刘春煦 高静 赵雨薇 范琳 贾璐铭 胡楠 梅子彧 董博 张倩倩 于海洋
口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院修复科,成都 610041
牙体预备是每位口腔医生必知必会的临床技术,牙体预备的传统方法一是凭借经验,自由手备牙;二是借助金刚砂车针打定深沟备牙;三是在硅橡胶导板指导下备牙。这些传统方法都存在相似的问题,定量控制差,可重复性和精准性低,更依靠医生的经验[1-2],而且很难真正以最终修复效果为指导进行预备,全过程数量和空间关系控制不准。显微精准定深孔预备技术是基于目标修复体空间(target restoration space,TRS)理论,在数量可控的前提下,精准地预备出最终修复所需要的基牙大小,最大程度保留牙体组织,是目前比较准的备牙引导方法[3-5]。另外还有备牙机器人的相关研究,有基于数控切削系统的[6-7],也有通过高功率脉冲激光的[8],但都尚在研究阶段,而且存在精度不高,机器尺寸过大,对邻近健康硬组织保护不足等问题,所以在牙体预备方面机器人暂时不能替代人类。数字化诊疗技术让整个口腔医疗越来越精准和快捷;采用数字化种植导板,通过图形处理技术,在电脑上完成手术规划和导板设计,然后通过切削或3D打印完成制造[9],最终实现了对种植手术的指导。同样,根据TRS理论,结合数字化设计与逆向工程原理,在计算机上设计目标修复体并进行虚拟的牙体磨除和空间数量的设计,最终利用3D打印生成备牙导板,完成从现实到虚拟,从虚拟到现实的转变,全临床路径控制TRS的空间获得及修复体再现,对最少量的理想临床备牙进行精准化指导。
采集患者数据包括牙及牙列的数据、面部数据、咬合颌位的数据,必要时可以拍摄锥形束CT(cone beam CT,CBCT)获取骨的数据。本文以上颌前牙氟斑牙的贴面修复作为例子进行数字化备牙导板技术的讲述;牙及牙列的三维数据通过取模、灌模并模型扫描获得,也可以直接进行口内扫描,更加方便快捷,节约材料和时间[10],但长牙弓的口内扫描存在精度低的问题[11-13]。为了不改变前牙的功能运动,也获取了咬合的数据,并在虚拟架上进行咬合调整。使用面部扫描仪获取了面部三维数据,通过面部三维数据进行美学预测和相应调改(图1)。
根据患者的主诉,综合美观和功能,设计最终的义齿排列和形态,也就是制作数字化的美观诊断蜡型;按照患者的要求,对中切牙和侧切牙切端进行适当的内收,边缘嵴和线角内收,扩宽外展隙,从而使视觉效果更修长,并在虚拟架上做前伸颌侧方的调整,在面部三维数据上进行美学判断和适当修改。这样的目的是事先确定最终修复体在患者口内的空间位置关系,之后的所有设计都以目标修复体的这个空间为基础,再向前推算,类似逆向工程技术[14]。
图1 三维数字数据的获取流程Fig 1 Acquisition of 3D digital data
在完成的目标修复体上,进行数字化的牙体预备手术(图2);预备前需要确定好修复的类型和材料,然后根据修复类型和材料进行标准化的预备,预备完成得到一个理想化的预备体;在预备设计的过程中可对虚拟预备体、修复体和原始模型三者进行截面剖开,对数量空间进行测量,可得到实际预备量、修复体预留厚度、相对于基牙改变的量(图3);在设计过程中可以综合材料力学性能、美学需求、生理功能等,不断修改,设计成为实现目标修复的最佳备牙空间。
完成了虚拟预备,把虚拟转换为实际需要利用数字化导板的方法。导板的使用原理和外形设计至关重要,本文采用打孔定深的原理,使用种植导板设计软件进行打孔定深和外形设计。首先确定好实物车针的规格,然后在软件上设计相一致的虚拟钻针。规格的数据应该包括直径、长度、锥度等,方便设计最好使用柱状的车针。本文使用车针的直径为1.2 mm,选择4.0 mm的刻度线,所以车针长度设计为4.0 mm,为了适应3D打印机的补偿和车针能顺畅进入,虚拟车针直径为1.3 mm。
图2 虚拟目标修复体及在目标修复体上的虚拟牙体预备Fig 2 Target restoration aesthetic wax-up and virtual preparation on target restoration
图3 对虚拟预备体、目标修复体和术前基牙的三维空间分析Fig 3 3D analysis of virtual preparation, target prosthesis and preoperative abutment tooth
每颗牙17个孔,唇舌侧分别7个孔,在长轴中线和横向三等分线的中点上,切端3个孔横向均匀分布。钻孔的方法是导入虚拟车针和虚拟预备体模型的数据,调整虚拟车针的位置和方向,使其垂直于虚拟预备体表面,且两者刚好触碰(图4);实际意义是4.0 mm长的车针以垂直于表面的方向进入,切端刚好钻到虚拟预备体的位置,实现定深的孔洞设计。
导板设计和大部分的咬合板和种植导板类似。本研究采用的病例为前牙预备,所以设计的导板使用牙支持式,为了保证足够的支持,导板后端延伸到第一磨牙处;为了方便就位且稳定性足够,导板的边缘设计在邻牙的颈三分之一处,基牙处导板边缘盖过龈缘,导板的基底模型数据使用初始模型,导板设计完成后进行树脂3D打印成型(图5)。
首先进行试戴,确定完全密合后,开始打孔,直接钻到之前设计的虚拟钻针长度的刻度线上,使刻度线和导板外表面平齐,边钻孔边冲水冷却,钻孔完成后取下导板,用笔标记孔底,磨除其他多余牙体组织,形成肩台,精修抛光(图6)。
前期工作为后续打下良好基础,预备完成后口内扫描,然后利用其余健康牙体组织将目标修复体数据与口内扫描数据匹配,软件计算生成最终修复体。修复体数据进行数控切削和其余后续制作,最终修复体完成后进行试戴和粘接。
研究本技术虚拟钻孔导板的精度,使用三维测量软件对本病例生成的导板和虚拟备牙的模型进行测量,以垂直于每个钻孔引导环表面的方向进行三维剖面处理,测量上下孔缘到虚拟预备体的垂直距离,每个孔测量得2个数据,本研究展示的病例为6颗前牙的贴面修复,舌侧未打孔,所以每颗牙10个孔,一共测得120个数据。测得数据的散点图,并绘制回归直线(图7);由图可见,散点的集中趋势很好,回归直线方程y=0.000 2x+3.982 3,与理想直线y=4非常接近。然后用Bland-Altman分析[15-17]进行实际深度和理论深度的一致性检验,并绘制Bland-Altman图(图8);X轴为每个实际数据和理论数据的平均值,Y轴为实际数据和理论数据的差值。在Bland-Altman一致性范围之外的点共有6个,所以有95%的点在范围之内,即实际数值和理论数值的一致性较好。本样本的标准差为0.029 95 mm,差值绝对值的平均数为0.025 mm,接近于3D打印的每层厚度。综上说明了这种虚拟钻孔的导板的设计方式及其算法有很高的精确性。
图4 虚拟钻针的设计和在虚拟预备体进行钻孔模拟Fig 4 Design of virtual drill and drilling simulation in virtual preparation
图5 牙体预备导板的三维模型和实体Fig 5 3D model and printed object of tooth preparation guide plate
图6 3D打印牙体预备导板的临床操作步骤Fig 6 Clinical procedure of tooth preparation with 3D printing guide plate
图7 虚拟打孔深度的散点图及回归直线Fig 7 Scatter plot and regression line of virtual drilling depth
图8 虚拟打孔深度的Bland-Altman分析图Fig 8 Bland-Altman analysis diagram of virtual drilling depth
研究本病例实际预备体和虚拟预备体的差别,对预备完成的基牙和邻牙进行口内扫描,将扫描数据与虚拟预备的数据基于后牙进行匹配(图9),并对每颗牙唇面的颈1/3、中1/3、切1/3、切端分别测量2个三维表面的距离,以理想差值0作为对照组,对5组数据进行方差分析和LSD多重对比,结果显示:切1/3和颈1/3与对照组的差异存在统计学意义(P<0.05),切1/3与其余各组的差异均存在统计学意义(P<0.05)。从匹配图中也可看出,后牙牙面基本为蓝色,匹配效果较好,有一侧后牙为绿色,由长牙弓口内扫描产生的误差导致;预备基牙的偏差与统计分析结果一致,主要出现在切缘线角处。
图 9 实际预备与虚拟预备匹配偏差分析Fig 9 Analysis of deviation between actual preparation and virtual preparation
本文讲述了一种新的备牙引导技术:数字化定深孔导板引导的精准牙体预备技术,通过把牙体预备的操作转移到计算机上,再在计算机上用虚拟的预备体指导实际临床的预备操作。这种技术的优点是:术前预设计,基牙、预备体和修复体三者的数量关系和空间关系完全量化和可视化,而且可以从各个角度进行调整修改;通过备牙导板的设计,把数字化的虚拟向实体转换,把台前的操作转移到了幕后,而且大大减少了临床操作时间,降低了医生操作难度。通过测试分析,本技术中备牙导板的钻孔设计及其算法非常精准,可以认为每一个孔都精确地止于虚拟预备体的空间位置。因此当导板戴到位,实际车针长度准确的情况下,实际的钻孔深度可以非常精准。
在实施上述技术过程的基础上,可根据不同实际情况进行一些细节的改变:1)在虚拟预备前,可以CBCT建模或通过研究数据设计出牙髓、牙本质的三维图形,虚拟预备中能得到更好的提示,在严重倾斜或扭转的活髓牙病例中,能更好防止穿髓,贴面病例中也可以更好实现釉质粘接;2)钻针可以进行改进,设计止停装置,钻孔操作时更方便;3)在保证强度的前提下,导板可采用更多的镂空设计,提高冲水冷却的效率;4)可以使用更细的车针,设计更多的钻孔,可以更好指导临床预备,但是会增加临床操作时间。
利益冲突声明:作者声明本文无利益冲突。