摘 要:错误反映的是学生探究活动中出现的偏差,当学生出现偏差时,教师不应该将学生的偏差直接否定,而应通过一定的提示,从具体的错误点进行分析,正确引导学生发现自己的错误,激发其继续探究的兴趣,并能够有效地对错误进行交流与互动,在交流和互动中完成纠错过程。教学中教师对“错误”避之唯恐不及,课堂的教学尤其是在大型观摩教学活动中,追求的是“对答如流”“滴水不漏”“天衣无缝”的教学效果。
关键词:错误;有效;巧妙;引导
曾经有这么一位特级教师说过:教4+3=7的老师是合格老师,教4+3=?的老师是好老师,而用4+3=8来教的老师才是优秀教师,显然,这位老师的话表达了这样一种教学思想,“错误”可以激发学生的心理矛盾和问题意识,更好促进学生的认知发展,对错误进行有价值的开发利用可转化为教学资源,这种思想无疑体现了新课程的理念,教师应当重视教学过程中出现的错误,将学生所犯错误看作能力培养最重要的阶段。而我们目前的教学中教师对“错误”避之唯恐不及,课堂的教学尤其是在大型观摩教学活动中,追求的是“对答如流”“滴水不漏”“天衣无缝”的教学效果。
下面,我将结合自己的教学经验,探讨如何巧妙地利用数学课堂中的错误资源。
一、 以“错误”激发学生的思辨能力
理想的课堂是真实的课堂。课堂上学生不可能不出现错误,教师要善于利用学生的错误资源,积极引导,才能拓宽学生的思维,使我们的教学环节更精彩,我们的教学过程更真实。
如我在讲整十数除以整十数的口算除法时在学生预习后,我让学生把看到的主题图编一道应用题,一位同学先说了问题,“可以分给几个班?”。我问“这是一道应用题吗?一个应用题应有几部分组成”。学生们立即提出缺少条件。那么条件是什么呢?同桌说一说,通过看、说学生找到了条件,列出了算式。我问“80÷20=?”另一位同学回答40,是40吗?说出你的想法。“先不看80和20末尾的0。8÷2=4所以80÷20=40”。谁有不同的想法?苏琳立马回答“老师是4不是40”。说出你的理由。“因为20与40相乘是800不是80,20×4才等于80,所以80÷20=4”,这时我又出示了80×20引导学生做了对比,又是一位学生通过讨论总结出这样两条规律:(1)整十数乘整十数,先不看因数末尾的0,积的末尾要加0。(2)整十数除以整十数,先不看被除数和除数个位的0,商的末尾不加0。这时同学们真正感悟到了这位同学的错误所在。就连平时一般不爱发言的一些同学在这一节课也积极举手发言,脸上也有了笑容。整个课堂师生都充满了愉悦的心情,品尝到了解决问题的快乐。
二、 适当引导,从错误转向正确
在教学的过程中,老师发现学生的答案不对时,尽量要正确的引导,通过教学的艺术和技巧,“能说说你是怎样想的”暗示学生或辅助学生在提问时让学生发现自己的错误,并且在经历中体验自己的错误并且主动改正,有的时候,在学生展露自己思维和想法时会不经意地抛出另一种思维,引起更多学生的思考,深化对知识的理解。
如教学“能被3整除的数的特征”时,我故意这样问学生:“能被2和5整除要看这个数个位,那么请同学们想想个位是怎样的数能被3整除呢?”大部分学生回答:个位是3、6、9的数能被3整除。我顺势问:“那请举例有哪些数?验证一下。”在学生的举例验证中,学生会发现一个数能被3整除看个位是不行的。自然对新知识有一种探究的欲望,这时再提出你们能举出能被3整除的数的特点吗?“你们所举例的这些两位数,如果调换它们的数字,还能不能被3整除呢?”等等一连串的问题引发学生交流讨论。在这个过程中,不但经历了能被3整除的数的特征的探究过程,纠正了认识的错误,还对能被3整除的数的规律有了更深的理解。
三、 利用错误资源,让学生进行自主反思学习
“数学是思維训练的体操”。因此对提高学生数学学习能力,发展学生思维,提高学生数学素养一直来备受关注。例如学生在计算“周长和面积”时,常常会出现求图形的周长,有的学生却求了面积,求面积却变了求周长。面积单位和长度单位总是混淆。怎样解决这个问题呢?教学中,我没有对这个错误进行分析和纠正,而是让学生从摸一摸课桌的活动来区分周长和面积有什么区别?课桌的周长和面积是怎样计算的,为什么它们的计算会不相同,还有哪些地方会用到周长和面积的知识等等。这样,让学生在反思中,周长和面积的概念在学生的脑海里明晰了,从而对知识得到更好的掌握。
总之,对于学生在学习中出现的错误,教师要巧妙利用,因势利导,让学生在探讨、尝试中沟通新旧知识的联系和区别,发现规律、掌握方法,让错误成为数学课堂的教学亮点,为教学添色彩,活鲜亮。
作者简介:
刘晓庆,甘肃省武威市,民勤县南关小学。