赵敏华 刘吉 徐晨曦 蔡晓锋 王全华 王小丽
摘 要: 植物硝酸盐转运蛋白(NRT)不仅参与硝态氮的吸收及运转,还通过介导激素转运、信号传递,或直接作为其他离子转运子参与植物根系生长发育及其他矿质离子的吸收运转等过程,并影响植物在这些离子胁迫下的耐受表现。部分NRT可能在植物养分综合利用及抗性培育中同时具有重要作用。该文从根系发育及非生物胁迫两方面综述了NRT的最新研究进展,总结了其可能的作用机制。
关键词: 硝酸盐转运蛋白(NRT); 侧根; 钾(K); 镉(Cd); 磷(P); 盐胁迫
中图分类号: Q 945.12; S 60 文献标志码: A 文章编号: 1000-5137(2020)06-0709-10
Abstract: Nitrate transporters (NRT) can not only participate nitrate uptake and transport in plants,but also play key roles in many other physiological processes,such as root system development,uptake and transport process of other mineral ions in plants through hormone transport,signal transduction and even act as other ion transporter,and accordingly affect the plant stress performance which related to these ions.Some NRT members may act as candidate genes for improving plant multiple-nutrition use and stress tolerance.This article reviewed the recent NRT research progress from two aspects:root development and abiotic stress.The possible mechanisms of NRT in these processes were also discussed.Key words: nitrate transporter (NRT); root system; potassium (K); cadmium (Cd); phosphorus (P); salt stress
0 引 言
硝态氮(NO3--N)是植物最重要的氮素來源之一。植物对NO3-的吸收和体内运转依赖细胞膜上的硝酸盐转运蛋白(NRT),并在细胞膜质子泵(H+-ATPase)协助下执行主动运输过程。目前已在多个物种中鉴定出大量硝酸盐转运蛋白[1],分别属于不同的亚家族,如NRT1(NPF),NRT2,CLC(氯离子通道蛋白)等[2]。部分NRT的生物学功能已得到验证,并在植物适应NO3-胁迫过程中发挥重要作用[2-3]。越来越多的研究发现,植物硝酸盐转运蛋白不仅能够吸收、运转NO3-,而且在植物根系发育、离子运转以及逆境响应中发挥着重要作用[4]。此外,考虑到植物养分高效利用是建立在各营养离子互作的基础上,并与植物养分胁迫等非生物胁迫过程密切相关,因此单纯关注NRT在NO3-吸收运转方面的作用还不够,有必要进一步分析其在其他离子吸收运转中的调控作用,探寻植物离子间互作的分子机制,进而在系统生物学水平上综合提高植物养分的利用效率。同时,由于根系是植物吸收离子的主要部位,理想的根系是植物高效吸收养分的基础,本文作者从根系发育及非生物胁迫(主要为除NO3-胁迫外的其他矿质离子胁迫)两方面综述了目前NRT研究的最新进展,以期充分认识NRT在根系发育和离子互作中的作用机制,为后续研究提供参考依据。
1 根系发育
发达的侧根有利于增加根系吸收面积,提高营养吸收能力,缓解低营养胁迫对植物生长的抑制。研究证实,拟南芥AtNRT1.1参与侧根的发育,并受外源氮素浓度水平的调节。局部供应NO3-,可以显著促进拟南芥供氮一侧侧根的生长[5]。根系局部供应NO3-条件下,NO3-低浓度一侧,AtNRT1.1将侧根生长素转移[6],并通过抑制生长素合成基因TAR2及生长素内流载体LAX3的表达,抑制侧根的发育[7]。相反,NO3-高浓度一侧AtNRT1.1对生长素输出功能受抑制,生长素大量积累,促进侧根生长[5,8]。CIPK23通过调节AtNRT1.1结构中第101位苏氨酸(Thr-101)的磷酸化水平,切换其在不同NO3-浓度下的生长素运输功能[9]。NO3-可能通过转录后调控参与AtNRT1.1介导的侧根发育过程[10]。AtNRT1.1还作为NO3-信号受体参与NO3-信号对侧根生长的影响,首先NRT1.1将感受到的局部高浓度NO3-信号传导给Arabidopsis Nitrate Regulated 1(ANR1),促进ANR1的表达,并可能在MADs-box相关基因参与下,调控未知的下游基因,促进侧根的伸长[11-12](图1(a))。此外,也有研究认为NO3-响应系统中大量转录因子,如CBL7,NLP7,TCP20,NRG2,RSA1,及LBDs等,也参与了NRT1对根系发育的调控,但缺乏直接实验结果的证实[13]。
均匀供氮条件下,中低等氮物质的量浓度(0.5~10 mmol?L-1)能促进拟南芥侧根生长,而极低或极高氮浓度(大于10 mmol?L-1)则将抑制侧根生长;5 mmol?L-1氮条件下,生长素经AtNRT1.1运输后,其浓度变化信号传递给生长素受体Auxin Signaling F-Box 3(AFB3),进而调控一些对生长素敏感的基因(如ARF,NAC4和OBP4)的表达,导致植物主根伸长受抑制,并诱导侧根的生长[14]。此途径中,AFB3很快被miR393抑制,后者受NO3-同化还原后的有机氮产物诱导,进而抑制侧根的生长,说明植物侧根的发育调控极其复杂,受体内碳氮平衡的动态调节[15](图1(b))。
AtNRT1.1还参与拟南芥根毛形成(图1(b))。在5 mmol?L-1 NO3-浓度下,AtNRT1.1将硝酸盐信号传递给转录因子TGA1/TGA4,后者直接调节根毛细胞发育特异基因CPC的表达,促进拟南芥根毛的形成[16]。TGA1/TGA4还能通过影响AtNRT2.1和AtNRT2.2的表达参与侧根形成[14]。在极低NO3-浓度(0.01 mmol?L-1)条件下,AtNRT2.1抑制侧根起始[17],而在0.5 mmol?L-1 NO3-浓度条件下,AtNRT2.1促进侧根原基发育,并且通过调节NO3-的吸收量来决定侧根发育状况[18]。
水稻OsNRT2.1参与不定根伸长生长。在0.5 mmol?L-1 NO3-浓度下,过表达水稻OsNRT2.1增加了水稻总根长,生长素转运蛋白基因(OsPIN1a/b/c和OsPIN2)的表达量也显著增加;生长素抑制剂(N-1-萘酚酸,NPA)处理下,野生型(WT)和过表达植株的根长及基因表达无显著差异,以上说明OsNRT2.1参与了依赖NO3-的生长素运输过程,过表达OsNRT2.1有利于根的伸长和生长[19]。还有研究发现,0.2 mmol?L-1 NO3-浓度下,OsMADS57参与根系伸长、生长,而OsNRT2.3a可以与OsMADS57直接互作,推测OsNRT2.3a可能在OsMADS57调控的根系伸长中起作用[20]。此外,在0.5 mmol?L-1 NO3-浓度下,敲除黄瓜的CsNRT2.1基因显著降低了黄瓜的根长和侧根数,说明CsNRT2.1可能也参与植物根系的生长调控,但具体机理未见报道[21]。
水稻高亲和硝态氮转运蛋白OsNRT2的伴侣蛋白OsNAR2.1参与水稻侧根发育[22]。YUAN等[23]发现:与野生型植物相比,在低NO3-浓度(0.2 mmol?L-1)下敲除OsNAR2.1能显著抑制侧根形成,降低根系NO3-含量,同时生长素由地上部到根部的运输也减少;局部补充根系NO3-含量并不能消除OsNAR2.1基因突变对侧根的抑制效应,说明OsNAR2.1可能同时通过NO3-吸收和NO3-信号途径参与低NO3-浓度下水稻侧根的发育。OsMADS57可能作为OsNAR2.1的下游基因参与侧根发育的调控[24]。
除上述NRT1.1,NRT2及NAR外,研究还发现AtNRT1.5参与缺磷(P)和缺钾(K)条件下植物根系的发育调控。CUI等[25]发现:缺P条件下atnrt1.5突变体主根变长,侧根减少,乙烯信号途径可能参与了缺P条件下AtNRT1.5对植物根系发育的调控。缺K条件下,atnrt1.5突变体侧根密度显著降低,但具体的作用机制尚不清楚[26]。
NRT除通过影响生长素的运输与合成参与根系结构调控外,还参与脱落酸(ABA)、乙烯介导的根系发育调节。ABA、乙烯是抑制根系发育的重要激素,通过过高氮浓度诱导ABA和乙烯信号途径上调,进而抑制生长素合成及生长素信号途径,并通过调节AFB3-miR393途径抑制侧根发生[27]。一些参与ABA运输及乙烯信号途径的NRT在上述侧根抑制过程中起到一定作用。TIAN等[28]发现:高NO3-浓度(10 mmol?L-1)下,当乙烯合成增加的同时,AtNRT1.1表达水平上调而AtNRT2.1表达下调,进一步研究证明,AtNRT1.1和AtNRT2.1表达受乙烯影响,高氮下NRT1.1上调和NRT2.1的下调受乙烯合成抑制剂(AVG)抑制,而被乙烯合成前体(ACC)诱导。chl1-5,nrt2.1-1,以及乙烯信号突变体(etr1和ein2)中的NRT1.1和NRT2.1表达模式不受高氮影响,说明乙烯是影响AtNRT1.1和AtNRT2.1表达的重要调控因素,通过影响AtNRT1.1和AtNRT2.1表达参与高氮浓度下拟南芥根系形态的构成。除拟南芥外,也有报道发現蒺藜苜蓿MtNPF6.8与ABA共同参与NO3-对主根生长抑制的调控。mtnfp6.8突变体中NO3-对主根伸长的抑制作用消失,外源ABA能恢复nfp6.8突变体中NO3-对主根伸长的抑制作用;爪蟾卵母细胞电生理实验发现,MtNPF6.8具有ABA转运功能,其作者推测MtNPF6.8作用于ABA上游,参与主根生长的调控[29]。
以上研究表明:NRT在根系发育调控中发挥重要作用,既可以作为根系生长发育关键激素生长素、ABA等的运转载体,又参与其信号转导途径,并可能从转录、转录后调控等多个调控水平介导根系形态构成。后续有必要深入开展NRT调控途径上下游基因的挖掘,完善NRT介导的根系发育调控通路,为深入解析植物根系发育调控机理提供新思路。
2 NRT与非生物胁迫
植物吸收离子时,不同离子间存在协同或拮抗等互作效应。有研究认为增加地上部阳(阴)离子的含量,在一定程度上会刺激负(阳)离子的吸收和转运[47]。植物对NO3-的吸收过程受其他离子的影响,并也影响着其他离子的吸收运输过程[48],如充足的NO3-有助于水稻中镉(Cd)的积累[49],而具有高氮素利用率(NUE)的甘蓝对Cd胁迫更敏感[42];过量的铜离子(Cu2+)会降低水稻根系对NO3-的吸收[50]。NRT作为NO3-吸收转运蛋白,已被发现能通过调节NO3-转运、信号途径,或直接作为离子转运子影响植物对其他离子(如K+,Zn2+,Na+,Fe,Cd2+,Cu2+,Pb2+,Cl-)的吸收及体内运转过程,进而调控植物对这些离子胁迫的耐受性(表1)。2.1 NRT1.1与非生物胁迫
AtNRT1.1是双亲和硝酸盐转运蛋白,在高、低亲和性NO3-吸收系统中均发挥重要作用。充足NO3-供应条件下,AtNRT1.1对根系硝酸盐的吸收贡献率能达到70%左右[51]。考虑到植物离子间吸收的相互影响,推测AtNRT1.1介导大量NO3-吸收时会影响植物对阳离子的吸收,研究确实也发现AtNRT1.1参与调控植物Zn2+,Pb2+,Fe2+,NH4+,H+,Cd2+,Na+,K+等多个阳离子的吸收过程(表1)。
AtNRT1.1跨膜转运NO3-时均会耦合2份H+进行协同转运,同时伴随ATP 酶水解ATP向外释放1份H+,即从生长介质中每吸收一份NO3-,会消耗一份H+,进而导致根际pH值上升,因此,AtNRT1.1介导的NO3-吸收有助于缓解H+胁迫对植物的伤害[35]。此外,由于介质碱化效应降低了培养土壤Pb2+的生物可利用性,AtNRT1.1还能够提高植物对Pb2+的耐受力[31]。
AtNRT1.1还能参与植物Cd胁迫耐受性调控,但作用机制与AtNRT1.5/1.8不同。后两者通过调控Cd2+在地上地下的分配从而影响Cd2+胁迫耐受性,而AtNRT1.1通过间接调节根部吸收Cd2+的量,负向调控植物对Cd2+胁迫的耐受性,此过程依赖NO3-的吸收;可能由于NO3-是Cd2+的反离子,抑制根系NO3-吸收可同时减少植物对Cd2+的吸收,从而减轻Cd2+对植物的毒害[37]。相似的解释可能也适用于AtNRT1.1介导的植物Zn2+,Na+,NH4+离子吸收转运过程[30-31,38]。
K+作为NO3-重要的反离子,两者在吸收转运上存在明显的正相关关系,也是AtNRT1.1影响植物对K+吸收的因素之一。当外源K+,NO3-供应充足时,K+,NO3-吸收及向地上运输增多,相反,当外源供应不足时,两者吸收及地上部分转运均下降[48]。K+,NO3-吸收运转的相关关系还与两者早期信号转导途径部分重叠有关:在缺乏外源K+条件下,Ca2+将信号传递给CBL1/CBL9,激活CIPK23活性,CIPK23通过磷酸化激活AKT1(低亲和K+转运子)/HAK5(高亲和K+转运子)转运活性,CIPK23同时还能改变NRT1.1第101位苏氨酸位点的磷酸化状态,转换AtNRT1.1的低亲或高亲活性,使植物响应外源硝酸盐浓度的变化[51]。
2.2 AtNRT1.5,AtNRT1.8与非生物胁迫
逆境条件下,植物地上NO3-含量减少,更多的NO3-在根中积累,这种逆境下植物NO3-向根分配(SINAR)现象被认为与植物胁迫耐受能力密切相关[3]。当NO3-在根系中积累的同时,Cd2+、盐(NaCl)离子等在渗透及离子平衡等作用下可能也在根中积累,向地上部分运输减少,从而减轻了Cd2+、盐对地上部分的毒害。研究证实AtNRT1.5与AtNRT1.8参与了植物SINAR过程,其中AtNRT1.5负调控植物耐Cd2+、盐及干旱胁迫,而AtNRT1.8能提高植物Cd2+耐受性[40-41]。两者相反的调控作用与其在调节NO3-地上根系分配中的不同作用有关:AtNPF7.3(AtNRT1.5)负责木质部NO3-装载,将NO3-运送到地上部分[52],而AtNPF7.2(AtNRT1.8)将NO3-从木质部卸载,有利于NO3-在根系积累[41]。ET/JA(乙烯/茉莉酸)-NRT介导的信号途径通过促进AtNRT1.8表達、抑制NRT1.5表达参与了SINAR过程[53](图2(a))。
LIU等[54]发现ABA也参与了AtNRT1.5对植物Cd2+胁迫响应的调控:Cd2+胁迫诱导植物体内ABA合成,抑制AtNRT1.5表达(NRT1.8表达不受影响),从而促进NO3-向根部积累,增强植物Cd2+耐受性;与此同时根系液胞质子泵活性(V-ATPase,V-PPase)增强,Cd2+向根液胞中贮存,减少细胞质中Cd2+积累,进一步增强了植物对Cd2+的耐受性(图2(b))。施用外源ABA能够抑制甘蓝中的Cd2+积累。
除NRT1.1外,NRT1.5也参与植物对K+的吸收利用。NRT1.5不仅是NO3-长距离转运蛋白,还作为K+转运子,直接参与K+经由木质部,由根向地上部分的运输[39,52,56]。低K+(0.1 mmol?L-1)条件下,nrt1.5突变体功能回补后缺K+表型消失,说明NRT1.5能参与植物耐低K+响应[39]。转录因子MYB59可与NRT1.5启动子区域结合,调控NRT1.5的表达,高K+,NO3-浓度下,MYB59上调NRT1.5表达,促进K+,NO3-向地上部分运输;反之抑制NRT1.5表达,降低地上部分K+,NO3-积累[57]。
2.3 其他NRT与非生物胁迫
其他NRT成员也参与植物非生物胁迫响应。拟南芥CLCa突变体atclca-2中液胞CLCa转运体活性受抑制,减少了与液胞Cd2+转运子CAX4对质子泵的竞争,从而促进了CAX4介导的液胞众Cd2+的积累,提高了植物对Cd2+胁迫的耐受性[42]。在盐胁迫下,突变体atnpf2.3 向地上部分转运的NO3-减少,地上部分NO3-含量降低,生长受抑制[45],AtNPF2.3可能通过影响NO3-吸收改变盐胁迫表型。
AtNPF2.4和AtNPF2.5通过不同方式参与植物Cl-调节,影响植物对盐胁迫的耐受性。AtNPF2.4负责木质部Cl-装载,参与了Cl-在植物体内的长距离运输。敲除npf2.4后地上部Cl-累积减少,而过表达npf2.4则使Cl-增加,说明NPF2.4参与了在盐胁迫下拟南芥根系木质部Cl-的调节[43]。AtNPF2.5表达受NaCl显著诱导,与野生型相比,拟南芥npf2.5 T-DNA敲除突变株的根Cl-流出量显著降低,而Cl-在地上部大量积累量,说明AtNPF2.5参与地上部和根部的Cl-卸载[44],有助于提高植物对盐胁迫的耐受性。
水稻中发现NRT与磷吸收利用有关。水稻中过表达OsNRT2.3b能显著提高植株总P含量[58]。HU等[46]发现:在NO3-,P均充足条件下,osnrt1.1b突变体生长迟缓,推测OsNRT1.1b可能与植物P吸收途径有关联。进一步研究发现:在NO3-充足条件下,OsNRT1.1B通过水解P信号阻遏物OsSPX4并释放P信号关键转录因子OsPHR2,激活P同化基因,参与了植物P信号的传导过程。MEDICI等[59]发现:NRT1.1还通过与E2泛素结合酶PHO2在转录水平的相互影响,参与植物缺P响应途径,证实了NRT1.1在植物氮磷交互信号途径中的重要性。
以上研究結果说明,NRT不仅对于氮营养意义重大,在其他养分离子的吸收运转中也发挥重要作用。开展NRT介导的其他矿质离子吸收运转研究,将有助于阐明离子吸收间的协作或拮抗机制,对综合提高植物养分吸收利用效率,降低有害离子积累具有重要意义。
3 总 结
植物NRT不仅参与NO3-的吸收及运转,还能通过激素运转、信号转导途径参与植物根系生长及构型调控;其能通过NO3-吸收、信号传导或直接参与目标离子吸收运转等途径,参与植物对其他离子的吸收利用,并影响与这些离子胁迫相关的各种非生物胁迫表型。部分NRT参与根系发育与非生物胁迫的反应比较明确,但作用机制还有待进一步深入研究。部分兼顾根系发育、营养吸收转运和抗逆响应的NRT可能在综合改良作物养分利用效率及抗逆性中发挥重要作用,具有潜在的应用价值。但是目前针对NRT的研究主要集中在拟南芥等模式作物上,在其他重要经济作物中的相关研究还较少,后续有必要在其他作物中开展相关研究,充分挖掘NRT在作物养分利用及非生物胁迫中的潜力,解析NRT在多种养分或重金属离子吸收利用中的调控途径,为综合提高植物养分利用效率及品质改良提供理论基础。
参考文献:
[1] WITTGENSTEIN N J,LE C H,HAWKINS B J,et al.Evolutionary classification of ammonium,nitrate,and peptide transporters in land plants [J].BMC Evolutionary Biology,2014,14:11.
[2] DECHORGNAT J,NGUYEN C T,ARMENGAUD P,et al.From the soil to the seeds:the long journey of nitrate in plants [J].Journal of Experimental Botany,2011,62(4):1349-1359.
[3] ZHANG G B,MENG S,GONG J M.The expected and unexpected roles of nitrate transporters in plant abiotic stress resistance and their regulation [J].International Journal of Molecular Sciences,2018,19(11):e3535.
[4] 宋田丽,周建建,徐晨曦,等.植物硝酸盐转运蛋白功能及表达调控研究进展 [J].上海师范大学学报(自然科学版),2017,46(5):740-750.
SONG T L,ZHOU J J,XU C X,et al.Progress in function and regulation of nitrate transporters in plants [J].Journal of Shanghai Normal University (Natural Sciences),2017,46(5):740-750.
[5] BOUGUYON E,GOJON A,NACRY P.Nitrate sensing and signaling in plants [J].Seminars in Cell and Developmental Biology,2012,23(6):648-654.
[6] BEECKMAN T,FRIML J.Nitrate contra auxin:nutrient sensing by roots [J].Developmental Cell,2010,18(6):877-878.
[7] MAGHIAOUI A,BOUGUYON E,CUESTA C,et al.The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate [J].Journal of Experimental Botany,2020,71:4480-4494.
[8] KROUK G,LACOMBE B,BIELACH A,et al.Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants [J].Developmental Cell,2010,18(6):927-937.
[9] ZHANG X,CUI Y,YU M,et al.Phosphorylation-mediated dynamics of nitrate transceptor NRT1.1 regulate auxin flux and nitrate signaling in lateral root growth [J].Plant Physiology,2019,181(2):480-498.
[10] BOUGUYON E,PERRINE-WALKER F,PERVENT M,et al.Nitrate controls root development through posttranscriptional regulation of the NRT1.1/NPF6.3 transporter/sensor [J].Plant Physiology,2016,172(2):1237-1248.
[11] REMANS T,NACRY P,PERVENT M,et al.The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches [J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(50):19206-19211.
[12] DESNOS T.Root branching responses to phosphate and nitrate [J].Current Opinion in Plant Biology,2008,11(1):82-87.
[13] ASIM M,ULLAH Z,OLUWASEUN A,et al.Signalling overlaps between nitrate and auxin in regulation of the root system architecture:insights from the Arabidopsis thaliana [J].International Journal of Molecular Sciences,2020,21(8):2880.
[14] UNDURRAGA S.F,IBARRA-HENRIQUEZ C,FREDES I,et al.Nitrate signaling and early responses in Arabidopsis roots [J].Journal of Experimental Botany,2017,68(10):2541-2551.
[15] VIDAL E A,ARAUS V,LU C,et al.Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana [J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(9):4477-4482.
[16] CANALES J,CONTRERAS-L?PES O,?LVAREZ J M.et al.Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana [J].Plant Journal,2017,92(2):305-316.
[17] LITTLE D Y,RAO H,OLIVA S,et al.The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues [J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(38):13693-13698.
[18] REMANS T,NACRY P,PERVENT M,et al.A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis [J].Plant Physiology,2006,140(3):909-921.
[19] NAZ M,LUO B B,GUO X Y,et al.Overexpression of nitrate transporter OsNRT2.1 enhances nitrate-dependent root elongation [J].Genes,2019,10(4):290.
[20] HUANG S J,LIANG Z H,CHEN S,et al.A transcription factor,OsMADS57,regulates long-distance nitrate transport and root elongation [J].Plant Physiology,2019,180(2):882-895.
[21] LI Y,LI J,YAN Y,et al.Knock-down of CsNRT2.1,a cucumber nitrate transporter,reduces nitrate uptake,root length,and lateral root number at low external nitrate concentration [J].Frontiers in Plant Science,2018,9:e722.
[22] ISLAM M S.Sensing and uptake of nitrogen in rice plant:a molecular view [J].Rice Science,2019,26(6):343-355.
[23] YUAN J Z,CUI Y N,LI X T,et al.ZxNPF7.3/NRT1.5 from the xerophyte Zygophyllum xanthoxylum modulates salt and drought tolerance by regulating NO3-,Na+ and K+ transport [J].Environmental and Experimental Botany,2020,177:104123.
[24] 陳思.硝运输辅助蛋白基因OsNAR2.1参与硝酸盐调控水稻侧根发育的机制 [D].南京:南京农业大学,2015.
CHEN S.The nitrate transport auxiliary protein gene OsNAR2.1 participates in the mechanism of nitrate-regulated rice lateral root development [D].Nanjing:Nanjing Agricultural University,2015.
[25] CUI Y N,LI X T,YUAN J Z,et al.Nitrate transporter NPF7.3/NRT1.5 plays an essential role in regulating phosphate deficiency responses in Arabidopsis [J].Biochemical and Biophysical Research Communications,2019,508(1):314-319.
[26] ZHENG Y,DRECHSLER N,RAUSCH C,et al.The Arabidopsis nitrate transporter NPF7.3/NRT1.5 is involved in lateral root development under potassium deprivation [J].Plant Signaling and Behavior,2016,11(5):1176819.
[27] TEIXEIRA J A S,TUSSCHER K H.The systems biology of lateral root formation:connecting the dots [J].Molecular Plant,2019,12(6):784-803.
[28] TIAN Q Y,SUN P,ZHANG W H.Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana [J].New Phytologist,2009,184(4):918-931.
[29] PELLIZZARO A,CLOCHARD T,CUKIER C,et al.The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula [J].Plant Physiology,2014,166(4):2152-2165.
[30] JIAN S F,LIAO Q,SONG H X,et al.NRT1.1-related NH4+ toxicity is associated with a disturbed balance between NH4+ uptake and assimilation [J].Plant Physiology,2018,178(4):1473-1488.
[31] PAN W,YOU Y,WENG Y N,et al.Zn stress facilitates nitrate transporter 1.1-mediated nitrate uptake aggravating Zn accumulation in Arabidopsis plants [J].Ecotoxicology and Environmental Safety,2020,190:110104.
[32] IQBAL A,QIANG D,ALAMZEB M,et al.Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency [J].Journal of the Science of Food and Agriculture,2020,100(3):904-914.
[33] GUO F,YOUNG J,CRAWFORD N M.The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis [J].The Plant Cell,2003,15(1):107-117.
[34] ZHU J,FANG X Z,DAI Y J,et al.Nitrate transporter 1.1 alleviates lead toxicity in Arabidopsis by preventing rhizosphere acidification [J].Journal of Experimental Botany,2019,70(21):6363-6374.
[35] FANG X Z,TIAN W H,LIU X X,et al.Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis [J].New Phytologist,2016,211(1):149-158.
[36] 方先芝.NRT1.1在植物耐酸和低鉀胁迫中的作用及机制 [D].杭州:浙江大学,2019.
FANG X Z.The role and mechanism of NRT1.1 in plant acid tolerance and low potassium stress [D].Hangzhou:Zhejiang University,2019.
[37] MAO Q Q,GUAN M Y,LU K X,et al.Inhibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis [J].Plant Physiology,2014,166(2):934-944.
[38] ?LVAREZ-ARAG?N R,RODR?GEU-NAVARRO A.Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions [J].Plant Journal,2017,91(2):208-219.
[39] LI H,YU M,DU X Q,et al.NRT1.5/NPF7.3 functions as a proton-coupled H+/K+ antiporter for K+ loading into the xylem in Arabidopsis [J].Plant Cell,2017,29(8):2016-2026.
[40] CHEN C Z,L? X F,LI J Y,et al.Arabidopsis NRT1.5 is another essential component in the regulation of nitrate reallocation and stress tolerance [J].Plant Physiology,2012,159(4):1582-1590.
[41] LI J Y,FU Y L,PIKE S M,et al.The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance [J].Plant Cell,2010,22(5):1633-1646.
[42] LI H,HU B,WANG W,et al.Identification of microRNAs in rice root in response to nitrate and ammonium [J].Journal of Genetics and Genomics,2016,43(11):651-661.
[43] LI B,BYRT C,QIU J,et al.Identification of a stelar-localized transport protein that facilitates root-to-shoot transfer of chloride in Arabidopsis [J].Plant Physiology,2016,170(2):1014-1029.
[44] LI B,QIU J,JAYAKANNAN M,et al.AtNPF2.5 modulates chloride (Cl-) efflux from roots of Arabidopsis thaliana [J].Frontiers in Plant Science,2017,7:e2013.
[45] TAOCHY C,GAILLARD I,IPOTESI E,et al.The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress [J].The Plant Journal,2015,83(3):466-479.
[46] HU B,JIANG Z,WANG W,et al.Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants [J].Nature Plants,2019,5(4):401-413.
[47] SAGI M,DOVRAT A,KIPNIS T,et al.Ionic balance,biomass production,and organic nitrogen as affected by salinity and nitrogen source in annual ryegrass [J].Journal of Plant Nutrition,1997,20(10):1291-1316.
[48] RADDATZ N,MORALES DE LOS RIOS L,LINDAHL M,et al.Coordinated transport of nitrate,potassium,and sodium [J].Frontiers in Plant Science,2020,11:e247.
[49] YANG Y J,XIONG J,CHEN R J,et al.Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa) [J].Environmental and Experimental Botany,2016,122:141-149.
[50] HUO K,SHANGGUAN X,XIA Y,et al.Excess copper inhibits the growth of rice seedlings by decreasing uptake of nitrate [J].Ecotoxicology and Environmental Safety,2020,190:e110105.
[51] HUANG N C,CHIANG C S,CRAWFORD N M,et al.CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots [J].The Plant Cell,1996,8(12):2183-2191.
[52] LIN S H,KUO H F,CANIVENC G,et al.Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport [J].Plant Cell,2008,20:2514-2528.
[53] ZHANG G B,YI H Y,GONG J M.The Arabidopsis ethylene/Jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation [J].Plant Cell,2014,26(10):3984-3998.
[54] LIU K H,NIU Y J,KONISHI M,et al.Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks [J].Nature,2017,545(7654):311-316.
[55] KROUK G,CRAWFORD N M,CORUZZI G M,et al.Nitrate signaling:adaptation to fluctuating environments [J].Current Opinion in Plant Biology,2010,13(3):265-272.
[56] MENG S,PENG J S,HEE Y N,et al.Arabidopsis NRT1.5 mediates the suppression of nitrate starvation-induced leaf senescence by modulating foliar potassium level [J].Molecular Plant,2016,9(3):461-470.
[57] DU X,WANG F,LI H,et al.The transcription factor MYB59 regulates K+/NO3- translocation in the Arabidopsis response to low K+ stress [J].The Plant Cell,2019,31(3):699-714.
[58] FENG H,LI B,ZHI Y,et al.Overexpression of the nitrate transporter,OsNRT2.3b,improves rice phosphorus uptake and translocation [J].Plant Cell Reports,2017,36(8):1287-1296.
[59] MEDICI A,SZPONARSKI W,DANGEVILLE P,et al.Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants [J].The Plant Cell,2019,31(5):1171-1184.
(責任编辑:顾浩然,郁慧)