贺泽慧 范荣 张春虎 唐涛 崔寒尽 刘胥 梁清华 王杨
〔摘要〕 目的 观察柴胡总皂苷(total saponins, TS)对肝气郁结证(liver-Qi stagnation, LQS)和肝郁脾虚证(liver stagnation and spleen deficiency, LSSD)小鼠抑郁行为的改善作用,并探讨其抗抑郁作用与CYP3A4的关系。方法 构建LQS、LSSD模型,TS干预14 d后,通过体质量测定、悬尾实验和强迫游泳实验评估小鼠抑郁样行为,并采用蛋白印迹法和逆转录定量聚合酶链式反应 (polymerase chain reaction, PCR) 法检测CYP3A4蛋白和mRNA的表达变化。结果 造模完成后,与空白组相比,模型组的体质量明显减轻,悬尾不动时间和强迫游泳不动时间明显增加(P<0.01)。TS干预14 d后,LQS模型小鼠悬尾不动时间和强迫游泳不动时间明显缩短(P<0.01),LSSD模型小鼠悬尾不动时间和强迫游泳不动时间无明显变化(P>0.05)。TS可下调LSD抑郁症模型小鼠CYP3A4蛋白的表达(P<0.01),而对其mRNA的表达影响无显著性差异(P>0.05)。结论 TS可改善LSD模型小鼠的抑郁样行为,其作用机制可能与下调CYP3A4蛋白的表达有关。
〔关键词〕 柴胡总皂苷;抑郁症;肝气郁结;肝郁脾虚;CYP3A4
〔中图分类号〕R285.5 〔文献标志码〕A 〔文章编号〕doi:10.3969/j.issn.1674-070X.2019.06.004
〔Abstract〕 Objective To observe the anti-depressant effects of total saponins (TS) of Radix Bupleuri on mice with liver Qi stagnation (LQS) syndrome and liver stagnation and spleen deficiency (LSSD) syndrome, and to explore the relationship between the effects and CYP3A4. Methods LQS and LSSD models were established by binding and isolation. Depressive behaviors were evaluated via body mass measurement, tail suspension test and forced swimming test after 2 weeks of TS treatment. Expression changes of CYP3A4 protein and mRNA were determined by Western blot and RT-qPCR. Results After the establishment of models, compared with the blank group, the body mass in the model groups was significantly decreased; and the immobility time of tail suspension and forced swimming was significantly increased (P<0.01). After 2-week treatment with TS, the immobility time of LQS mice in tail suspension test and forced swimming test was significantly decreased (P<0.01), while that of LSSD mice was not obviously changed (P>0.05). The expression of CYP3A4 protein in LSSD mice could be decreased by TS (P<0.01), while there was no significant difference in its effect on the expression of mRNA (P>0.05). Conclusion TS can improve the depressive behaviors on LQS mice. The mechanism may be associated with the down-regulation on CYP3A4 protein expression.
〔Keywords〕 total saponins of Radix Bupleuri; depression; liver Qi stagnation; liver stagnation and spleen deficiency; CYP3A4
抑郁癥是一种以情绪低落、思维迟钝和精神障碍为特征的精神科疾病[1],是全世界第二大致残疾病,占疾病总经济负担的10.3%[2-3]。
抑郁症属中医学“郁证”范畴,其病位在肝,主要病机为情志所伤,肝失条达,故精神抑郁,情绪不宁。《黄帝内经》以“木郁达之”阐明其基本中医治则。出自《景岳全书》名方柴胡疏肝散(由柴胡、陈皮、川芎、香附、枳壳、白芍和甘草七味中药组成)能疏肝解郁、行气止痛,使肝气条达,血脉通畅,气血调和,为疏肝理气法治疗肝气郁结证(liver-Qi stagnation, LQS)抑郁症的代表方剂[4-6]。然而,目前研究柴胡疏肝散抗抑郁机制多采用不可预知性刺激模型[7-8]。
机体与中药的相互影响主要依靠药物代谢酶系统[9],其中细胞色素P450同工酶(cytochrome P450,CYP450)是最重要的药物代谢酶系统,主要存在于肝脏系统中。参与中药代谢的CYP450酶主要包括CYP1A2、 CYP2C9、 CYP2C19、 CYP2D6、 CYP2E1和 CYP3A4,其中临床上超过50%的药物经过CYP3A4酶代谢[10-11]。现代研究证实,大多数抗抑郁药的作用机制与调节CYP3A4有关[12-15]。柴胡疏肝散在机体内通过多靶点多通路发挥作用,但其发挥抗抑郁作用的有效活性单体成分仍不明确。因此,本研究以柴胡疏肝散生物活性成分柴胡总皂苷(total saponins,TS)为例,运用LQS模型去研究柴胡疏肝散的抗抑郁机制,为进一步阐明辨证用方、“证效相关”的科学内涵提供线索。
1 材料
1.1 动物
健康SPF级雄性昆明小鼠,体质量15~18 g,数量:42只,由中南大学实验动物中心提供。小鼠每6只一笼,食物、水充足,室温:25 ℃,相对湿度:40%~60%,维持12 h光照/黑暗的晝夜节律(8:00 am-20:00 pm)。动物适应一周后开始造模,动物实验操作过程严格遵循中南大学伦理委员会的操作准则。伦理编号:201303049,动物使用许可证:SCXK(湘)2011-0003,实验动物合格证:43004700014263。
1.2 药物及试剂
TS(北京恒元启天化工,S25577,纯度:80%); CYP3A4抗体(abcam公司,ab3572,1∶2 000); GAPDH抗体(proteintech公司,10494-1-AP,1∶5 000);逆转录试剂盒(康为生物公司,中国);SYBR PCR试剂盒(美国Invitrogen公司,卡尔斯巴德,CA);CYP3A4和GAPDH引物由Premier 5.0 software(PRIMER Biosoft International公司)合成,由上海生工生物工程技术服务有限公司提供。
1.3 主要仪器
164-5050电泳仪(美国Bio-rad);DYCZ-24EN电泳槽(中国北京六一);DYCZ-40A转膜仪(中国北京六一);TGL-18R台式冷冻离心机(Eppendorf公司);PIKO-REAL-96荧光定量PCR仪(Thermo公司)。
2 方法
2.1 动物模型
根据文献[16-17]描述的方法,LQS模型制备方法如下:每天束缚3 h(其余时间孤养),持续28 d。肝郁脾虚(liver stagnation and spleen deficiency, LSSD)模型制备方法如下:每天束缚3 h,在(25±1)℃温水中游泳10 min,隔天断食,其余时间孤养,持续28 d。束缚装置采用可调节大小的铁丝网圆筒状容器,使其行走困难,活动受限。空白组小鼠不做任何处理,自由饮食,群养(每笼6只)。
2.2 分组与实验设计
采用随机数字表法将小鼠分为7组:空白组、LQS组、LSSD组、LQS+75 mg/kg TS组、LQS+150 mg/kg TS组、LSSD+75 mg/kg TS组、LSSD+150 mg/kg TS 组,每组6只。干预方法:TS治疗组造模后持续给药14 d[灌胃给药,1 mL/(次·d)];空白组、LQS组、LSSD组均给予等体积纯水。第28天造模完成后检测体质量,并通过强迫游泳实验和悬尾实验评估各组小鼠行为学变化。给药14 d后称质量,评估各组小鼠行为学的改变。给药14 d后采集肝脏小鼠标本,制备肝微粒体,通过PCR与蛋白质印迹法分别检测CYP3A4 mRNA水平与蛋白水平的表达。
2.3 体质量
在造模前、造模后28 d和给药后14 d 3个时间点对所有小鼠进行体质量检测。
2.4 行为学实验
2.4.1 悬尾实验 根据文献[18]描述的方法,将小鼠尾末端1 cm用胶带固定,使其倒悬,悬于25 cm×25 cm×30 cm的笼子中,观察6 min,记录后4 min小鼠的不动时间。
2.4.2 强迫游泳实验 参考文献[19]中的方法,将小鼠置于水温(25±1) ℃,水深10 cm的40 cm×18 cm 的塑料圆柱体容器中。观察6 min,记录后4 min小鼠的累计不动时间。判定为不动时间的标准是小鼠漂浮在水面上,停止挣扎或以保持头在水面上的细小的肢体运动。
2.5 肝微粒体制备
小鼠给药后14 d颈椎脱臼法处死,取出肝脏,预冷的蒸馏水冲洗表面血渍,然后以预冷的磷酸钾缓冲液(含1.15%KCl)冲洗,置于pH 7.4的磷酸缓冲盐溶液(phosphate buffer saline, PBS)中匀浆,离心(10 000×g,30 min,4 ℃)后取上清;再次离心上清液(10 000×g,60 min,4 ℃)后取沉淀,并用预冷PBS冲洗后离心去沉淀(10 000×g,60 min,4 ℃),最后以20%甘油重悬,保存于-80 ℃冰箱备用。
2.6 CYP3A4蛋白表达测定
蛋白质印迹法检测小鼠肝微粒中CYP3A4蛋白的表达,具体步骤如下:肝微粒体研磨充分后加入蛋白裂解液,冰上裂解30 min,间断超声180 s后离心(12 000×g,10 min,4 ℃),取上清,并测定上清液蛋白浓度。SDS-聚丙烯酰胺凝胶(SDS-PAGE)电泳,转膜(300 mA,45 min),5%BSA室温封闭2 h,一抗孵育,4 ℃过夜。第二天复温30 min后,室温孵育二抗2 h,曝光显影。应用 Image J 软件进行条带分析。
2.7 CYP3A4 mRNA表达测定
通过逆转录定量PCR检测小鼠肝微粒中CYP3A4 mRNA的表达,具体步骤如下:在研钵中加入液氮研磨适量肝微粒体,磨碎后加入1 mL Trizol,离心(12 000×g,5 min,4 ℃)取上清,加入200 μL三氯甲烷,静置5 min后,再次离心(12 000×g,5 min,4 ℃),取上清并加入400 μL异丙醇,静置10 min后离心(12 000×g,10 min,4 ℃);弃上清,加入75%乙醇洗涤沉淀后离心(12 000×g,10 min,4 ℃);取沉淀,加入无酶水重悬,酶标仪检测RNA浓度;预变性后进行逆转录得到cDNA,使用SYBR PCR试剂盒进行qPCR检测。CYP3A4引物:正向引物GCCACTCACCCTGATGTCC,反向引物CACCACCATGTCAAGATACTCC;引物长度117 bp。GAPDH引物:正向引物CGGCAAATTCAACGGCACA,反向引物GGTCTCGCTCCTGGAAGATGG,引物长度:86 bp。
2.8 统计学分析
采用SPSS 22.0软件进行统计分析,计量资料数据以“x±s”表示。多组均数比较采用单因素方差分析(ANOVA),方差齐性时用LSD检验,方差不齐时用Dunnett T3法检验。以P<0.05为差异有统计学意义。
3 结果
3.1 TS减轻抑郁症肝气郁结证小鼠的抑郁样行为
如图1A、1C、1E所示,造模28 d后,与空白组相比,模型组(LQS组、LSSD组)以及治疗组(LQS+75 mg/kg TS组、LSSD+75 mg/kg TS组、LQS+150 mg/kg TS组、LSSD+150 mg/kg组)小鼠体质量显著下降,悬尾不动时间及强迫游泳不动时间明显增加,提示模型构建成功(n=6,P<0.01)。
如图1B、1D、1F所示,给药14 d后,与模型组相比,治疗组(LQS+75 mg/kg TS组,LSSD+75 mg/kg TS组,LQS+150 mg/kg TS组,LSSD+150 mg/kg)小鼠体质量无明显变化;与模型组比,LQS+75 mg/kg TS组小鼠悬尾不动时间及游泳不动时间明显减少(P<0.05),而LQS+150 mg/kg TS组、LSSD+75 mg/kg TS组以及LSSD+150 mg/kg TS组小鼠悬尾不动时间及游泳不动时间无明显变化。
3.2 TS对 CYP3A4蛋白和mRNA表达的影响
与空白组相比,LQS模型组小鼠的CYP3A4蛋白表达明显增高(图2A和图2B,n=6,P<0.01)。给予TS干预后,低剂量组小鼠的CYP3A4蛋白水平较模型组明显下降(图2A和图2B,n=6,P<0.01)。而CYP3A4的蛋白水平在空白组与LSSD组、低剂量组、高剂量组差异无统计学意义(P>0.05)。
与空白组相比,两种模型组(LQS组与LSSD组)小鼠的CYP3A4 mRNA表达均没有显著变化。低、高剂量TS干预对LQS及LSSD模型小鼠的CYP3A4 mRNA表达也没有显著影响(图2C)。
4 讨论
TS是柴胡疏肝散的主要生物活性成分,虽然目前已有文献报道了TS具有抗抑郁的作用[20],但是對抑郁症不同表型疗效知之甚少。本研究首次证实TS对LQS模型有良好的抗抑郁作用,同时发现TS可能是通过下调CYP3A4蛋白的表达发挥类似柴胡疏肝散抗抑郁的作用。
单胺类药物是临床上常用的抗抑郁药,但是50%~60%的病人用药后会出现严重的不良反应或并发症[21-22],而中药治疗抑郁症在临床上取得了很好的疗效。目前针对中药抗抑郁作用的研究已成为热点,柴胡疏肝散作为研究范例,其抗抑郁疗效已获得广泛认同,并且研究发现柴胡疏肝散通过增强ERK5活性,调节磷脂、胆汁代谢等途径发挥抗抑郁作用[23-29]。但是这类研究大多采用不可预知性刺激模型[30],从中医学理论来说,柴胡疏肝散的疗效研究应采用LQS模型。
CYP3A4是人体内参与药物代谢最重要的CYP450酶,CYP3A4代谢药物超过CYP450酶代谢药物总量的50%[31-33]。目前研究表明CYP3A4与中药的代谢密切相关,但是中药对CYP3A4的正性或负性调节作用仍不明确,对于同一种中药成分如甘草次酸,在不同模型、条件中对CYP3A4的作用却是截然相反的。因此,有必要研究柴胡疏肝散活性成分TS在LQS抑郁症模型中对CYP3A4的影响。蛋白印迹法和逆转录定量PCR结果表明,柴胡总皂苷仅下调LQS模型小鼠的CYP3A4蛋白的表达,而不调控LSSD模型小鼠CYP3A4蛋白和两种模型小鼠CYP3A4 mRNA表达。该发现与目前研究结果相吻合,其原因可能是转录后调控或转录后修饰影响CYP3A4蛋白的翻译[12]。
综上所述,TS在LQS抑郁症模型中表现出抗抑郁作用,可能与调控CYP3A4的表达有关。本研究为证实柴胡疏肝散治疗LQS证型抑郁症的独特疗效提供理论基础,开辟了抑郁症“证效相关”研究的新途径。
参考文献
[1] HOWARD D M, ADAMS M J, SHIRALI M, et al. Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways[J]. Nature Communications, 2018, 9(1): 1470.
[2] FAULCONBRIDGE L F, WADDEN T A, BERKOWITZ R I, et al. Changes in symptoms of depression with weight loss: results of a randomized trial[J]. Obesity (Silver Spring), 2009, 17(5): 1009-1016.
[3] ZAGORSCAK P, HEINRICH M, SOMMER D, et al. Benefits of individualized feedback in Internet-based interventions for depression: a randomized controlled trial[J]. Psychother Psychosom, 2018, 87(1): 32-45.
[4] JIA K K, ZHENG Y J, ZHENG Y X, et al. Banxia-houpu decoction restores glucose intolerance in CUMS rats through improvement of insulin signaling and suppression of NLRP3 inflammasome activation in liver and brain[J]. Journal of Ethnopharmacology, 2017, 209: 219-229.
[5] HUANG X, GUO Y, HUANG W H, et al. Searching the cytochrome P450 enzymes for the metabolism of meranzin hydrate: a prospective antidepressant originating from Chaihu-Shugan-San[J]. PLoS ONE, 2014, 9(11): e113819.
[6] FAN R, HUANG X, WANG Y, et al. Ethnopharmacokinetic- and activity-guided isolation of a new antidepressive compound from fructus aurantii found in the traditional chinese medicine Chaihu-Shugan-San: a new approach and its application[J]. Evidence-based Complementary and Alternative Medicine, 2012, 2012: 607584.
[7] RIES A S, HERMANMS T, POECK B, et al. Serotonin modulates a depression-like state in Drosophila responsive to lithium treatment[J]. Nature Communications, 2017, 8: 15738.
[8] XIA Z, ZHANG C, DU Y, et al. The effect of traditional Chinese medicine Zhike-Houpu herbal pair on depressive behaviors and hippocampal serotonin 1A receptors in rats after chronic unpredictable mild stress[J]. Psychosomatic Medicine, 2019, 81(1): 100-109.
[9] 董 宇,王 階,杨 庆,等.CYP450酶与中药代谢相互作用关系研究概况[J].中国中医药信息杂志,2011,18(1):100-103.
[10] DUBOVSKY S L. The usefulness of genotyping cytochrome P450 enzymes in the treatment of depression[J]. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11(3): 369-379.
[11] EKHART C, MATIC M, KANT A, et al. Cytochrome P450 genotype and aggressive behavior on selective serotonin reuptake inhibitors[J]. Pharmacogenomics, 2018, 19(14): 1097-1099.
[12] KOT M, HADYCH A, PAPP M, et al. The effect of chronic treatment with Lurasidone on rat liver cytochrome P450 expression and activity in the chronic mild stress model of depression[J]. Drug Metabolism Disposition, 2017, 45(12): 1336-1344.
[13] ANDRADE C. Ketamine for depression, 5: Potential pharmacokinetic and pharmacodynamic drug Interactions[J]. The Journal of Clinical Psychiatry, 2017, 78(7): e858-e861.
[14] CHEN L, BOINPALLY R, GAD N, et al. Evaluation of cytochrome P450 (CYP) 3A4-based interactions of levomilnacipran with ketoconazole, carbamazepine or alprazolam in healthy subjects[J]. Clinical Drug Investigation, 2015, 35(10): 601-612.
[15] GHOSH C, HOSSAIN M, SPRIGGS A, et al. Sertraline-induced potentiation of the CYP3A4-dependent neurotoxicity of carbamazepine: an in vitro study[J]. Epilepsia, 2015, 56(3): 439-449.
[16] SONG C, XUE L. Roles of the micro-opioid receptor and its related signaling pathways in the pathogenesis of premenstrual syndrome liver-qi stagnation[J]. Experimental and Therapeutic Medicine, 2017, 13(6): 3130-3136.
[17] 馬玉峰,王嘉麟,邢 佳,等.柴胡疏肝散对肝气郁结证大鼠海马及下丘脑单胺类神经递质的影响[J].中西医结合心脑血管病杂志, 2016,14(21):2494-2497.
[18] JIANG X, WANG G, LIN Q, et al. Fucoxanthin prevents lipopolysaccharide-induced depressive-like behavior in mice via AMPK-NF-kappaB pathway[J]. Metabolic Brain Disease, 2018.
[19] GENG C A, YANG T H, HUANG X Y, et al. Antidepressant potential of uncaria rhynchophylla and its active flavanol, catechin, targeting melatonin receptors[J]. Journal of Ethnopharmacology, 2018, 232: 39-46.
[20] 杨久山,张 楠,宋铭晶,等.柴胡总皂苷对小鼠抑郁样行为及学习记忆障碍的改善作用[J].中国实验方剂学杂志,2016(24):134-139.
[21] HUANG C C, WEI I H, HUANG C L, et al. Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression[J]. Biological Psychiatry, 2013, 74(10): 734-741.
[22] KELLER M B, LAVORI P W, MUELLER T I, et al. Time to recovery, chronicity, and levels of psychopathology in major depression. A 5-year prospective follow-up of 431 subjects[J]. Archives of General Psychiatry, 1992, 49(10): 809-816.
[23] CHEN S, ASAKAWA T, Ding S, et al. Chaihu-Shugan-San administration ameliorates perimenopausal anxiety and depression in rats[J]. PLoS ONE, 2013, 8(8): e72428.
[24] HUANG X, GUO Y, HUANG W H, et al. Searching the cytochrome P450 enzymes for the metabolism of meranzin hydrate: a prospective antidepressant originating from Chaihu-Shugan-San[J]. PLoS ONE, 2014, 9(11): e113819.
[25] KIM S H, HAN J, SEOG D H, et al. Antidepressant effect of Chaihu-Shugan-San extract and its constituents in rat models of depression[J]. Life Sciences, 2005, 76(11): 1297-1306.
[26] QIU J, HU S Y, ZHANG C H, et al. The effect of Chaihu-Shugan-San and its components on the expression of ERK5 in the hippocampus of depressed rats[J]. Journal Ethnopharmacology, 2014, 152(2): 320-326.
[27] ZHANG Y J, HUANG X, WANG Y, et al. Ferulic acid-induced anti-depression and prokinetics similar to Chaihu-Shugan-San via polypharmacology[J]. Brain Research Bulletin, 2011, 86(3/4): 222-228.
[28] LI Y H, ZHANG C H, QIU J, et al. Antidepressant-like effects of Chaihu-Shugan-San via SAPK/JNK signal transduction in rat models of depression[J]. Pharmacognosy Magazine, 2014, 10(39): 271-277.
[29] WANG Y, FAN R, HUANG X. Meta-analysis of the clinical effectiveness of traditional Chinese medicine formula Chaihu-Shugan-San in depression[J]. Journal of Ethnopharmacology, 2012, 141(2): 571-577.
[30] XIE W, QIU X, HUANG X, et al. Comparison between the pharmacokinetics of meranzin hydrate in a rat model of chronic depression and in controls following the oral administration of Chaihu-Shugan-San[J]. Experimental and Therapeutic Medicine, 2013, 6(4): 913-918.
[31] ASHOUR M L, YOUSSEF F S, Gad H A, et al. Inhibition of cytochrome P450 (CYP3A4) activity by extracts from 57 plants used in Traditional Chinese Medicine (TCM)[J]. Pharmacognosy Magazine, 2017, 13(50): 300-308.
[32] KOT M, HADUCH A, PAPP M, et al. The effect of chronic treatment with lurasidone on rat liver cytochrome P450 expression and activity in the chronic mild stress model of depression[J]. Drug Metabolism and Disposition, 2017, 45(12): 1336-1344.
[33] SUN J, LU Y, LI Y, et al. Influence of Shenxiong Glucose injection on the activities of six CYP isozymes and metabolism of warfarin in rats assessed using probe cocktail and pharmacokinetic approaches[J]. Molecules, 2017, 22(11):1994.