采后果蔬热处理条件的传热特性分析

2020-05-04 07:57丁玉先张娜陈爱强
食品与发酵工业 2020年7期
关键词:脐橙芒果果蔬

丁玉先,张娜*,陈爱强

1(华东交通大学 土木建筑学院,江西 南昌,330013)2(华东交通大学 土木工程国家实验教学示范中心,江西 南昌,330013) 3(天津商业大学,天津市制冷技术重点实验室,天津,300134)

采后热水处理作为一种无毒、无农残、安全的保鲜方法,一直受到领域内颇多关注。大量国内外研究表明,热水处理在提高果蔬贮藏品质方面效果显著,苹果经50~52 ℃热水处理3 min能有效降低贮藏过程中的腐烂率[1],因热处理引起的热休克诱导了抗菌反应,有效抑制了病菌活性,同时刺激果实防御反应[2]。ZHANG等[3]研究发现55 ℃热水处理芒果10 min可保持较高的聚半乳糖醛酸酶以及较低的果胶甲酯酶活性,提高货架品质。“Dahshan”黄瓜经55 ℃热水处理后,贮藏期内无腐烂现象[4],硬度、颜色等指标均高于对照[5],维持了细胞壁结构的完整性。WU等[6]认为45 ℃热水处理能显著抑制“巨丰”葡萄采后冷害、失重率及软化情况,因为大多数蛋白的上调与防御反应和氧化还原代谢有关,对环境胁迫产生了生理适应性。“永丰”草莓经44 ℃热水浸泡20 min后可保持较高的色泽和硬度,减少糖和可滴定酸的损失。50 ℃、5 min的热水处理对抑制柑橘呼吸强度,提高多酚氧化酶、过氧化物酶和超氧化物歧化酶等酶活性方面效果同样显著[7]。

从传热角度出发,热水处理过程的实质是能量从高温介质不断传递至低温果蔬组织内部的过程,研究果蔬传热过程对于探索其产生保鲜效果的机理具有一定意义,目前热处理方面的研究多侧重于不同时间及温度对不同果蔬产生的生理或品质影响,而在传热方面的研究较少。CHEN等[8]认为不同类型果蔬,其内部温度的分布和最佳的处理时间是影响处理效果的关键因素,并对传热过程进行模拟,发现模拟值与实测值间的均方根误差低于8%,从而验证了模拟的可靠性。同时热水是一种比热空气更有效的加热介质[9]。为更全面的从传热角度探索热处理产生保鲜效果的内在因素,本文针对苹果梨、草莓、黄瓜、葡萄、芒果、脐橙6种果蔬,运用Fluent模拟软件对热水处理过程进行传热模拟。取单位时间内温度变化量(℃/min)作为传热速率,传热速率变化表征着果实和传热介质热量的交换程度,通过模拟得到不同时刻果肉中心温度变化速率及组织温度分布图,探究不同果蔬热激条件与传热特性之间的关系。

1 试验方法及模型

1.1 模型精度验证装置

运用“先锋”樱桃热水处理过程验证传热模型的可靠性。验证装置如图1所示:T型热电偶,天津中环温度仪器有限公司,精度±0.1 ℃;JULABO恒温水槽,上海欢奥科技有限公司;GP10无纸温度记录仪,苏州洋嘉电子有限公司。

图1 模型精度验证装置

1.2 物理模型简化

根据6种果实实物基本外形建立模型(图2),并认为果实组织按均匀同质处理,热物性采用当量热物性参数计算;果实组织物性仅受温度影响;热处理不改变果实主要成分组成,不考虑细胞组织骨架可能发生的形变;忽略表面水分蒸发对果实温度的影响;热量传递只在沿果实径向的一维方向进行[9]。

a-苹果梨;b-芒果;c-脐橙;d-草莓;e-葡萄;f-黄瓜

1.3 数学模型建立

热水处理过程中,热量通常以对流的形式从加热介质传至果实表面,对流传热系数可由公式(1)计算:

(1)

式中:d,果实直径,m;Nu,无量纲努塞尔系数;u,加热介质流速,m/s;vf,介质运动黏度,m2/s;kf,介质导热系数,W/(m·℃)。其导热基本控制方程如公式(2)所示:

(2)

式中:k,果实导热系数,W/(m·℃);t,加热时间,s;Cp,果实比热容,J/(kg·℃);T,果实加热时的瞬态温度,℃;Q,果实内热源,W/m3;ρ,果实密度,kg/m3;x、y分别为果实二维几何截面内的横纵坐标,m。

在20~55 ℃温差范围内,果蔬物性受温度影响不大,Cp、k和ρ可视为定值,加热过程中,无内热源,果实呼吸作用较小也可忽略,因此Q=0。公式(2)可转化为直角坐标系下的二维非稳态导热微分方程[17]。

(3)

式中:α为热扩散系数,m2/s。

1.4 果蔬热处理条件、模型尺寸及热物性参数

通过文献调研[2,6,10-20]得到上述6种果蔬的热水处理条件,热特性参数作为输入模型所必须的材料属性,参数见表1,物理模型尺寸如图2所示。

1.5 网格无关性验证

在Gambit中建立几何模型及网格划分,以苹果梨(45 ℃、30 min)传热为例,进行网格数量与计算结果无关性的验证。计算区域采用二维四边形网格,图3为苹果梨在不同网格数量下,中心温度随时间变化情况,通过3种不同网格间隔(0.003、0.001及0.000 5)分别得到不同网格数(480、4 450及17 380),对比发现较疏与较密网格间温度最大相差0.19 K,认为该模型可用于本文的模拟研究。

表1 热处理介质热物性参数及热激条件

图3 网格无关性验证

2 模拟结果及分析

2.1 传热模型精度验证

42 ℃热水浸泡樱桃10 min,用T型热电偶对靠近樱桃果核边缘处果肉进行实时温度测量,每个测量3次取平均值,由图4可知,整体看实测值与模拟值变化趋势相似,均方根误差为7.8%,可以认为该模型精度相对准确。

图4 樱桃热水处理模拟值与实验值

2.2 果蔬热激传热特性研究

2.2.1 中心传热速率模拟分析

果心温度传热速率(υ)变化如图5所示,总体来看,υ均先升后降,热激温度相近的处理组间传热效果基本一致。同一品种,同一时刻,υ随着温度的增加而上升,这是由于果心初温一定时,表面温度越高,对温度的反应迅速,一定时间内传热越快。某些种类间,曲线特征相似,如脐橙和苹果梨,在15~20 min时达到峰值,110 min后开始趋于水平,芒果和黄瓜于10~15 min达到峰值,70 min后趋于水平。

各种类间分别达到峰值和水平的时间各不相同,牛露[21]认为果实特征尺寸对果心温度变化影响较大,因此在模拟或实验时,应将果实进行尺寸等级分类。由传热学可知,傅里叶数Fo与时间、热扩散系数α及特征尺寸有关,该值越大,热扰动越能深入果实内部,但不同果蔬种类间所述参数不同,果心达到加热介质的时间也存在差别,如45 ℃时,苹果梨υ趋近水平的时间约为黄瓜的1.3倍,由图1可知,苹果梨特征尺寸大于黄瓜,但两者α相近,反之,苹果梨和脐橙尺寸相近,α相差较大,但υ水平时间段一致,因此热处理条件和果实外形特征紧密相关,这和黄智等[9]认为传热速率主要受果实大小和形状影响的结论相似。

a-苹果梨;b-芒果;c-草莓;d-脐橙;e-黄瓜;f-葡萄;图中圆圈为已知跳出处

2.2.2 果蔬种类与传热特性对保鲜效果的影响

对采后果蔬进行热处理可使其产生热激蛋白(heat shock protein,HSP),一种使植物机体蛋白免遭损害及修复损伤的蛋白质,从而增强植物细胞的耐热性,延长果实贮藏期。果实耐贮性和自身生理特性(如产地、呼吸强度、蒸腾作用等)及物理特性(如果径、皮厚等)有关。综合分析得知,苹果梨和脐橙相比于其他果蔬,耐贮性最高,黄瓜、芒果次之,草莓和葡萄最低。尹海蛟等[22]将黄瓜热激处理过程划分为“发生区”(υ上升)、“过渡区”(υ下降)及“平衡区”(υ基本为0),当处理条件使其处于“过渡区”时,能量交换较为充分,可提高果实内部某些生理指标,有利于果蔬贮藏。

一般来说,果实高温热激3~5 min时,HSP的信使核糖核酸(mRNA)合成量迅速增加,如图5可知,苹果梨、脐橙耐贮藏性最强,在已知条件位于υ上升期(苹果梨0~0.7;脐橙0~0.55),此时和介质能量交换较少,实验证明苹果梨在该范围内(如45 ℃、10 min),其PAL、POD或PPO等酶活性得到显著提升,同时抑制果实病斑直径的扩展[10-11];40 ℃、20 min或50 ℃、5 min的热水浸泡可有效降低脐橙冷害发生率[7],因此对于该类贮藏性较强的果实,自身的生理优势配合短时热处理,其诱导的HSP指标同样能较好的维持后期保鲜品质。黄瓜和芒果耐贮性一般,热处理条件处于传热速率υ下降区(芒果2.7~0.5;黄瓜1.1~0.3),此时能量交换比较充分,该范围内可维持果实贮藏期良好的硬度及细胞膜通透性[13-14,19-20]。但草莓和葡萄处理条件处于υ接近水平(草莓0.3~0;葡萄1~0),该范围内研究发现草莓经44 ℃、20 min热水处理后,呼吸速率明显降低,防腐抑菌效果增强[15-16];葡萄经55 ℃、3 min或6 min热水浸泡可有效抑制Vc含量的下降,同时维持较高的POD、CAT和SOD等酶活性[17-18]。这是由于该类果蔬贮藏性极低,热处理必须使得介质能量交换完全,强化传热效果,为后期贮藏保鲜提供更多有利条件。

2.2.3 传热特性与热伤害分析

各处理条件下果蔬组织温度分布如图6所示,横坐标“果径”代表以果实质心处水平方向长度。不同热处理过程所取得的效果存在明显差异,若处理不当可能使得保鲜效果不明显或产生不可逆热伤害,实验用热水浴处理樱桃,发现在低温下延长处理时间,果实易产生点蚀和凹陷,高温下易发生茎褐变[23]。

热处理后,靠近果实表面的温度变化明显大于中心处,这是由于果心处对温度具有滞后性,且“高温长时”和“低温长时”传热效果显著优于其他处理方案,但存在一定缺陷,如前文所述,某些耐贮性低的果蔬,建议使其υ接近平衡状态,但此时果实容易进入“平衡逆境状态”,该区域内能量交换基本停止[22],水分子通过微孔进入果实细胞,容易发生涨破,降低自身防御体系[24],因此必须考虑时间阈值,避免细胞损伤。草莓中心和表皮处最大相差1 ℃左右,该条件避免了热伤害,同时传热效果理想。葡萄曲线基本持平,6 min时,两端温度相差0.3 ℃,此时虽保证了处理效果,但容易产生热伤害,因此不建议再继续延长处理时间。热处理后苹果梨和脐橙果皮和中心处温度最大相差30 ℃,芒果、黄瓜最大相差分别为22 ℃、4 ℃,可忽略热伤问题。

a-苹果梨;b-芒果;c-草莓;d-脐橙;e-黄瓜;f-葡萄

3 结论

热处理能有效提升采后果蔬贮藏品质,但温度-时间是关键性因素,本文对已知热激条件的果蔬品种进行传热模拟,从传热学角度对其他果蔬品种的热处理条件预测提供了一种新的思路,得出以下结论:

(1)果蔬热处理传热速率主要受尺寸大小和形状因素影响,因此进行实验或模拟时,应对果实进行尺寸等级分类,节省处理时间。

(2)不同果蔬在不同条件下,温度传热效果截然不同,这和自身生理或物理特征关系密切,应根据该品种各方面特征以及传热特性确定热激条件。生理优势较大,耐贮的种类,使其果心传热速率处于上升阶段,贮藏性一般或较差,传热速率需下降或趋于水平,使果肉和传热介质能量交换较为充分,为贮藏期保鲜提供更多有利条件。

(3)“高温长时”和“低温长时”传热效果优于其他处理,但温度过高或时间过长均会产生不可逆热伤害,因此在进行某品种的热处理条件预测时,可采用“低温长时”方案,结合数值计算方法确定时间阈值,若采用高温处理,建议进行是否产生热伤害的预实验。

猜你喜欢
脐橙芒果果蔬
脐橙连上物联网 扫码便知“前世今生”
果蔬PARTY
我才不要穿
奇思妙想的果蔬们
清洗果蔬农残 你做对了吗
这些果蔬能保护呼吸道
小洞会“咬”人
小洞会“咬”人
赣南脐橙整形修剪技术
赣南早脐橙在几种中间砧木上高接换种的表现