“四学”模式下学生运算能力的培养

2019-09-10 07:22叶菲菲
天津教育·上 2019年8期
关键词:数位小数点竖式

叶菲菲

知名教师罗鸣亮曾在一次公开展示课上执教《真分数与假分数》,课毕,主持人现场采访学生,学生如是说:这节课上得非常好,大部分都是让学生讲;很真实,因为他不是从自己的教学开始的,而是从学生的问题开始课堂;上得很好,教师不是直接讲解,而是让我们自己先提出假设,独立思考……

这是孩子们的心声,回望我们当下的课堂,又该如何?运算能力是核心素养之一,是指能够根据法则和运算律正确地进行运算的能力。如何基于学生让学生做得来、想明白、说清楚,提高学生的运算能力,提升核心素养?课前测是必要手段之一。如何让学生真正成为学习的主体,让教学真正为学生所需,建构从学的角度为备课思路的课堂。“四学”模式的运用,为我们的教学带来一种新的变革。

一、预学,因“需”而“学”

(一)了解学情,把握关键

杜威指出:要传递的必须说得有条有理,要想说得有条有理,就必须跳出自己的立场,从对方的角度看这个经验,找出其中能与对方的生活相衔接的地方,借此使对方能够领会经验的价值。不明确学生究竟知道了什么,其思维的困顿处在哪儿,教师自以为按照教材拼命教,然而付出劳动也没有多大的功效。执教《小数加减法》时,为了真正了解学生对小数加减法的已有知识经验基础,我对全班59人进行前测:

1.用竖式计算。

2.55+2.14=    6.55-4.21=

1.89+2.7=     5-1.88=

计算结果全对54人,错误的有5人。1人符号看错,4人均错在小数部分数位不同的小数加减法,其中“1.89+2.7”数位没有对齐有2人,整数部分1和2对齐,小数部分将7与9对齐,都是将整数与小数部分分两部分进行末位对齐,而5-1.88因是连续退位减,难度较大。

2.“你能用自己喜欢的方式选择一题说说你为什么这样算吗?”能讲清算理,说到数位对齐的学生有13人;按小数点对齐进行计算有3人;按照整数方法计算,然后添上小数点的35人;没有填写或者表达不清的有8人。

3.前测第3个问题“你对小数加减计算有什么问题或者疑惑?”学生的问题如下:小数加减竖式计算要怎么算?为什么要加小数点?小数计算过程中,末尾的零要不要补?结果的零要不要划掉?为什么小数加减竖式可以和整数一样来算?它们之间有什么区别?小数计算是不是也有简便方法?如果一个较小的小数减去一个较大的小数,结果怎么算?

新课标指出学生不仅要能正确地计算,还要明白其中的算理,从前测分析看,54个能正确计算的学生并不代表真的就理解了小数加减法。离开了具体情境,真正能明白其中算理的学生并不多,更多是基于直觉与已有整数加减法知识经验的迁移。学生的疑惑处其实就是小数计算的算理。由此,我们找到了教学的着眼处,如何从学的角度进行备课,能基于学生的需求而教,教学目标更加明确。

(二)分析教材,把握根本

《民主与教育》中指出“教材并不代表不可能犯错的智能的完美典范,只是可供使用的最佳选择,借它可以求取更多新的经验……”,想达成高效教学,更好地提升学生的运算能力,除了了解生本,还应认真解读文本。

对比人教、北师、苏教三种版本的教材,其共通之处是从学生非常熟悉的购物情境入手,引发计算的需求,但在计算的编排上不同:人教版和北师版的教材均安排在四年级下册,都是先教学相同位数小数加减的竖式计算;然后再教学位数不同(两位小数与一位小数)加、减法的竖式计算,从而概括小数加减法的计算方法。苏教版则安排在五年上册,例1就教学位数不同的竖式计算。

在计算过程中苏教版通过“末尾对齐计算”和“小数点对齐计算”两种结果的对比进行说理,看上去简单,实际还是比较抽象,不便于学生说理;人教版的例题安排简单,三个数字对齐,就能保证相同数位对齐,学生说理也是依据知识经验的积累。而北师版则很清晰地引导学生从生活经验“元角分”“数形结合”“小数的组成”等形式,浅入深出,学生在说理上比较容易明晰。

二、研学,因“研”而“清”

皮亞杰认知发展理论认为“儿童是积极主动的学习者,”老师的任务是为儿童创造一个环境让他们为自己建造知识,这样的知识是有意义的;讲授的知识本身是没有意义的。”教师应该创造良好的交流环境,让学生在师生、生生、生本互动中去建构知识,明晰算理,提升运算能力。

学生尝试计算“3.45+2.3”后,教师提供时间与空间让学生交流如何计算,为什么这样算的道理,有转化成3元4角5分加上2元3角;有利用数位:个位上的3和2加,十分位的4和3加,百分位上5加0得到结果;有通过计数器上拨珠……这些都是学生已有经验的激活,但仅此还不够深刻,需要教师深层次地引导,才能真正触及知识的本质。及时追问:为什么2元不能和4角相加?为什么要相同数位相加呢?等等。在有效的研学过程中借助数形结合,直观地理解只有相同的计数单位才能相加。交流研讨中学生不仅明白怎样算,更加清晰地理解为什么这样算的道理,这一过程是学生自己独立思考的过程,是生生之间思维交流碰撞的过程,是学生占据主场的过程,真正的“研学”是学生自发的研讨,这样的学习过程才能真正落实运算能力的培养,提升学生的素养。

三、固学,因“思”而“明”

小学生数学能力培养的核心是促进学生的数学思维和理解数学,学生运算能力不仅表现在能根据法则和运算规律正确地计算,理解运算的算理,还表现在会寻求合理的运算途径解决问题。因此,“四学”模式下的练习设计应基于前面的两学而设计,教师应明确每一层次的练习目的,力争达到有逻辑性、开放性。在学生理解小数点对齐的计算道理之后,在“固学”环节设计如下练习:

1.灵活丰厚。“5;5.55;0.5;0.055,请你选择其中一个自己喜欢的数,和5.55列竖式进行加法计算”,这样的形式自主开放,还可生成多样的结果。在反馈时,不仅让学生判断对错,更重要的是观察思考计算过程中的异同,相同的是这几个数里都有5,计算时小数点都要对齐;不同的是计算结果不同。究其根本:都是5,为什么它们相加的结果却不同呢?问题促使学生的思维走向深入,从而明晰因为5所在的位数不同,表示的意义就不同,因此计算结果不同,突显位值制原则。此练习巩固学生小数加法的算法与算理,不仅具有趣味性,还具有思维深度。

2.自主高效。问题引思“用5.5元够买这两样东西吗?你是怎么思考的?”很自然地激发学生用估算与小数减法的计算的需求,将小数加法的计算经验迁移至小数减法后,引导学生开启对小数加法和减法的联系与区别的思考。真正达成让简约的素材蕴涵丰富的知识,于有限的练习中发挥更为广阔的思维空间,在固学中达成巩固知识与技能又培养运算能力的目标。

四、延学,因“透”而“高”

数学是一门系统性与逻辑性很强的学科,基于“四学”模式下的教学不能只局限于某一课时的内容,要有大教材观,帮助学生将新知、旧知、未知串在一起,建构完善的数学知识体系。在学生掌握小数加减法的计算方法以及明晰其中算理的基础上,于“延学”环节中引导学生回顾“345+23”的计算方法以及算理,抛出问题“小数加减法与整数加减法的道理一样吗?”学生在对比中思考,在对比中推理,在沟通中迁移、串联……使学生明晰小数加减法与整数加减法的计算道理都是一样的,都是相同计数单位上的数相加减,都是算有多少个这样的计数单位,教学到此结束了吗?并没有,“延学”不单单是建构,更应有培养学生问题意识的作用,有收获,那还有什么想要研究的呢?……让教学于课堂外延伸核心素养反映数学本质与数学思想,是在数学学习过程中形成的,运算能力的培养与发展是一个长期的过程,“四学”模式的提出,让教学在课堂前多走一步,只有通过课前测与前测分析才能真正了解学生的学情,通过对比教材才能不对教材盲从,真正明白教学的“愤悱”,让我们更新教育观念,以预学单为载体,以“预学——研学——固学——延学”四环节为线索,促进学生关键能力的培养;让我们陪同学生一起研习导学案,在课堂上让学生主动研学,让我们的教学真正做到从学的角度出发,只有这样才能让学生的思维进一步延展,实现能力的提升和核心素养的形成。

(责任编辑  林 娟)

猜你喜欢
数位小数点竖式
认识数位
循理入法 以理驭法
关注教材文本中言语表达的“序”
乘除法竖式内容这样调整是合理的
弄脏的竖式
找规律巧解题
小数点移到哪去了
二年级万以内数的遮法和写法单元自测题
“数位”和“位数”讨论会
超级小数点