浅析“思维导图”在高中数学教学中的应用

2019-09-10 02:43刘星
天府数学 2019年4期
关键词:分支导图思维导图

刘星

摘要:思维导图是一种方法,同样也是一种表达技术。在高中数学的教学当中,使用思维导图可以帮助学生更好地掌握数学知识的结构体系,理解数学抽象思考的方式与方法。本文将通过思维导图的概念、特征及优势的介绍,具体例析其在高中数学教学中的实际运用,来展现这种方法对数学学习的帮助。

关键词:思维导图;高中数学

1思维导图是什么?

1.1思维导图的概念和特征

思维导图是思维的一种表达形式,也是一种实用的图形技术。思维导图在生活中可以运用在许多方面,尤其是在学习当中,运用思维导图可以帮助人们进行抽象思维和逻辑思维的推理。在数学的教育中,思维导图是帮助学生思考、锻炼学生思维能力的好工具。在高中生的学习当中,数学是理科的基石,并且高中数学的学习是培养学生抽象思维和逻辑思维的开端。如果在高中数学教学当中,可以运用思维导图的方式,那么将会很大程度上帮助学生理解新的概念,培养新的思考方式,更好地让他们接受思维的训练。

思维导图的概念是英国心理学家托尼·巴赞在上世纪70年代提出来的。他认为思维导图的方式模拟了人脑,拥有四个基本特征[1]:焦点清晰集中在中心图形上;主干作为分支从中心图形向外放射;分支由关键词构成,分支可向外以分支形式继续发展;各分支形成连接的节点结构。有时候,思维导图通过增加色彩和图画的某些修饰效果,还能增强学生的创造性和记忆能力,在推理过程中使用有效信息,我们可以看出,这是一种将思维可视化和图解化的模式。当抽象思维进行推理的时候,运用思维导图罗列出了思维的发散的可能性,让思维并不是禁锢在单一的线性发展中。发散的思维再经过分支下的推理,使得思维的细枝末节得以呈现,而不会成为散漫的、没有前因后果的分析。思维的节点以及各个节点所代表的层级关系,使得整个思考过程成为一个完整的思维结构体系。

1.2思维导图的优势

基于思维导图的这些特性,在高中数学的教学当中,思维导图可以获得广泛地应用。传统的教学模式当中,知识总是碎片化地被灌输给学生,而教师的授课方法也仅仅把知识作为知识而传授。我们在教学中应该更加强调知识的结构体系和知识的推理过程,教师通过思维导图的方式加强与学生进行课堂互动,以教师为引导,学生自己探索的方式进行授课。如此以来,学生更能理解知识的整个体系之内的密切关系,还能为将来的学习养成自我思考的好习惯;学生还能被鼓励去思考各种可能性,增强他们思考的兴趣.让他们自己真正成为学习的主人。

在实际的高中数学教学当中,思维导图具有多种功能特征,分别是笔記的功能、复习的功能、解体的功能、注释的功能等[2]。在众多调研当中,研究人员发现,不同的学生通过训练形成拥有其不同的思维导图风格,这些风格也体现出其解题思路的不同导向。在这种思维导图的帮助下,经过一段时间的训练,学生能够更好地把握知识点的核心内容,具有更快的解题能力,同样也有更好的举一反三的能力,把知识活学活用。在当今世界中,也有其他国家已经把思维导图纳入国民教育的必需当中,并且在其他领域也有对思维导图的活用。

思维导图的重要作用在于应用,下面我们将讨论在高中的数学教学当中,思维导图是如何发挥其深刻的作用。

2思维导图在高中数学教学中实际运用

例;如图,几何体EABCD是四棱锥,△ABD为正三角形,CB= CD,ECIBD.

(1)求证:BE= DE;(2)若∠BCD= 120°,M为线段AE的中点,求证:DM∥平面BEC.

思路分析:思维导图能让你快速规范审题:

第一问:1.审条件,挖解题信息

3结论与展望

通过以上探讨,我们可以看到思维导图能够很大程度上帮助学生在宏观上把握知识的体系,在思维导图的展开过程中完善思考问题的细节,从而到达严密思考、谨慎论证的效果。思维导图所构建的思维方式不仅对于学习数学有很大的帮助,将来也会对学生的抽象思考能力和复杂问题处理有所帮助。在高中课堂中,灵活地使用思维导图的方法,不仅可以提高思维的效率,同时也能提升课堂兴趣。

传统教育中认为,老师的传授能保证课堂的效率,而思维导图的教学方式实际上是把学习归还给学生的模式,充分呈现学生是课堂学习活动的主体。思维导图的建立过程,是学生自我思考自我反思的过程。因此,学生在思考方面下足了功夫,而不是一味地接受知识。但是,作为一个严谨的教育工作者,我们要辩证地看待这种思维导图的运用。在教学实践中,有的学生有自己更适合的学习方法,有的或许并不擅长思维导图的方法,有的甚至已经具备严谨的思考能力而无需借助思维导图,因此在实际的教学中我们也不能一味地强加,而是要鼓励学生探索自己的方法。思维导图的出于“导”,而指向“思”。作为老师,我们更多地还要从学生自己的思考展示中从“导”和“思”人手,发现其思维中问题,充分肯定其优点,引导和纠正他们的不足,从而使学生构建具有个性特征的思维结构,形成良好的数学能力。

参考文献

[1]托尼·巴赞,李斯译,思维导图[M],北京:作家出版社,1999.

[2]唐逸泉,思维导图在高三数学复习中的应用设计与实践[D],华东师范大学,2018.

[3]李德龙,基于思维导图的高中数学问题解决[D],上海师范大学,2019.

猜你喜欢
分支导图思维导图
借助思维导图,助力学生“逆行”
应用思维导图 提升学生化学学习力
基于git工具的多分支并行开发上线流程
用“分散数论”对“哥德巴赫猜想”的初等证明
含有二阶幂零鞍点的双同宿环附近的极限环分支
思维导图在初中物理概念课教学中的应用
思维导图软件辅助初中数学教学的应用研究
巧用思维导图提高初中英语课堂教学有效性的探究
高中英语阅读文本中融入思维导图的研究
第6章 一次函数