宋飞飞 曹晓 陈文婷 黄钰婕 何文胜
摘 要:研究無机硒对桑黄(SH623)菌株菌丝生长的影响,并测定SH623菌株对无机硒的耐受度。通过平板法测定不同无机硒浓度下SH623菌株菌丝的平均生长速度,得出SH623菌株对无机硒的耐受度;通过显微镜观察测定无机硒对SH623菌株菌丝结构形态的影响;通过还原法测定无机硒对SH623菌株菌丝影响的可持续性。结果表明:SH623菌株菌丝的生长受无机硒浓度影响较大,当外源硒浓度≤18.63 mg·L-1时,其对桑黄菌株菌丝生长速度影响不显著;当外源硒浓度≥37.25mg·L-1时,桑黄菌株菌丝生长速度受到显著的抑制(P<0.05),抑制率达到45.86%;SH623菌株对硒的最大耐受浓度约为298.00mg·L-1。显微镜观察结果表明:在外源硒浓度较低时,SH623菌株菌丝体健壮饱满、分枝较多,菌丝内横隔相距较远,锁状联合结构明显,球状分生孢子较少;而高浓度硒胁迫可导致SH623菌株菌丝分枝数目减小,长度变短,横隔间离变小,部分分枝被分生孢子替代,甚至出现菌丝表面干瘪状况。还原培养试验表明外源硒对SH623菌丝的影响是可恢复的。
关键词:无机硒;桑黄;菌丝;硒耐受性
中图分类号:S567.39 文献标志码:A 文章编号:0253-2301(2019)11-004
DOI: 10.13651/j.cnki.fjnykj.2019.11.004
Effect of Inorganic Selenium on the Growth of Phellinus Mycelium
SONG Feifei, CAO Xiao, CHEN Wenting, HUANG Yujie, HE Wensheng
(Fujian Vocational College of Bioengineering, Fuzhou, Fujian 350007, China)
Abstract:The effect of inorganic selenium (Se) to the Phellinus (SH623) mycelia was investigated, and the tolerance level of SH623 to inorganic selenium were measured. The mean growth rate of SH623 mycelium under different concentrations of inorganic selenium was measured by the plate method, and the tolerance of SH623 to inorganic selenium was obtained. The effect of inorganic selenium on the structure morphology of SH623 mycelia was observed and determined by microscope. The sustainability of the effect of inorganic selenium on SH623 mycelia was determined by the reduction method. The results showed that: the growth of SH623 mycelia was greatly affected by the concentration of inorganic selenium, and when the concentration of exogenous selenium was less than 18.63 mg·L-1, the effect of it on the growth rate of SH623 mycelia was not significant. When the concentration of exogenous selenium was ≥37.25 mg·L-1, the growth rate of SH623 mycelia was significantly inhibited (P<0.05), and the inhibition rate reached 45.86%. The maximum tolerated concentration of the SH623 to selenium was about 298.00 mg·L-1. The observation results of microscope showed that when the concentration of exogenous selenium was low, SH623 mycelia was robust and plump with many branches, and the inner septum transversum of mycelia was far apart, with obvious clamp connection structure and fewer spheric conidia. However, under the stress of high concentration of selenium, the number of SH623 mycelia branches decreased, the length became shorter, the septum transversum became smaller, some branches were replaced by conidia, and even the surface of mycelia became shrivelled. The experiments of reduction and cultivation showed that the effect of exogenous selenium on SH623 mycelia was recoverable.
Key words: Inorganic selenium; Phellinus; Mycelium; Selenium tolerance
硒(Se)是人体不能合成且正常生理活动必需的一种微量元素[1-3]。大量研究表明人体免疫功能降低、甲状腺功能减退、癌症等疾病与硒缺乏有关[4]。此外,人们发现摄入硒元素对癌症具有控制和治疗的作用[5-9]。但自然界中该微量元素多以剧毒的无机盐形式存在[10-11]。食药用菌具有较强的富集能力,并能将无机硒转化为无毒的硒多糖、硒蛋白、硒核酸等有机硒,使得食药用菌具有更好的营养或药用价值[12-17]。因此,通过开发富硒食药用菌实现无机硒向有机硒的转化对提高人类健康具有重要意义。已有研究表明,食药用菌对微量营养素的积累能力并不是无限制的,生长基质中硒的浓度会影响食药用菌菌丝的生长及子实体的形成[18-19]。因此,了解无机硒对食药用菌菌丝生长的影响是生产富硒功能性食药用菌的前提条件。
桑黄Phellinus属于担子菌亚门Basidiomycotina,锈革孔菌科Hymenochaetaceae是一种珍贵的药用真菌[20],具有多种药用价值,其生物活性物质具有抗发炎[21]、降血糖[22]、降血脂[23]、抗肿瘤及提高免疫力[24-25]功效,此外还具有预防流感[26]及类风湿性关节炎[27]等作用。目前对该菌的研究主要集中在对其生物活性代谢物如多糖、酚类化合物、三萜等方面[21,25,28],有关富硒桑黄及无机硒对桑黄菌丝体生长的影响方面还鲜有报道。本研究以桑黄为试验材料,研究无机硒对桑黄菌丝体生长的影响,为富硒桑黄的开发与利用提供理论依据。
1 材料与方法
1.1 供试菌株
桑黄(SH623)菌株由福建农林大学国家菌草工程技术研究中心提供。
1.2 供试培养基、主要试剂及仪器
母种培养基(改良PDA培养基):马铃薯200g·L-1、葡萄糖30g·L-1、磷酸二氢钾1g·L-1、硫酸镁0.75g·L-1、维生素B1(VBl)1mg·L-1、琼脂15g·L-1,pH自然。
主要試剂:外源无机硒为亚硒酸钠,西亚试剂公司生产;其余试验药品均为分析纯。
主要仪器:高压蒸汽灭菌锅(上海申安医疗器械厂);电热恒温培养箱(上海博迅实业有限公司);超净工作台(苏州佳宝净化工程设备有限公司);光学显微镜(重庆澳普光电技术有限公司);体式显微镜(上海丙林电子科技有限公司)。
1.3 母种活化及接种
取桑黄斜面母种菌块(d=0.25cm2)接种于改良PDA平板中,28℃暗光恒温培养,待菌丝生长直径达到7~8cm,取菌落边缘处(d=0.6cm)活化菌块作为后续试验母种。
1.4 平板法测定无机硒对桑黄菌株菌丝生长的影响
配制1mg·mL-1亚硒酸钠母液,通过梯度稀释法向改良PDA培养基中添加亚硒酸钠母液,使培养基硒含量终浓度分别为0(CK)、2.33、4.66、9.31、18.63、37.25、74.50、149.00和
298.00mg·L-1。121℃、20min灭菌后备用。灭菌后的培养皿分别注入供试培养基,每皿约25 mL,冷却凝固后接入活化菌块(d=0.6cm),每个梯度浓度重复5皿,28℃倒置暗光培养。观察桑黄菌株菌丝生长情况,培养7~8d后,利用十字交叉法,通过游标卡尺精确测量菌落生长直径,记录数据。
通过计算桑黄菌株菌丝平均生长速度对其生长情况进行评估,测量所得菌丝生长直径除以培养时间即为菌丝生长速度,其中菌丝生长直径为测量获得总直径与初始接种直径之差。CK 组菌丝生长直径与不同梯度菌丝生长直径之差占CK组菌丝生长直径的百分比即为菌丝生长抑制率(%)。最大耐受浓度(MTC)指受试对象对供试品的耐受临界浓度,即当处理浓度处于MTC时,菌丝体略有生长;而处理浓度高于MTC时,菌丝体则完全被抑制生长。
1.5 镜检法测定无机硒对桑黄菌株菌丝生长的影响
分别选取0(CK)、4.66、18.63、74.5mg·L-1梯度为镜检观察组。将灭菌(121℃、20min)后的培养皿分别注入供试培养基,每皿约25 mL,冷却凝固后接入活化菌块(d=0.6cm),每个梯度浓度重复5皿,在距活化菌块1.5 cm处以45°的角度插入无菌盖玻片,28℃倒置暗光培养。观察桑黄菌株菌丝生长情况,当大部分玻片约长满2/3菌丝时于无菌环境取出玻片,通过光学显微镜观察记录玻片上菌丝细胞形态。将取出玻片各组供试平板继续培养至总培养天数为7~8d,通过体式显微镜对桑黄(SH623)菌株菌落边缘形态特征进行观察记录。
1.6 还原法测定无机硒对桑黄菌株菌丝生长的影响
将上述1.5中各组供试平板继续培养至总培养天数为7~8 d,取菌落边缘处(d=0.6cm)菌块作为接种块,接入无硒添加的改良PDA培养基作复原培养,每个梯度浓度重复5皿,培养方法、测量方法同上。
1.7 数据处理与分析
利用DPS 7.05软件对试验数据进行随机单因素方差分析,采用Tukey多重比较法进行显著性检验。
2 结果与分析
2.1 无机硒对桑黄(SH623)菌株菌丝生长速度的影响
桑黄(SH623)菌株菌丝生长速度受培养基内外源无机硒浓度的影响较大(表1)。当外源硒浓度≤18.63mg·L-1时,菌丝生长速度与CK组无显著差异(P<0.05);当外源硒浓度≥37.25mg·L-1时,菌丝生长速度受到显著的抑制(P<0.05),抑制率达到45.86%;当硒浓度达到298.00mg·L-1时,桑黄(SH623)菌株菌丝几乎无生长,抑制率达到97.84%,因此,桑黄(SH623)菌株菌丝对硒的最大耐受浓度为298.00mg·L-1。
2.2 无机硒对桑黄(SH623)菌株菌丝菌落及菌落边缘形态特征的影响
通过对不同硒浓度处理下桑黄(SH623)菌株平板菌落及菌落边缘形态特征进行观察发现,桑黄(SH623)菌株高浓度硒处理组(图1F~I、图2D)与低浓度硒处理(图1B~D、图2B~C)及CK组(图1A、图2A)的菌落形态及菌落边缘形态差异较大。当外源硒浓度≤18.63 mg·L-1时,桑黄(SH623)菌株菌落略小于对照组,菌落形态完整,菌丝色泽为淡黄色(图1),菌落边缘菌丝繁密、气生菌丝旺盛,分枝较多(图2B~C);当外源硒浓度≥37.25mg·L-1时,桑黄(SH623)菌株菌落明显区别于对照组,菌落形态不完整,菌丝颜色变化不大(图1),气生菌丝较少,分枝较少(图2D)。
注:A为CK组,(B - I)依次分别为2.33、4.66、9.31、18.63、37.25、74.50、149.00和298.00 mg·L-1处理组。
2.3 无机硒对桑黄(SH623)菌株菌丝形态的影响
为了进一步研究外源硒对桑黄(SH623)菌株菌丝体的影响,选取。CK处理组与4.66、18.63和74.5 mg·L-1硒处理组,通过光学显微镜对不同硒浓度下桑黄(SH623)菌株的菌丝体形态进行了观察,结果如图3所示。CK组及4.66 mg·L-1硒处理组SH623菌丝体狭长、健壮饱满、分枝较多,菌丝内横隔相距较远,锁状联合结构明显,球状分生孢子较少(图3A、3B、3a、3b);18.63 mg·L-1硒处理组桑黄(SH623)菌株的菌丝体分枝数目减小、长度变短,横隔间离变小,球状分生孢子相对增多,部分分枝被分生孢子替代(图3C,3c);当外源硒浓度较高时(74.50 mg·L-1),桑黄(SH623)菌株大部分菌丝体出现表面干瘪情况(图3D、3d)。
注:A为CK组,(B~D)依次分别为4.66、18.63和74.5 mg·L-1处理组,体式显微镜放大50倍观察。
注:A、a为CK组,B、C、D和b、c、d依次分别为4.66、18.63和74.50mg·L-1处理组,大写字母为光学显微镜放大100倍观察结果,小写字母为光学显微镜放大400倍观察结果。
2.4 无机硒处理桑黄菌株菌落的还原培养
为研究外源硒对桑黄(SH623)菌株菌丝体的影响是否可逆,对不同硒浓度处理后的桑黄(SH623)菌株菌丝菌落进行还原培养试验,结果如表2及图4所示。不同硒浓度处理后的桑黄(SH623)菌株菌落在接入改良PDA培养基后均恢复了生长,且菌丝生长状况正常,菌落形态完整(图4)。不同硒处理菌株各组平均生长速度与CK组没有显著差异(表2),说明外源无机硒添加对桑黄(SH623)菌丝的影响是可恢复的。
3 讨论与结论
本研究针对无机硒对桑黄菌株菌丝生长的影响进行探索,发现桑黄(SH623)菌株菌丝的生长情况受无机硒影响较大,其对无机硒的耐受度与金针菇[19]、香菇[29]、真姬菇[30]、平菇[31]等相当。当硒浓度≥37.25mg·L-1時,桑黄(SH623)菌株菌丝生长受到显著的抑制作用(P<0.05),抑制率达到45.86%,且这种抑制作用随着硒浓度的增加而增加。这与已有的关于金针菇[19]及平菇[31]的研究结果相类似。虽然较高无机硒浓度处理对桑黄(SH623)菌株菌落形态影响较大,但菌丝颜色没有表现出明显的差异,这一表征与经富硒处理香菇的研究类似[29]。
本研究结果发现,低浓度硒对桑黄(SH623)菌株菌丝生长无显著性影响,高浓度硒对桑黄(SH623)菌株菌丝生长具有抑制作用。已有研究表明在外界条件胁迫下,食药用菌菌丝体会出现如表面形态畸变等应答反应[32]
。通过对桑黄(SH623)菌丝的显微镜观察发现,桑黄(SH623)菌株菌丝在高浓度无机硒胁迫下,会出现类似的反应。对桑黄(SH623)菌株菌落边缘的观察发现,其菌落边缘菌丝稀疏、分枝变少,气生菌丝较少,菌丝之间几乎完全没有网状交叉。食药用菌菌丝间的网状交叉结构是有利于菌丝体对营养物质的吸收与能量传递的重要结构[33],网状交叉结构被抑制,可直接导致菌丝体物质能量传递受阻,从而使得菌丝体营养不足。光学显微镜观察结果也表明了高浓度硒胁迫导致菌丝体物质能量传递受阻的这一现象:随着培养基中硒浓度的增高,桑黄(SH623)菌株菌丝体由健壮饱满、分枝较多,菌丝内横隔相距较远,锁状联合结构明显等表征向菌丝分枝数目减小、长度变短,横隔间离变小,球状分生孢子相对增多转变,直至菌丝表面干瘪。但还原培养试验表明了桑黄(SH623)菌株产生的表征变化只是对硒胁迫的应答反应,外源硒对其并没有产生不可逆的诱变或伤害,其影响是可恢复的。因此,以桑黄(SH623)菌株开发富硒食药用菌具有可行性。
参考文献:
[1]RAYMAN M P.The importance of selenium to human health[J].Lancet,2000,356(9225):233-241.
[2]RAYMAN M P.Selenium and human health[J].Lancet,2012,379(9822):1256-1268.
[3]ROMAN M,JITARU P,BARBANTE C.Selenium biochemistry and its role for human health[J].Metallomics,2014,6(1):25-54.
[4]SANMARTIN C,PLANO D,FONT M,et al.Selenium and clinical trials:new therapeutic evidence for multiple diseases[J].Curr Med Chem,2011,18(30):4635-4650.
[5]ABEEI J,SAATLOO MV,NEJATI V,et al.Seleniumriched Saccharomyces cerevisiae Reduces the Progression of Colorectal Cancer[J].Biol Trace Elem Res,2018,185(2):424-432.
[6]HU Y,MCINTOSH G H,LE LEU R K,et al.The influence of seleniumenriched milk proteins and selenium yeast on plasma selenium levels and rectal selenoprotein gene expression in human subjects[J].Br J Nutr,2011,106(4):572-582.
[7]HU Y,MCINTOSH GH,LE LEU RK,et al.Seleniumenriched milk proteins and selenium yeast affect selenoprotein activity and expression differently in mouse colon[J].Br J Nutr,2010,104(1):17-23.
[8]SAXENA A,FAYAD R,KAUR K,et al.Dietary selenium protects adiponectin knockout mice against chronic inflammation induced colon cancer[J].Cancer Biol Ther,2017,18(4):257-267.
[9]VINCETI M,FILIPPINI T,DEL GIOVANE C,et al.Selenium for preventing cancer[J].Cochrane Database Syst Rev,2014,30(3):CD005195.DOI:10.1002/14651858.CD005195.pub3.
[10]AMOAKO P O,UDEN P C,TYSON J F.Speciation of selenium dietary supplements; formation of S(methylseleno)cysteine and other selenium compounds[J].Anal Chim Acta,2009,652(1-2):315-323.
[11]ROHN I,MARSCHALL T A,KROEPFL N,et al.Selenium speciesdependent toxicity,bioavailability and metabolic transformations in Caenorhabditis elegans[J].Metallomics,2018,10(6):818-827.
[12]BHATIA P,AURELI F,D'AMATO M,et al.Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on seleniumrich agricultural residues[J].Food Chem,2013,140(1-2):225-230.
[13] BHATIA P,PRAKASH R,PRAKASH N T.Selenium Uptake by Edible Oyster Mushrooms (Pleurotus sp.) from SeleniumHyperaccumulated Wheat Straw[J].J Nutr Sci Vitaminol (Tokyo), 2013,59:69-72.
[14]GIANNACCINI G,BETTI L,PALEGO L,et al.The trace element content of topsoil and wild edible mushroom samples collected in Tuscany,Italy[J].Environ Monit Assess,2012,184(12):7579-7595.
[15] MASEKO T,CALLAHAN D L,DUNSHEA F R,et al.Chemical characterisation and speciation of organic selenium in cultivated seleniumenriched Agaricus bisporus[J].Food Chem,2013,141(4):3681-3687.
[16]SOLOVYEV N,PRAKASH N T,BHATIA P,et al.Seleniumrich mushrooms cultivation on a wheat straw substrate from seleniferous area in Punjab, India[J].J Trace Elem Med Biol,2018,50:362-366.
[17]STEFANOVIC V,TRIFKOVIC J,DJURDJIC S,et al.Study of silver,selenium and arsenic concentration in wild edible mushroom Macrolepiota procera,health benefit and risk[J].Environ Sci Pollut Res Int,2016,23:22084-22098.
[18]DONG J Z,LEI C,AI XR,et al.Selenium enrichment on Cordyceps militaris link and analysis on its main active components[J].Appl Biochem Biotechnol,2012,166(5):1215-1224.
[19]WANG J P,WANG B,ZHANG D,et al.Selenium uptake, tolerance and reduction in Flammulina velutipes supplied with selenite[J].PeerJ,2016,4:DOI:10.7717/peerj.1993.
[20]YAN J K,PEI J J,MA H L,et al.Advances in antitumor polysaccharides from phellinus sensu lato:Production,isolation,structure,antitumor activity,and mechanisms[J].Crit Rev Food Sci Nutr,2017,57(6):1256-1269.
[21]LEE S,LEE D,JANG T S,et al.AntiInflammatory Phenolic Metabolites from the Edible Fungus Phellinus baumii in LPSStimulated RAW264.7 Cells[J].Molecules,2017,22(10).pii:E1583.DOI:10.3390/moleculeszz101583.
[22]WANG W H,WU F H,YANG Y,et al.Hypoglycemic Effect of Ethanol and Ethyl Acetate Extract of Phellinus baumii Fruiting Body in StreptozotocinInduced Diabetic Mice[J].Evid Based Complement Alternat Med,2015(3):1-7.
[23]IM K H, CHOI J,BAEK S A,et al.Hyperlipidemic Inhibitory Effects of Phellinus pini in Rats Fed with a High Fat and Cholesterol Diet[J].Mycobiology,2018,46(2):159-167.
[24]GAO W W,WANG W O,SUN W J,et al.Antitumor and immunomodulating activities of six Phellinus igniarius polysaccharides of different origins[J].Exp Ther Med,2017,14:4627-4632.
[25]LIU M M,ZENG P,LI X T,et al.Antitumor and immunomodulation activities of polysaccharide from Phellinus baumii[J].Int J Biol Macromol,2016,91:1199-1205.
[26]HWANG B S,LEE I K,CHOI H J,et al.Antiinfluenza activities of polyphenols from the medicinal mushroom Phellinus baumii[J].Bioorg Med Chem Lett,2015,25(16):3256-3260.
[27]YAYEH T,LEE W M,KO D,et al.Phellinus baumii ethyl acetate extract alleviated collagen type Ⅱ induced arthritis in DBA/1 mice[J].J Nat Med,2013, 67:807-813.
[28]HU T,LIN Q,GUO T,et al.Polysaccharide isolated from Phellinus linteus mycelia exerts antiinflammatory effects via MAPK and PPAR signaling pathways[J].Carbohydr Polym,2018,200:487-497.
[29]NUNES RG,DA LUZ J M,FREITAS RDE B,et al.Selenium Bioaccumulation in Shiitake Mushrooms:A Nutritional Alternative Source of this Element[J].J Food Sci,2012,77(9):C983-986.
[30]吳周斌, 王锦锋,林占熺.真姬菇菌丝体对硒耐受性的研究[J].微生物学通报,2017,44(1):96-107.
[31]MILOVANOVIC' I,BRESKI I,STAJI'C M,et al.Potential of Pleurotus ostreatus Mycelium for Selenium Absorption[J].Scientific World Journal,2014,2014:681834.
[32]郑辉,王义祥,翁伯琦,等.添加外源硒钙条件下姬松茸子实体形态的电镜观察与分析[J].山地农业生物学报,2008,27(5):424-430.
[33]黄年来,林志彬,陈国良,等.中国食药用菌学[M].上海:上海科学技术文献出版社,2010.
(责任编辑:林玲娜)
收稿日期:2019-10-13
作者简介:宋飞飞,女,1987年生,博士,实验师,主要从事食药用菌的研究与开发。
基金项目:福建省教育厅中青年教师科技项目(JAT160759);福建健康产品研究检测中心平台(PT201706);福建省科技创新平台项目(2014Y2008)。