张琦,王淑兰,王浩,刘朋召,王旭敏,张元红,李昊昱,王瑞,王小利,李军
深松与免耕频次对黄土旱塬春玉米田土壤团聚体与土壤碳库的影响
张琦,王淑兰,王浩,刘朋召,王旭敏,张元红,李昊昱,王瑞,王小利,李军
(西北农林科技大学农学院/农业部西北黄土高原作物生理生态与耕作重点实验室,陕西杨凌 712100)
【】明确减少深松频次对黄土旱塬春玉米田土壤结构与土壤碳库的影响。2007—2019年在渭北旱塬春玉米田实施不同深松与免耕频次的保护性耕作长期定位试验,以连续深松(S)为对照,设置减少深松频次的免耕与深松结合耕作模式,分别是两年一深松(NS)和三年一深松(NNS)。分析减少深松频次对土壤团聚体、团聚体固碳能力、土壤碳库组成及碳库管理指数的影响。(1)减少深松频次提高了土壤大土壤团聚体(R0.25)含量,NNS处理下0—40 cm土层机械稳定性团聚体(DR0.25)含量提升3.8%,水稳定性团聚体(WR0.25)含量提升38.9%,NS处理下WR0.25提升41.8%。NNS处理降低了团聚体破坏率(PAD)和不稳定团粒指数(ELT),平均质量直径(MWD)和几何平均直径(GMD)显著增加13.2%和16.6%。(2)减少深松频次处理下团聚体总固碳能力(TOPC)得到显著提升。NNS处理0—40 cm土层平均团聚体固碳能力提升10.8%,但20—30 cm土层团聚体固碳能力有所下降。不同粒径团聚体固碳能力表明,<0.25 mm粒径团聚体固碳能力较强。(3)NNS处理对0—40 cm土层土壤总有机碳(TOC)含量无显著影响,但增加了10—20 cm土层TOC含量,减轻了表层土壤有机碳层化效果,降低了30—40 cm土层 TOC含量,促进了深层土壤有机碳的层化。(4)NNS处理0—40 cm土层活性有机碳(EOC)含量显著增加24.9%,EOC含量的增加提升了EOC/TOC比值,增加了碳库活度(A)和碳库活度指数(AI),相比于S处理,增加碳库管理指数(CPIM)39.8%。长期连续深松不利于土壤团聚体的形成及土壤碳库的良性循环,而三年一深松的耕作模式有助于降低土壤团聚体的破坏程度,提高碳库管理指数,增强土壤碳库的活度,调节土壤碳库的更新和循环,是适合该地区的耕作模式。
黄土旱塬;春玉米;深松频次;土壤团聚体;土壤碳库
【研究意义】在长期盛行翻耕的黄土旱塬农作区,土壤养分流失严重,土壤培肥为众多学者的研究重点[1-3]。近年来,免耕和深松等保护性耕作技术逐渐兴起。深松因其打破犁底层且不扰乱耕层而被视为保护性耕作的重点环节,但随着深松频次增加,深层土壤破坏程度也会加深[4-5]。土壤团聚体是土壤结构的基本单元,也是土壤有机碳固定的核心力量,不同耕作措施直接作用于土壤,影响团聚体的形成,改变土壤对有机碳的固存[6-7]。保护性耕作可明显提升土壤有机碳含量,但土壤有机碳含量并不能完全表征土壤碳库质量,碳库管理指数可用来全面评价土壤碳库特征,土壤耕作和秸秆还田是驱动土壤碳库变化的关键因素[8-9]。因此,本研究探讨减少深松频次的深松与免耕相结合的耕作体系,利用免耕土壤自我调节作用改良长期深松的弊端,比较其对土壤团聚体及土壤碳库特征的影响,筛选适合于黄土旱塬旱地土壤质量提升的长期保护性耕作模式。【前人研究进展】深松作为一种保护性耕作措施,通过减少扰动而增加对土壤的保护,相对于翻耕有利于促进土壤团聚体形成,增强团聚体稳定性[10-11]。但长期采用连续深松会过度增加深层土壤孔隙度,不利于土壤根系的生长,且相同深松深度下,增加深松年限会降低0—10 cm土层土壤碳库管理指数,不利于提升耕层碳库活度,降低表层土壤碳库更新速度[4,12]。免耕有利于提高0—10 cm土层有机碳库质量和碳库管理指数,且随着免耕年限增加,碳库管理指数呈现报酬递减规律[13]。因此,深松和免耕所结合的轮耕模式有助于解决长期深松所带来的土壤碳库抑制作用。田慎重等[14-15]研究表明,旋耕-深松配合秸秆还田模式有助于增加0—20 cm土层土壤团聚体稳定性并提升固碳能力,但旋耕转化为深松后土壤碳库管理指数有所降低。免耕-深松结合耕作模式可增加土壤大团聚体含量和稳定性,增加土壤有机质含量,增加表观腐值化系数,提升土层碳库管理指数[16-19]。【本研究切入点】针对长期连续深松所致不良后果,有关深松与免耕的耕作效应研究已取得重要进展,但减少深松频次的耕作模式对土壤团聚体及其固碳能力和碳库活度的研究不多。【拟解决的关键问题】本研究基于长期保护性耕作定位试验,通过对增加免耕而减少深松频次的轮耕效应进行分析,揭示减少深松频次对土壤团聚体含量及稳定性的影响,通过团聚体有机碳固存能力明确团聚体对总有机碳的贡献程度,利用碳库管理指数评估减少深松频次对土壤碳库活度的影响,为改善长期连续深松措施的不足,提升黄土旱塬区农田土壤有机碳及其质量提供理论依据。
试验设置在渭北旱塬东部的陕西省渭南市合阳县甘井镇(35°19′N,110°05′E),地处典型的黄土旱塬粮食主产区,属于暖温带半湿润偏旱气候,海拔877 m,年平均气温11.5℃,年平均日照时数2 528 h,多年平均降雨量 500 mm左右,且主要集中在 7—9 月,其逐月最高气温与最低气温、逐月平均降雨量分布如图1所示。试验地土壤类型为中壤土,土层较厚易耕作,土壤蓄水保肥能力强,种植方式为春玉米一年一熟制,试验地初始土壤养分含量如表1所示。
图1 2007—2019年多年平均逐月降雨量及温度
表1 试验前土壤理化性质
本试验于2007年9月至2019年9月进行,试验期间无灌溉措施。试验开始前,土壤耕作方式均为传统的翻耕措施。试验采用单因素随机区组设计,小区面积112.5 m2(5 m×22.5 m),重复3次。试验以连续深松(S)为对照,设置2种减少深松频次的深松与免耕(N)结合耕作模式:两年一深松(NS)和三年一深松(NNS)。在每年9月下旬春玉米收获后休闲初期实施各种耕作处理,翌年4月中下旬播种春玉米。免耕(N)处理是不采取任何土壤耕作方式,仅在秸秆全量粉碎覆盖下度过休闲期;深松(S)处理是在秸秆全量粉碎覆盖下采用深松机进行间隔60 cm、耕深30—35 cm的深松作业。在休闲期结束后,3种耕作方式均按照相同的施肥量(N:150 kg·hm-2,P2O5:120 kg·hm-2, K2O:90 kg·hm-2)撒施肥料,其中氮肥、磷肥和钾肥分别为尿素、磷酸二铵和氯化钾。玉米供试品种为郑单958,播种采用单粒点播机进行一次性播种,行距60 cm,株距30 cm。其余田间管理方式与当地大田管理措施一致。
1.3.1 团聚体测定
(1)采样方法
于2019年9月玉米收获后采集 0—10、10—20、20—30和30—40 cm 4个土层土样,每小区取3次重复,混合成一个样品。自然风干后除去粗根及小石块,在采集及处理过程中减少扰动,避免破坏团聚体,并将大土块按自然裂痕剥离为1 cm3左右,小心运输到试验室。
(2)测定方法
土样预处理:将风干土样依次过孔径为5 mm、2 mm的筛子,分为>5 mm、5—2 mm、<2 mm 3个级别,然后利用对角线分割法按3个级别土样在原状土中所占比例取混合土样100 g(6份),用于力稳性团聚体与水稳性团聚体的测定。
力稳定性团聚体(干筛法):将3份100 g土样放入孔径为5、2、1、0.5、0.25 mm套筛的最上层,用底盒和筛盖密封,用震荡式机械筛分仪进行震荡(200次/min,2 min),得到>5 mm、5—2 mm、2—1 mm、1—0.5 mm、0.5—0.25 mm、<0.25 mm的力稳定性团聚体,分别测量6个粒径的团聚体质量。
水稳性团聚体(湿筛法):将3份100 g土样放入孔径为5、2、1、0.5、0.25 mm套筛的最上层,调整筛桶内水面高度使其没过套筛土壤上表面,待土壤浸泡完全后,用团粒分析仪进行频次振荡(30次/min,30 min)。分别将6个粒径大小的团聚体洗入铝盒中,40℃烘干称重,并留做团聚体有机碳测定[20-21]。
(3)计算方法
利用各粒级团聚体数据,计算>0.25 mm团聚体R0.25、MWD、GMD。干筛法和湿筛法测定的R0.25含量分别用DR0.25和WR0.25表示。
R0.25=Mr>0.25/Mt
PAD=(DR0.25-WR0.25)/DR0.25×100%
ELT=(Mt-WR0.25)/Mt
式中,R0.25为直径>0.25 mm团聚体含量,Mt为团聚体的总重量,Mr>0.25为粒径>0.25 mm团聚体的重量;PAD为团聚体的破坏率;ELT为团聚体的不稳定团粒指数;MWD为团粒平均质量直径(mm),GMD为团粒几何平均直径(mm);Xi为任一级别范围内团聚体的平均直径(mm);Wi为对应于等级的团聚体百分含量。
1.3.2 总有机碳和活性有机碳的测定方法
2019年9月玉米收获后采集 0—10、10—20、20—30和30—40 cm 4 个土层土样,每小区3次重复,充分混匀为一个样品,自然风干过筛留作土壤有机碳测定。团聚体及土壤总有机碳(TOC)用重铬酸钾-外加热法测定,土壤活性有机碳(EOC)采用高锰酸钾氧化法测定[22-24]。
团聚体固碳能力(CPCi)SSACi× Wi
式中,CPC代表第i级土壤团聚体固碳能力;SSAC代表i级团聚体中土壤有机碳含量(g·kg-1);W代表i级团聚体的质量分数(%)。
有机碳分层率=上一土层有机碳含量/下一土层有机碳含量;土壤有机碳氧化稳定性系数
(KOS)=(TOC-EOC)/EOC。
本研究土壤碳库管理指数计算选取连续深松处理为参考土壤,具体公式如下:
碳库指数(CPI)=样品全碳含量(g·kg-1)/参考土壤全碳含量(g·kg-1)
碳库活度(A)=活性碳含量/非活性碳含量
碳库活度指数(AI)=样品碳库活度/参考土壤碳库活度
碳库管理指数(CPMI)=CPI×AI×100
采用 Excel 2010 软件对数据进行整理、OriginPro 2015进行制图,采用 SPSS(PASW Statistics 190)统计分析软件对数据进行方差分析,LSD法进行多重比较分析。
经过12年长期保护性耕作定位试验,减少深松频次对土壤大团聚体含量影响显著(<0.05)(图2)。干筛法数据表明,与S处理相比,NNS处理0—10、10—20和30—40 cm土层DR0.25含量显著增加,0—40 cm土层平均DR0.25含量增加3.8 %;NS处理20—30 cm土层DR0.25含量下降8.7%,0—40 cm土层平均DR0.25与S处理无显著差异。湿筛法数据显示,NNS和NS处理显著提高了0—10、10—20、20—30和30—40 cm土层WR0.25含量,0—40 cm土层平均WR0.25含量增加38.9%和41.8%。
不同字母代表不同处理间存在显著差异P<0.05。下同 Different letters mean significant difference at 0.05 level. The same as below
团聚体破坏率(PAD)和不稳定团粒指数(ELT)可直接评价耕作措施对水稳定性团聚体的破坏程度及其结构的稳定性。与S处理相比,NNS、NS处理 0—40 cm土层PAD均有所降低(图3)。其中,0—10 cm土层PAD为表现为S>NNS>NS,10—20、20—30 cm土层PAD表现为S>NS>NNS,30—40 cm土层PAD在NNS和NS处理间无显著差异,ELT与PAD变化规律相似。
湿筛法所测得的水稳定性团聚体的平均质量直径(MWD)和几何平均直径(GMD)如表2所示。NNS和NS处理0—40 cm土层团聚体平均MWD和GMD提升9.3%—16.5%(<0.05)。0—10 cm土层团聚体MWD、GMD表现为NNS>NS>S。与S处理相比,NS处理10—20 cm土层团聚体MWD、GMD显著增加6.0%、6.1%,NNS处理20—30 cm土层团聚体MWD、GMD值显著增加20.4%、22.7%。NNS、NS处理30—40 cm土层团聚体MWD、GMD提升16.7%—22.2%。
图3 不同深松频次处理下团聚体破坏率(PAD)及不稳定团粒指数(ELT)
表2 不同深松频次处理下土壤水稳定性团聚体平均质量直径和几何平均直径
不同字母代表同一列,同一指标不同处理间存在显著差异<0.05。AVG代表0—10 cm、10—20 cm、20—30 cm和30—40 cm均值。下同
Different letters in the same column mean significant difference at 0.05 level. AVG stands for average value of 0-10 cm, 10-20 cm, 20-30 cm and30-40 cm. the same as below
各土层团聚体总固碳能力为10—20 cm ≈ 0—10 cm>20—30 cm>30—40 cm(表3);不同粒径大小团聚体以0.25—0.053 mm和<0.053 mm粒径团聚体固碳能能力较强。相比于S处理,NNS和NS处理0—40 cm土层平均团聚体总固碳能力提升0.75 g·kg-1和0.95 g·kg-1,差异显著,0.5—0.25 mm和0.25—0.053 mm粒径土壤团聚体固碳能力平均提升21.1%和25.0%。总体来看,NNS和NS处理均有助于提升团聚体固碳能力,但两者之间差异不显著。
表3 不同深松频次处理各粒径土壤团聚体固碳能力
减少深松频次0—40 cm土壤有机碳含量与连续深松无显著差异(图4)。与S处理相比,NNS、NS处理10—20 cm土壤有机碳含量分别增加15.1%和10.6%,NNS处理30—40 cm土层土壤有机碳含量降低了24.4%。减少深松频次对活性有机碳含量影响差异显著,NNS处理0—10、20—30和30—40 cm土层活性有机碳含量显著增加25.5%、22.9%和44.9%。NS处理30—40 cm土层活性有机碳含量显著增加43.2%。有机碳在不同土层分布造成有机碳的层化效果(表4),NNS处理有助于降低0—20 cm土层总有机碳层化率和10—40 cm土层活性有机碳层化效果。
图4 不同深松频次处理土壤总有机碳(TOC)及活性有机碳(EOC)含量
表4 不同深松频次处理土壤有机碳层化率
如表5所示,经过12年耕作处理,NNS处理0—40 cm土层平均EOC/TOC值显著高于S处理。NNS处理0—10、20—30和30—40 cm土层EOC/TOC值分别显著提升23.5%、21.6%和55.7%。NS处理30—40 cm土层EOC/TOC值显著提升46.2%。NNS和NS处理0—40 cm土层有机碳氧化稳定系数(KSO)整体小于S处理,其中NNS与S处理差异显著。与S处理相比,NNS处理增加了10—20 cm土层Kso15.5%,但降低了0—10 cm土层及深层(20—30、30—40 cm)Kos,NS处理降低30—40 cm土层Kso142.0%。
碳库管理指数(CPMI)能全面反映外界条件对土壤碳库影响及土壤碳库质量更新程度。本研究以连续深松S处理为对照,分析NS和NNS处理对0—40 cm土层碳库管理指数的影响(表6)。不同深松频次处理0—40 cm土层各项碳库指数均有所增加,且在NNS处理下达到显著水平(<0.05)。与S处理相比,NNS处理0—10 cm土层土壤CPI、A、AI和CPMI均得到显著提升;NNS和NS处理10—20 cm土层显著提升土壤A,但AI及CPMI均有所下降;20—30 cm土层NNS处理显著提升土壤CPI、A、AI和CPMI,但NS处理降低CPI 6.4%;30—40 cm土层,CPI表现为S>NS>NNS,A,AI和CPIM表现为NNS>NS>S。NNS处理降低10—20 cm土层A及CPMI,增加了0—10、20—30和30—40 cm土层CPMI,有助于碳库活化及更新。
表5 不同深松频次处理土壤碳库组成变化
表6 土壤碳库管理指数
土壤耕作直接调节土壤物理结构,影响土壤水肥气热状况,是影响秸秆腐化和转化为土壤碳库的重要措施[25]。本研究以长期单一连续深松方式为对照,对比分析了减少深松频次处理对土壤团聚体特性、团聚体固碳能力影响及土壤碳库对耕作措施的响应。结果显示,减少深松频次提升了土壤团聚体稳定性和碳库管理指数,可克服长期连续深松的不足。
减少深松频次降低了对土壤的扰动,长期不同耕作措施自身所带来的秸秆还田量以及秸秆还田方式造成土壤团聚体组分有所差异。本研究中,NNS处理显著增加稳定性团聚体和水稳定性团聚体的含量,这与减少土壤扰动,降低对土壤的破坏,增强了土壤聚合能力有关[26]。土壤团聚体破坏率及不稳定团粒指数在不同土层呈现不同规律,整体为深层土壤大于表层,与前人的研究相一致。连续深松破坏了深层土壤结构,而作为胶结物质的秸秆分解物无法弥补长期深松所带来的破坏性,NNS和NS处理通过免耕措施增加了土壤的自我修复作用,较少的土壤扰动增加了土壤微生物的活性,加速了根系残留物的分解,胶结物的形成增加了水稳定性团聚体的形成,水稳定性团聚体的形成增强了土壤团粒结构的稳定性[21,27]。利用平均质量直径和几何平均直径描述团聚体的分级特征,本研究中NNS和NS处理增加团聚体平均质量直径和几何平均直径,增加了团聚体的稳定性。
团聚体的吸附及团聚作用可以实现农田有机碳的固存[28]。本研究表明,土壤表层团聚体有机碳固存能力大于深层,且微团聚体(<0.25 mm)的固碳能力强于大团聚体,与前人研究有所出入[29],可能是因为耕作措施导致微团聚体的含量增加,同时该粒级土壤的比表面积增加,双向增加作用增强了该粒径团聚体的固碳能力[30]。研究表明土壤>0.25 mm团聚体固碳能力与土壤总有机碳含量呈现显著正相关关系,表明提升农田大团聚体的含量及其固碳能力是提高农田有机碳含量的重要途经[29]。本研究中NNS和NS处理通过增加了土壤0.5—0.25 mm、0.25—0.053 mm团聚体固碳能力,增强了团聚体总固碳能力。
深松措施不扰乱耕层,相比于传统翻耕降低土壤有机碳矿化的可能性。本研究中,3种耕作处理对0—40 cm土层总有机碳含量无显著差异,但NNS和NS处理增加10—20 cm土层有机碳含量,减少30—40 cm土层总有机碳含量。深松铲会将部分秸秆带入深层土壤,且减少深松措施的根系生物量优势无法弥补秸秆量的减少,减少了深层土壤的外来有机物来源,增加了深层土壤总有机碳的层化率,以NNS处理下20—30/30—40 cm土层尤为显著。表层有机碳含量无显著差异主要由于秸秆覆盖增加了有机碳输入,且3种耕作措施均不扰乱耕层,土壤有机碳矿化率低造成[31]。本研究中,NNS处理显著提升了土壤活性有机碳的含量,NNS处理减少了土壤扰动,秸秆覆盖避免了土壤与空气的直接接触,降低了水分蒸散,所形成的土壤环境有利于微生物活性的提升,加速了秸秆及根系残留物的分解,腐殖质的形成增加了活性炭的含量,免耕措施的增加使得土壤孔隙度有所降低,使得这部分活性较强的有机碳得以储存,而连续深松措施增加土壤孔隙度,增大了土壤与空气的接触面积,造成了活性碳的矿化和流失[32]。
不同耕作措施所形成的土壤有机碳和活性有机碳含量对土壤碳库活性及其管理指数有着重要的影响。NNS处理显著增加了0—40 cm土层EOC/TOC比值,增强了土壤碳库有机碳活性,提升了10—20 cm的Kso,增加了碳库稳定性。碳库管理指数能系统、敏感地监测有机碳变化,其值的升高表明土壤耕作方式有利于土壤碳库的良性发展。本研究中,NNS处理能显著提升土壤0—40土层A、AI和CPMI,CPI与SS处理相比无差异,说明NNS处理主要通过提升土壤中活性碳的含量来提高土壤质量碳库活度和碳库活度指数,碳库活度及碳库活度指数的增加提升了碳库管理指数,增强了碳库的循环及更新。10—20 cm土层总有机碳含量提升和活性有机碳相对稳定造成NNS处理下该土层A、AI和CPMI有所降低。
长达12年的保护性耕作定位试验表明,连续深松不利于长期土壤质量的提升,三年一深松的耕作模式增加土壤团聚体含量,降低长期深松对土壤的破坏程度,增加了团聚体稳定性和其固碳能力。三年一深松在增加0—40 cm土层总有机碳含量方面与连续深松无显著差异,但增加了活性有机碳的含量,改变了土壤碳库组成,提升了土壤碳库管理指数,有助于活化土壤碳库,增强土壤碳库的循环能力,是适合黄土旱塬土壤碳库良性循环和更新的耕作方式。
[1] 薛建福, 赵鑫, Shadrack B D, 陈阜, 张海林. 保护性耕作对农田碳、氮效应的影响研究进展. 生态学报, 2013, 33(19): 6006-6013.
XUE J F, ZHAO X, Shadrack B D, CHEN F, ZHANG H L. Advances in effects of conservation tillage on soil organic carbon and nitrogen., 2013, 33(19): 6006-6013. (in Chinese)
[2] 孔维萍, 成自勇, 张芮, 何钊全, 何正乾, 张晓霞, 刘静霞, 高阳. 保护性耕作在黄土高原的应用和发展. 干旱区研究, 2015, 32(2): 240-250.
KONG W P, CHENG Z Y, ZHANG R, HE Z Q, HE Z Q, ZHANG X X, LIU J X, GAO Y.Application and development of conservation tillage techniques in the Loess Plateau., 2015, 32(2): 240-250. (in Chinese)
[3] 王碧胜, 蔡典雄, 武雪萍, 李景, 梁国鹏, 于维水, 王相玲, 杨毅宇, 王小彬. 长期保护性耕作对土壤有机碳和玉米产量及水分利用的影响. 植物营养与肥料学报, 2015, 21(6): 1455-1464.
WANG B S, CAI D X, WU X P, LI J, LIANG G P, YU W S, WANG X L, YANG Y Y, WANG X B.Effects of long-term conservation tillage on soil organic carbon, maize yield and water utilization., 2015, 21(6): 1455-1464. (in Chinese)
[4] Xu J, Han H F, Ning T y,Li Z J, Lai R. Long-term effects of tillage and straw management on soil organic carbon, crop yield, and yield stability in a wheat-maize system., 2019, 233: 33-40.
[5] 何明, 高焕文, 董培岩, 崔德杰, 赵文阁. 一年两熟地区保护性耕作深松试验. 农业机械学报, 2018, 49(7): 58-63.
HE M, GAO H W, DONG P Y, CUI D J, ZHAO W G.Sub-soiling experiment on double cropping and conservation tillage adopted area., 2018, 49(7): 58-63. (in Chinese)
[6] 王峻, 薛永, 潘剑君, 郑宪清, 秦秦, 孙丽娟, 宋科. 耕作和秸秆还田对土壤团聚体有机碳及其作物产量的影响. 水土保持学报, 2018, 32(5): 121-127.
WANG J, XUE Y, PAN J J, ZHENG X Q, QIN Q, SUN L J, SONG K. Effect of tillage and straw incorporation on sequestration of organic carbon and crop yield., 2018, 32(5): 121-127. (in Chinese)
[7] 赵富王, 王宁, 苏雪萌, 李秋嘉. 黄土丘陵区主要植物根系对土壤有机质和团聚体的影响. 水土保持学报, 2019, 33(5):105-113.
ZHAO F W, WANG N, SU X M, LI Q J. Effect of main plant roots on soil organic matter and aggregates in Loses Hilly Region., 2019, 33(5): 105-113. (in Chinese)
[8] 杨思存, 王成宝, 霍琳, 姜万礼, 温美娟. 不同耕作措施对甘肃引黄灌区耕地土壤有机碳的影响. 农业工程学报, 2019, 35(02): 114-121.
YANG S C, WANG C B, HUO L, JIANG W L, WEN M J. Effects of different tillage practices on soil organic carbon of cultivated land in Gansu Yellow River irrigation district., 2019, 35(2): 114-121. (in Chinese)
[9] 于维水, 王碧胜, 王士超, 孟繁华, 卢昌艾. 长期不同施肥下我国4种典型土壤活性有机碳及碳库管理指数的变化特征. 中国土壤与肥料, 2018(2): 29-34.
YU W S, WANG B S, WANG S C, MENG F H, LU C A. Characteristics of soil labile organic carbon and carbon management index under different long-term fertilization systems in four typical soils of China., 2018(2): 29-34. (in Chinese)
[10] 李景, 吴会军, 武雪萍, 蔡典雄, 姚宇卿, 吕军杰, 郑凯, 刘志平. 长期保护性耕作提高土壤大团聚体含量及团聚体有机碳的作用.植物营养与肥料学报, 2015, 21(2):378-386.
LI J, WU H J, WU X P, CAI D X, YAO Y Q, LÜ J J, ZHENG K, LIU Z P.Impact of long-term conservation tillage on soil aggregate formation and aggregate organic carbon contents., 2015, 21(2): 378-386. (in Chinese)
[11] 王勇, 姬强, 刘帅, 孙汉印, 王旭东. 耕作措施对土壤水稳性团聚体及有机碳分布的影响. 农业环境科学学报, 2012, 31(7): 1365-1373.
WANG Y, JI Q, LIU S, SUN H Y, WANG X D.Effects of tillage practices on water-stable aggregation and aggregate-associated organic C in soils., 2012, 31(7): 1365-1373. (in Chinese)
[12] 张博文, 杨彦明, 张兴隆, 李金龙, 陈新宇, 李志新. 连续深松对黑土结构特性和有机碳及碳库指数影响. 中国土壤与肥料, 2019(2): 6-13.
ZHANG B W, YANG Y M, ZHANG X L, LI J L, CHEN X Y, LI Z X. Effects of continuous deep loosening on soil physical characteristics, organic carbon content and carbon pool index in black soil., 2019(2): 6-13. (in Chinese)
[13] 蔡太义, 黄耀威, 黄会娟, 贾志宽, 李立科, 杨宝平, 韩思明. 不同年限免耕秸秆覆盖对土壤活性有机碳和碳库管理指数的影响. 生态学杂志, 2011, 30(9): 1962-1968.
CAI T Y, HUANG Y W, HUANG H J, JIA Z K, LI L K, YANG B P, HAN S M.Soil labile organic carbon and carbon pool management index as affected by different years no-tilling with straw mulching., 2011, 30(9): 1962-1968. (in Chinese)
[14] 田慎重, 王瑜, 张玉凤, 边文范, 董亮, 罗加法, 郭洪海. 旋耕转深松和秸秆还田增加农田土壤团聚体碳库. 农业工程学报, 2017, 33(24): 133-140.
TIAN S Z, WANG Y, ZHANG Y F, BIAN W F, DONG L, LUO J F, GUO H H. Residue returning with subsoiling replacing rotary tillage improving aggregate and associated carbon., 2017, 33(24): 133-140. (in Chinese)
[15] 田慎重, 郭洪海, 董晓霞, 董亮, 郑东峰, 孙泽强, 王学君, 刘盛林. 耕作方式转变和秸秆还田对土壤活性有机碳的影响. 农业工程学报, 2016, 32(S2): 39-45.
TIAN S Z, GUO H H, DONG X X, DONG L, ZHENG D F, SUN Z Q, WANG X J, LIU S L. Effect of tillage method change and straw return on soil labile organic carbon., 2016, 32(S2): 39-45. (in Chinese)
[16] 张霞, 杜昊辉, 王旭东, 李军. 不同耕作措施对渭北旱塬土壤碳库管理指数及其构成的影响. 自然资源学报, 2018, 33(12): 2223-2237.
ZHANG X, DU H H, WANG X D, LI J. Effects of different tillage methods on soil organic carbon pool management index and its composition in Weibei Highland., 2018, 33(12): 2223-2237. (in Chinese)
[17] 程科, 李军, 毛红玲. 不同轮耕模式对黄土高原旱作麦田土壤物理性状的影响.中国农业科学, 2013, 46(18): 3800-3808.
CHENG K, LI J, MAO H L.Effects of different rotational tillage patterns on soil physical properties in rainfed wheat fields of the Loess Plateau., 2013, 46(18): 3800-3808. (in Chinese)
[18] 侯贤清, 李荣, 贾志宽, 韩清芳. 不同农作区土壤轮耕模式与生态效应研究进展. 生态学报, 2016, 36(5):1215-1223.
HOU X Q, LI R, JIA Z K, HAN Q F.Research progress on ecological effects under the rotational tillage patterns in agricultural regions of China., 2016, 36(5): 1215-1223. (in Chinese)
[19] 孔凡磊, 张海林, 孙国峰, 黄光辉, 陈阜. 轮耕措施对小麦玉米两熟制农田土壤碳库特性的影响. 水土保持学报, 2010, 24(2): 150-154, 183.
KONG F L, ZHANG H L, SUN G F, HUANG G H, CHEN F. Rotational tillage effects on characteristics of soil carbon pool for the wheat-corn system., 2010, 24(2):150-154, 183. (in Chinese)
[20] 王丽, 李军, 李娟, 柏炜霞. 轮耕与施肥对渭北旱作玉米田土壤团聚体和有机碳含量的影响. 应用生态学报, 2014, 25(3): 759-768.
WANG L, LI J, LI J, BAI W X. Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in corn field in Weibei Highland., 2014, 25(3): 759-768. (in Chinese)
[21] 陈宁宁, 李军, 吕薇, 王淑兰. 不同轮耕方式对渭北旱塬麦玉轮作田土壤物理性状与产量的影响. 中国生态农业学报, 2015, 23(9): 1102-1111.
CHEN N N, LI J, LÜ W, WANG S L.Effects of different rotational tillage patterns on soil physical properties and yield of winter wheat-spring maize rotation field in Weibei highland., 2015, 23(9): 1102-1111. (in Chinese)
[22] 陈源泉, 隋鹏, 严玲玲, 龙攀, 李柘锦, 王彬彬. 有机物料还田对华北小麦玉米两熟农田土壤有机碳及其组分的影响. 农业工程学报, 2016, 32(S2): 94-102.
CHEN Y Q, SUI P, YAN L L, LONG P, LI Z J, WANG B B.Effects of different organic wastes incorporation on soil organic carbon and its fraction under wheat-maize cropping system in North China Plain., 2016, 32(S2): 94-102. (in Chinese)
[23] 李玮, 郑子成, 李廷轩, 王永东. 退耕植茶对川西低山丘陵区土壤有机碳库的影响. 中国农业科学, 2014, 47(8): 1642-1651.
LI W, ZHENG Z C, LI T X, WANG Y D.Effects of returning farmland to tea on soil organic carbon pool of hilly region in the western Sichuan., 2014, 47(8): 1642-1651. (in Chinese)
[24] Wang H, Wang S L, Zhang Y J, Wang x l, wang r, li jTillage system change affects soil organic carbon storage and benefits land restoration on loess soil in North China., 2018, 29: 2880-2887.
[25] 李玉洁, 王慧, 赵建宁, 皇甫超河, 杨殿林. 耕作方式对农田土壤理化因子和生物学特性的影响. 应用生态学报, 2015, 26(3): 939-948.
LI Y J, WANG H, ZHAO J N, HUANGFU C H, YANG D L.Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland: A review., 2015, 26(3): 939-948. (in Chinese)
[26] 李爱宗, 张仁陟, 王晶. 耕作方式对黄绵土水稳定性团聚体形成的影响. 土壤通报, 2008(3): 480-484.
LI A Z, ZHANG R Z, WANG J.Effect of tillage methods on the formation of water-stable aggregates in loess soil., 2008(3): 480-484. (in Chinese)
[27] 黄炳林, 王孟雪, 金喜军, 胡国华, 张玉先. 不同耕作处理对土壤微生物、酶活性及养分的影响. 作物杂志, 2019(6): 104-113.
HUANG B L, WANG M X, JIN X J, HU G H, ZHANG Y X. Effect of different tillage treatment on soil microorganisms, enzyme activities and nutrients.,2019(6): 104-113. (in Chinese)
[28] 张艺, 尹力初, 戴齐. 后续施肥措施改变对红壤性水稻土团聚体有机碳组分的影响. 水土保持学报, 2016, 30(6): 278-283, 324.
ZHANG Y, YIN L C, DAI Q. Effect of following-up reforming on the fractions of aggregate-associated organic carbon in red paddy soils., 2016, 30(6): 278-283, 324. (in Chinese)
[29] 李昊昱, 孟兆良, 庞党伟, 陈金, 侯永坤, 崔海兴, 金敏, 王振林, 李勇. 周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响. 作物学报, 2019, 45(6): 893-903.
LI H Y, MENG Z L, PANG D W, CHEN J, HOU Y K, CUI H X, JIN M, WANG Z L, LI Y.Effect of annual straw return model on soil carbon sequestration and crop yields in winter wheat-summer maize rotation farmland., 2019, 45(6): 893-903. (in Chinese)
[30] 梁伟, 崔德杰, 柳新伟, 蒋帅, 郭晓冬. 一年两作栽培模式下保护性耕作对土壤团聚体及微生物的影响. 山东农业科学, 2019, 51(1): 98-103, 127.
LIANG W, CUI D J, LIU X W, JIANG S, GUO X D. Effect of conservation tillage on soil aggregates and microorganism under double cropping cultivation mode., 2019, 51(1): 98-103, 127. (in Chinese)
[31] 金鑫鑫, 汪景宽, 孙良杰, 王帅, 裴久渤, 安婷婷, 丁凡, 高晓丹, 徐英德. 稳定13C同位素示踪技术在农田土壤碳循环和团聚体固碳研究中的应用进展. 土壤, 2017, 49(2): 217-224.
JIN X X, WANG J K, SUN L J, WANG S, PEI J B, AN T T, DING F, GAO X D, XU Y D.Progress of carbon cycle in farmland and sequestration in soil aggregates revealed by stable13C isotope., 2017, 49(2): 217-224. (in Chinese)
[32] 傅敏, 郝敏敏, 胡恒宇, 丁文超, 翟明振, 张海依. 土壤有机碳和微生物群落结构对多年不同耕作方式与秸秆还田的响应. 应用生态学报, 2019, 30(9): 3183-3194.
FU M, HAO M M, HU H Y, DING W C, ZHAI M Z, ZHANG H Y. Responses of soil organic carbon and microbial community structure to different tillage patterns and straw returning for multiple years., 2019, 30(9): 3183-3194. (in Chinese)
Effects of Subsoiling and No-Tillage Frequencies on Soil Aggregates and Carbon Pools in the Loess Plateau
ZHANG Qi, WANG ShuLan, WANG Hao, LIU PengZhao, WANG XuMin, ZHANG YuanHong, LI HaoYu, WANG Rui, WANG XiaoLi, LI Jun
(College of Agronomy, Northwest A&F University/Key Laboratory of Crop Physi-ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling 712100, Shannxi)
【】This study was aimed to clarify the effects of reducing the frequencies of subsoiling on the soil structures and soil carbon pool in spring maize fields on the Loess Plateau. 【】A long-term positioning experiment of conservation tillage with different frequencies of subsoiling and no-tillage was carried out in spring maize fields on Weibei dryland from 2007 to 2019, with continuous subsoiling (S) as the contrast, which set up combination tillage modes of no-tillage and subsoiling to reduce the frequency of subsoiling: subsoiling once two years (NS) and subsoiling once three years (NNS). The effects of reducing the frequency of subsoiling on soil aggregates, carbon preservation capacity of soil aggregates, soil carbon pool composition and carbon pool management index under different tillage treatments were observed after 12 year continuous experiment. 【】(1) Decreasing the frequency of subsoiling improved the content of macroaggregates (R0.25), the content of 0-40 cm soil layer mechanical-stability aggregates (DR0.25) increased by 3.8% and water-stable aggregates (WR0.25) increased by 38.9% under NNS treatment, respectively. NS treatment increased the WR0.25by 41.8%. Meanwhile, NNS decreased the destruction rate (PAD) and unstable aggregate index (ELT) of aggregates, with the mean weight diameter (MWD) and geometrical mean diameter (GMD) significantly increased by 13.3% and 16.6%. (2) The total carbon preservation capacity (TOPC) of the aggregates under NNS and NS was significantly increased. The average carbon sequestration capacity of aggregates in 0-40 cm soil layer under NNS was increased by 10.8%, whereas it was decreased in 20-30 cm soil layer. The carbon preservation ability of aggregates in different sizes indicated that the carbon preservation ability of aggregates with particle size of <0.25 mm was stronger. (3) NNS treatment had no significant effect on the total organic carbon (TOC) content in 0-40 cm soil layer, but increased the TOC content in the 10-20 cm soil layer, reduced stratification effect of surface soil organic carbon, and decreased the TOC content in 30-40 cm soil layer and caused the effect of organic carbon layering in deep soil. (4) The content of active organic carbon (EOC) in the 0-40 cm soil layer under NNS treatment obviously increased by 24.9%. Furthermore, the increase of EOC content lead to higher EOC/TOC ratio, carbon pool activity (A) and carbon pool activity index (AI), with the carbon pool management index (CPIM) increased by 39.8% compared to S. 【】Long-term continuous subsoiling was not conducive to the formation of soil aggregates and the cycle of soil carbon pools. While subsoiling once three years tillage mode helped to reduce the degree of damage about soil aggregates, improve the carbon pool management index and adjust the renewal and cycling of soil carbon pool, which was a suitable tillage model for the region.
Loess plateau; spring maize; subsoiling frequency; soil aggregates; soil carbon pool
10.3864/j.issn.0578-1752.2020.14.008
2019-12-23;
2020-02-19
国家自然科学基金(31671641,31571620)、国家科技支撑计划(2015BAD22B02)
张琦,E-mail:17835424993@163.com。通信作者王小利,E-mail:nwwanxl@nwsuaf.edu.cn。通信作者李军,E-mail:junli@nwsuaf.edu.cn
(责任编辑 杨鑫浩)