臭氧水对草莓及拟盘多毛孢影响的研究

2020-01-16 07:39文婷李凌云李娜郭正红王全喜
关键词:分子鉴定草莓

文婷 李凌云 李娜 郭正红 王全喜

摘  要: 通过组织分离纯化和分子生物学鉴定,明确了引起草莓叶部新病的致病菌为拟盘多毛孢。以喷洒清水为空白对照,利用不同质量浓度的臭氧水直接喷洒致病菌和生长期的草莓植株,研究臭氧水对致病菌和草莓植株的浓度效应,结果显示:低浓度臭氧水(0.5~0.8 mg?L-1)对草莓植株的生理生态变化和致病菌的生长影响较小;中浓度臭氧水(2.2~2.5 mg?L-1)可以显著抑制致病菌的生长,并促进草莓植株的生长;高浓度臭氧水(4.0~4.3 mg?L-1)可以很好地抑制致病菌的生长,但对草莓叶片有较严重的腐蚀作用。因此,中浓度(2.2~2.5 mg?L-1)是喷洒草莓的最适臭氧水浓度。

关键词: 草莓(Fragaria ananassa); 拟盘多毛孢; 分子鉴定; 臭氧水; 浓度效应

中图分类号: S 154.36    文献标志码: A    文章编号: 1000-5137(2020)06-0663-08

Abstract: Through the tissue separation,purification and molecular biological identification technologies,it was confirmed that the pathogenic fungus which caused a new disease of strawberry leaves is Pestalotiopsis.Using pure water as a blank control,ozone waters of different concentrations were sprayed to pathogenic fungus directly and to strawberry leaf surface in its growing period.The concentration effects of ozone water on pathogenic fungus and strawberry leaves were studied respectively.The results showed that:lower concentration ozone water(0.5-0.8 mg?L-1) has little effect on the physiological and ecological changes of strawberry plants and on the growth of pathogenic fungus;medium concentration ozone water(2.2-2.5 mg?L-1) can significantly inhibit the growth of pathogenic fungus and promote the growth of strawberry;higher concentration ozone water(4.0-4.3 mg?L-1) can well inhibit the growth of pathogenic fungus.However,it has a serious corrosion effect on strawberry leaves.Therefore,the medium concentration(2.2-2.5 mg?L-1) is the most suitable ozone water concentration for spraying on strawberry,which can be used in practical production to effectively prevent and control strawberry fungal diseases.

Key words: strawberry(Fragaria ananassa); Pestalotiopsis; molecular identification; ozone water; concentration effect

0  引  言

草莓(Fragaria ananassa)是蔷薇科草莓属的多年生草本植物[1]。作为可食用水果,其味甘酸、性凉、无毒,热量极低,能润肺、健脾、补血;富含纤维素、维生素及果胶物质,能预防冠心病及脑溢血;特别是草莓含有的鞣花酸,能有效避免致癌物将健康的细胞转变为癌细胞,从而预防结肠癌和直肠癌的发生[2]。因此,草莓作为一种经济价值较高的浆果,深受广大消费者的青睐。

近几年,我国草莓种植面积不断扩大,草莓栽培已遍及全国各地,年平均产量高于世界平均水平。我国的草莓种植主要以温室或大棚栽培为主,露地栽培相对较少。采用温室或大棚栽培草莓虽然有很多优点,但其具有的高湿、连作等特点,也为病虫害的发生创造了极有利的环境条件。其中病害问题是影响草莓产量的最主要限制因素,多种病害的发生对草莓生产造成了极大的破坏与影响[3]。目前,国内已经报道的温室或大棚栽培草莓的病害主要有叶斑病、白粉病、灰霉病和根腐病等[4]。

防虫网可以抵御虫害的入侵,却不能有效地防治病害,目前人们主要依靠喷洒化学农药的方法来控制草莓病害。然而农药中存在的有机磷类和氨基甲酸酯类等化学成分,极容易残留在草莓上危害人体健康,并造成环境污染等问题[5]。因此,寻求农药的替代品以降低农药的使用量已经迫在眉睫。

臭氧作为一种强氧化剂,可以有效地杀灭细菌芽孢、病原体、真菌及病毒,可溶于水,易分解为氧气,比较环保,且成本较低,可应用于医学、农业、餐饮业等[6]。1997年,美国食品药品管理局(FDA)认同臭氧完全符合美国FDA评价食品添加剂安全性指标(GRAS)标准,并正式批准臭氧作为一种消毒剂广泛应用于食品加工生产领域中[7]。国内对臭氧的应用相对较少,目前在蔬菜防治方面已有相关研究,但水果方面的研究相对缺乏。

2.2 致病菌的分子鑒定分析

分离纯化出的病原菌由华大基因科技有限公司进行测序,根据BLAST结果和系统发育分析,所提取的病原菌样品与拟盘多毛孢(Pestalotiopsis)亲缘关系最近,同源性达100%(图2~4)。

拟盘多毛孢属是黑盘孢科(Amphisphaeriaceae)中的无性形真菌类群[19]。2016年赵景楠等[20]首次发现并报道棒孢拟盘多毛孢(Pestalotiopsis clavispora)能引起草莓叶部新病,危害草莓叶片,进而影响植株的正常生长。该病发病初期叶上产生褐色斑点,病斑周围褪绿,具有黄色晕圈;发病后期整个叶片呈黄褐色干枯死亡。

2.3 臭氧水对草莓致病菌的生长浓度效应

为了探究臭氧水对拟盘多毛孢的作用效果,本研究采用牛津杯十字交叉抑菌法分别用不同质量浓度的臭氧水与该菌作用。从左到右依次往每个培养皿的牛津杯中注入了200 μL的无菌水,以及低浓度、中浓度和高浓度的臭氧水,每种浓度进行3次生物学重复,正置培养3 d后观察,致病菌生长情况如图5所示。低浓度臭氧水(0.5~0.8 mg?L-1)对致病菌的作用不明显,真菌在培养基上的长势与无菌水对照无明显差异,该浓度的臭氧水不能抑制致病菌生长,可能是病害的影响导致臭氧水没有发挥作用。中浓度臭氧水(2.2~2.5 mg?L-1)和高浓度臭氧水(4.0~4.3 mg?L-1)与致病菌作用后,致病菌的生长明显得到抑制,且臭氧水浓度越高,抑制效果越明显。可能是臭氧水的强氧化性使其可以穿透致病菌细胞壁,破坏致病菌的蛋白质、多糖和氨基酸等物质,从而导致致病菌无法正常生长[21]。

2.4 臭氧水对草莓植株的生长浓度效应

在染菌草莓植株叶片表面喷洒不同质量浓度的臭氧水,连续喷洒3 d后检测其生长情况,如图6所示。喷洒无菌水后的对照组草莓植株呈现青枯状,从下部叶开始,逐渐向上凋萎、枯死,为典型的拟盘多毛孢叶斑病症状[22],如图6(a),6(e)所示。与对照组相比,低浓度臭氧水作用后,草莓植株上的病菌扩散范围较大,对致病菌感染的抑制效果不显著,如图6(b),6(f)所示。中浓度臭氧水作用后,草莓植株基本未出现致病菌毒害现象,植株生长状态良好,含水量、鲜重、株高等各项指标都呈上升趋势,如图6(c),6(g)所示。高浓度臭氧水作用后,草莓植株受到腐蚀,地上叶部分变黄或萎蔫,如图6(d),6(h)所示,表明臭氧水浓度过高会影响草莓植株的正常生长。因此,中浓度(2.2~2.5 mg?L-1)的臭氧水既能抑制致病菌,又能促进草莓生长,最适合用于喷洒草莓植株。

3  结  论

经过分离纯化和分子鉴定分析,得到引起大棚草莓叶部新病的致病菌为拟盘多毛孢(Pestalotiopsis neglecta)。以喷洒无菌水为空白对照,将低浓度(0.5~0.8 mg?L-1)、中浓度(2.2~2.5 mg?L-1)和高浓度(4.0~4.3 mg?L-1)3个质量浓度的臭氧水分别作用于草莓致病菌——拟盘多毛孢和生长期的草莓植株上,研究结果表明:低浓度的臭氧水对致病菌的生长基本无抑制作用,中浓度的臭氧水对致病菌的生长有显著的抑制作用。但臭氧水质量浓度超过4.0 mg?L-1时,对草莓植株有较严重的腐蚀作用,而质量浓度为2.2~2.5 mg?L-1的臭氧水既能有效杀灭致病菌又不影响草莓的正常生长,且在一定程度上提高了草莓植株的各项生理指标。

参考文献:

[1] KIM D R,JEON C W,SHIN J H,et al.Function and distribution of a lantipeptide in strawberry Fusarium wilt disease-suppressive soils [J].Molecular Plant Microbe Interactions,2019,32(3):306-312.

[2] 赵建军,邹继生,陈建德.上海地区草莓真菌病害的发生与防治 [J].上海农业科技, 2014(5):146-148.

ZHAO J J,ZOU J S,CHEN J D.Occurrence and control of strawberry fungal diseases in Shanghai [J].Shanghai Agricultural Science and Technology,2014(5):146-148.

[3] 于飞.无公害草莓病害的综合防治措施 [J].吉林蔬菜,2017(8):19-20.

YU F.Comprehensive control measures for pollution-free strawberry diseases [J].Jilin Vegetables,2017(8):19-20.

[4] 范丽娟.草莓病害的发生与防治 [J].种子科技,2019,37(10):116-120.

FAN L J.Occurrence and control of strawberry diseases [J].Seed Science and Technology,2019,37(10):116-120.

[5] ZHANG P W,WANG S Y,HUANG J T,et al.Dissipation and residue of clothianidin in granules and pesticide fertilizers used in cabbage and soil under field conditions [J].Environmental Science and Pollution Research International,2016,19(2):1-7.

[6] PERRY J J,YOUSEF A E.Decontamination of raw foods using ozone-based sanitization techniques [J].Annual Review of Food Science and Technology,2011,2(1):281-289.

[7] USDA.Code of Federal Regulations,Title 9,Part 381.66-Poultry Products;Temperatures and Chilling and Frreezing Procedures [R].Washington D C:Office of the Federal Register National Archives and Records Administration,1997.

[8] 郭正紅,王作铭,殷莉珺,等.臭氧水对紫叶生菜及胡萝卜软腐欧氏杆菌的影响 [J].上海师范大学学报(自然科学版),2017,46(5):625-631.

GUO Z H,WANG Z M,YIN L J,et al.Effects of ozone water on growth of Lactuca sativa var. romosa Hort and Erwinia carotovora subsp.carotovora [J].Journal of Shanghai Normal University(Natural Sciences),2017,46(5):625-631.

[9] 郭正红.臭氧水对设施蔬菜病害的防治及其生理机制的研究 [D].上海:上海师范大学,2017.

GUO Z H.Prevention and treatment of vegetable diseases by ozone water and its physiological mechanism [D].Shanghai:Shanghai Normal University,2017.

[10] 杨叶,周琴,嵇豪,等. 苦瓜枯萎病病菌的分离与鉴定 [J].浙江农业学报,2010,22(3):354-357. YANG Y,ZHOU Q,JI H,et al.Isolation and identification of Fusarium species from wilted bitter gourd [J].Journal of Zhejiang Agriculture, 2010,22(3):354-357.

[11] ZHAO J N,MA Z,LIU Z P,et al.Pathogenic bacteria of the leaf spot of Neopestalotiopsis clavispora in strawberry [J].Journal of Fungus,2016,35(1):114-120.

[12] 张颖慧,魏东盛,邢来君,等.一种改进的丝状真菌DNA提取方法 [J].微生物学通报,2008(3):466-469.

ZHANG Y H,WEI D S,XING L J,et al.An improved method of DNA extraction filamentous fungus [J].Microbiology Bulletin,2008(3):466-469.

[13] 王世强.打孔法测定抗生素的效价 [J].生物学通报,2005(3):2.

WANG S Q.The punch method to determine the potency of antibiotics [J].Bulletin of Biology,2005(3):2.

[14] 王孟,李昂,赵震宇,等.裸花紫珠叶抑菌性物质的ASE联合牛津杯和微孔刃天青法筛选 [J].时珍国医国药,2017,28(1):43-45.WANG M,LI A,ZHAO Z Y,et al.Screening of bacteriostasis substances of naked flower purple pearl leaves with Oxford cup and microporous blade tianqing method [J].Lishizhen Medicine and Materia Medica Research,2017,28(1):43-45.

[15] 林月莉,黄丽丽,索朗拉姆,等.苹果轮纹病室内快速评价体系的建立 [J].植物保护学报,2011,38(1):37-41.

LIN Y L,HUANG L L,SOLANGE R,et al.Establishment of apple rapid evaluation system for ring rot disease [J].Journal of Plant Protection,2011,38(1):37-41.

[16] 石凌波,李媛,费诺亚,等.蓝莓拟盘多毛孢叶斑病病原菌鉴定 [J].中国南方果树,2017,46(1):24-28.

SHI L B,LI Y,FEI N Y,et al.Identification of the pathogen of P.hirsutum leaf spot of blueberry [J].South China Fruits,2017,46(1):24-28.

[17] 赵洪海,岳清华,梁晨.蓝莓拟盘多毛孢枝枯病的病原菌 [J].菌物学报,2014,33(3):577-583.

ZHAO H H,YUE Q H,LIANG C.The pathogen causing Pestalotiopsis twig dieback of blueberry [J].Journal of Fungi,2014,33(3):577-583.

[18] 温浩,魏佳爽,张桂军,等.九种杀菌剂对新拟盘多毛孢病菌的室内毒力作用 [J].农药学学报,2019,21(4):437-443.

WEN H,WEI J S,ZHANG G J,et al.Laboratory toxicity of nine fungicides against Neopestalotiopsis clavispora [J].Chinese Journal of Pesticide Science,2019,21(4):437-443.

[19] MAHARACHCHIKUMBURA S S N,HYDE K D,GROENEWALD J Z,et al.Pestalotiopsis revisited [J].Studies in Mycology,2014,79(11):121-186.

[20] 赵景楠,马喆,刘正坪,等.草莓拟盘多毛孢叶斑病的病原 [J].菌物学报,2016,35(1):114-120.

ZHAO J N,MA Z,LIU Z P,et al.Pestalotiopsis clavispora causing leaf spot on strawberry [J].Journal of Fungi,2016,35(1):114-120.

[21] ALEXOPOULOS A,PLESSAS S,CECIU S,et al.Evaluation of ozone efficacy on the reduction of microbial population of fresh cut lettuce(Lactuca sativa) and green bell pepper(Capsicum annuum) [J].Food Control,2013,30(2):491-496.

[22] 孟婷婷,齐鹰博,刘闯,等.树莓类拟盘多毛孢叶斑病病原菌的鉴定 [J].沈阳农业大学学报,2020,51(1):111-116.

MENG T T,QI Y B,LIU C,et al.Identification of the pathogen causing raspberry leaf spot [J].Journal of Shenyang Agricultural University,2020,51(1):111-116.

(責任编辑:顾浩然,郁慧)

猜你喜欢
分子鉴定草莓
草莓
草莓
徐州四种市售食用菌的分子鉴定
艾草白粉病的病原菌鉴定