欣, 郭文善. 稻茬小麦公顷产量9000 kg群体氮素积累、分配与利用特性. 植物营养与肥料学报, 2013, 19: 543–551. Ding J F, Yang J F, Wang Y C, Chen F F, Feng C N, Zhu X K, Li C Y, Peng Y X, Guo W S. Nitrogen accumulation, distribution and utilization characteristics of wheat at yield level of 9000 kg ha–1in rice-wheat rotation., 2013, 19: 543–551 (in Chinese with English abstract).
[19] Greewood D J, Neeteson J J, Draycott A. Quantitative relationships for the dependence of growth rate of arable crops on their nitrogen content, dry weight and aerial enviroment., 1986, 91: 281–301.
[20] Liu M Q, Yu Z R, Liu Y H, Konijn N T. Fertilizer requirements for wheat and maize in China: the QUEFTS approach., 2006, 74: 245–258.
[21] 串丽敏. 基于产量反应和农学效率的小麦推荐施肥方法研究. 中国农业科学院博士学位论文, 北京, 2013. pp 25–29. Chuan L M. Methodology of Fertilizer Recommendation Based on Yield Response and Agronomic Efficiency for Wheat. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2013. pp 25–29 (in Chinese with English abstract).
[22] 安志超. 不同基肥供氮水平下氮肥形态对小麦植株氮浓度、群体动态和产量的影响. 河南农业大学硕士学位论文, 河南郑州, 2018. pp 23–29. An Z C. Effects of Different Nitrogen Forms on Plant Nitrogen Concentration, Population Dynamic and Yield of Wheat under Different Nitrogen Applications Rates. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018. pp 23–29 (in Chinese with English abstract).
[23] 卢殿君. 华北平原冬小麦高产高效群体动态特征与氮营养调控. 中国农业大学博士学位论文, 北京, 2015. pp 15–22.Lu D J. Dynamics of Population Trait for High Yielding and High Efficiency Winter Wheat and N Nutrient Regulation in the North China Plain. PhD Dissertation of China Agricultural University, Beijing, China, 2015. pp 15–22 (in Chinese with English abstract).
[24] 周玲, 王朝辉, 李富翠, 孟晓瑜, 李可懿, 李生秀. 不同产量水平旱地冬小麦品种干物质累积和转移的差异分析. 生态学报, 2012, 32: 4123–4131. Zhou L, Wang Z H, Li F C, Meng X Y, Li K Y, Li S X. Analysis of dry matter accumulation and translocation for winter wheat cultivars with different yields on dryland., 2012, 32: 4123–4131 (in Chinese with English abstract).
[25] Ye Y L, Wang G L, Huang Y F, Zhu Y J, Meng Q F, Chen X P, Zhang F S, Cui Z L. Understanding physiological processes associated with yield-trait relationships in modern wheat varieties., 2011, 124: 316–322.
[26] Meng Q F, Yue S C, Chen X P, Cui Z L, Ye Y L, Ma W Q, Tong Y N, Zhang F S. Understanding dry matter and nitrogen accumulation with time-course for high-yielding wheat production in China., 2013, 8: 1–9.
[27] Meng Q F, Yue S C, Hou P, Cui Z L, Chen X P. Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: a review., 2016, 26: 137–147.
[28] 黄明, 吴金芝, 李友军, 王贺正, 陈明灿, 付国占. 旱地不同产量水平小麦的产量构成及氮素吸收利用的差异. 麦类作物学报, 2019, 39: 163–170. Huang M, Wu J Z, Li Y J, Wang H Z, Chen M C, Fu G Z. Differences of yield components and nitrogen uptake and utilization in winter wheat with different yield levels in drylands., 2019, 39: 163–17 (in Chinese with English abstract).
[29] 刘海红, 徐学欣, 吴姗姗, 於思益, 石岩, 赵长星. 雨养条件下不同冬小麦品种产量形成及氮素利用特征. 华北农学报, 2019, 34(6): 133–144. Liu H H, Xu X X, Wu S S, Yu S Y, Shi Y, Zhao C X. Studies on yield formation and nitrogen utilization characteristics of different winter wheat varieties under rain-fed condition., 2019, 34(6): 133–144 (in Chinese with English abstract).
[30] Xu X X, Zhang M, Li J P, Liu Z Q, Zhao Z G, Zhang Y H, Zhou S L, Wang Z M. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain., 2018, 221: 219–227.
[31] Barraclough P B, Howarth J R, Jones J, Lopez-Bellida R, Parmar S, Shepherd C E, Hawkesford M J. Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement., 2010, 33: 1–11.
[32] Foulkes M J, Slafer G A, Davies W J, Berry P M, Sylvester-Bradley R, Martre P, Calderini D F, Griffiths S, Reynolds M P. Raising yield potential of wheat: III. Optimizing partitioning to grain while maintaining lodging resistance., 2010, 62: 469–486.
[33] Reynolds M P, Rajaram S, Sayre K D. Physiological and genetic changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand., 1999, 39: 1611–1621.
[34] Weiner J. Allocation, plasticity and allometry in plants., 2004, 6: 207–215.
[35] Macy P. The quantitative mineral nutrient requirements of plants., 1936, 11: 749–764.
[36] 岳松华, 刘春雨, 黄玉芳, 叶优良. 豫中地区冬小麦临界氮稀释曲线与氮营养指数模型的建立. 作物学报, 2016, 42: 909–916. Yue S H, Liu C Y, Huang Y F, Ye Y L. Simulating critical nitrogen dilution curve and modeling nitrogen nutrition index in winter wheat in central Henan area., 2016, 42: 909–916 (in Chinese with English abstract).
[37] Zhao B, Niu X L, Ata-Ul-Karim S T, Wang L G, Duan A W, Liu Z D, Lemaire G. Determination of the post-anthesis nitrogen status using ear critical nitrogen dilution curve and its implications for nitrogen management in maize and wheat., 2020, 113: 1–11.
[38] 李正鹏, 冯浩, 宋明丹. 关中平原冬小麦临界氮稀释曲线和氮营养指数研究. 农业机械学报, 2015, 46(10): 177–273.Li Z P, Feng H, Song M D. Critical nitrogen dilution curve and nitrogen nutrition index of winter wheat in Guanzhong plain., 2015, 46(10): 177–273 (in Chinese with English abstract).
Nitrogen demand characteristics with different grain yield levels for wheat after rice
DU Yu-Xiao, LI Xin-Ge, WANG Xue, LIU Xiao-Jun, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, and CAO Qiang*
National Engineering and Technology Center for Information Agriculture, Nanjing Agricltural University / Engineering and Research Center for Smart Agriculture, Ministry of Education / Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs / Jiangsu Key Laboratory for Information Agriculture, Nanjing 210095, Jiangsu, China
It is necessary to clarify the nitrogen (N) demand characteristics with yield levels for wheat after rice in the middle and down reaches of the Yangtze River, which could provide theoretical basis for N fertilizer management. Based-on the multi-years and multi-sites wheat experiments in Jiangsu province, this study constructed the datasets of different yield levels derived from different varieties, N rates, densities, and sowing date experiments. N indicators including N requirement per ton grain (Nreq), dry matter accumulation (DMA), plant N accumulation (PNA), plant N concentration (PNC), straw N concentration (SNC), grain N concentration (GNC), harvest index (HI), N harvest index (NHI) and N nutrition index (NNI) were analyzed. The results showed that there were not significant differences in Nreqamong the different yield levels, and the highest Nreqwas middle-low yield with 27.8 kg t–1, while the lowest value was 24.8 kg t–1for low yield level. With the increase of yield levels, DMA, PNA and PNC all showed a gradually increasing trend during maturity stage, and there were significant differences among the different yield levels. There was a significant positive correlation between grain yield and PNA, the DMA and PNA increased with the increase of yield in the sowing–jointing stage, jointing–flowering stage and flowering–maturing stage, but the DMA and PNA proportion in different growth stages showed different trends. The SNC and GNC increased with the increase of yield levels. For SNC, there was no significant difference between the high yield and middle yield level, but it was significantly higher than the low-middle and low yield level. For GNC, there were significant differences among different yield levels except for the middle and low-middle yield level. The HI increased gradually with the increase of the yield levels, and its range was 0.39–0.49. The HI for low-middle and low yields were significantly lower than that of middle and high yield levels, while there were not significant differences in NHI among different yield levels. Its variation range was 0.60–0.96. The NNI gradually increased with the increase of the yield levels, and there was significant difference between different yield levels. The NNI of the high-yield level was higher, and some of the values were greater than 1 which indicating that some experiments had excessive nitrogen fertilizer supply. With the increase of the yield level, the Nreqincreased first and then decreased, while the DMA, PNA, PNC, SNC, and GNC were gradual increased. The increase of SNC was higher than the GNC, therefore, the extravagant absorption of N by wheat should be avoided in field management. The variation ranges of the HI and NHI were consistent with previous studies. The higher DMA and PNA in the late growth stages were the main reasons for the high yield of wheat. The NNI could be a promising indictor in the field N management of wheat.
yield levels; nitrogen requirement per ton grain; harvest index; nitrogen nutrition index
10.3724/SP.J.1006.2020.01027
本研究由国家自然科学基金青年项目(31601222), 中央高校基本科研业务费专项(KJQN201725)和江苏现代农业产业技术体系建设专项(JATS[2019]433, JATS[2019]141)资助。
This study was supported by the Youth Program of National Natural Science Foundation of China (31601222), the Fundamental Research Funds for the Central University (KJQN201725), and the Earmarked Fund for Jiangsu Agricultural Industry Technology System (JATS[2019]433, JATS[2019]141).
曹强, E-mail: qiangcao@njau.edu.cn, Tel: 025-84399050
E-mail: 2018801186@njau.edu.cn
2020-03-26;
2020-07-02;
2020-07-13.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20200713.1406.006.html