示范快堆堆芯熔融物收集装置的安全分析

2019-08-29 03:04刘兆阳胡靖东宫建国高付海轩福贞
原子能科学技术 2019年8期
关键词:堆芯延性本构

刘兆阳,胡靖东,宫建国,曹 健,高付海,轩福贞

(1.中国原子能科学研究院 反应堆工程技术研究部,北京 102413;2.华东理工大学 机械与动力工程学院,上海 200237;3.环境保护部 核与辐射安全中心,北京 100082)

在发生堆芯熔化严重事故后,将堆芯熔融物通过堆芯熔融物收集装置接收并限制在压力容器内,是第4代先进核电堆型关键的严重事故缓解策略之一。堆芯熔化事故设计中考虑设有专门的非能动冷却流道,使堆芯熔融物收集装置在严重事故下能保持结构完整性,避免堆芯熔融物继续下落到反应堆主容器中,造成一回路冷却剂包容边界的完整性受到破坏,且堆芯熔融物收集装置的结构特征应将堆芯熔融物分散开来,防止堆芯熔融物形成二次临界。

压水堆下封头在事故工况下的蠕变强度校核方法是现阶段较为成熟的方法[1]。无论快堆的堆芯熔融物收集装置,还是压水堆的下封头部件,其均需要保证一定蠕变时间内结构的完整性。这是对材料承载强度的挖掘,本质上是相同的,故压水堆在事故工况下的高温蠕变强度分析方法值得借鉴。

大型先进压水堆堆芯熔化事故下的高温结构完整性评价研究较为成熟,美国、德国、瑞士、韩国、法国和芬兰等的相关组织和研究机构均开展了较多研究[2-4]。

以损伤理论为基础,采用不同损伤变量的蠕变强度校核方法有两种:一种为时间分数法,另一种为延性耗竭法(也称作应变分数法)。美国ASME Ⅲ-NH规范[2]及法国RCC-MRx规范[3]采用时间分数法,英国R5规范[4]采用延性耗竭法。

时间分数法是采用有限元分析方法计算结构所受的应力,通过给定温度下的蠕变持久强度曲线得到对应应力水平下的蠕变断裂寿命,并以此为判据,判断结构在给定时间内是否通过蠕变强度校核。延性耗竭法是以应变为基础的蠕变强度校核方法,通过计算材料在蠕变过程中的累积蠕变变形,以材料发生蠕变断裂时的蠕变延性为失效判据,判断结构在给定时间内是否能通过蠕变强度校核。

本文利用有限元分析软件ABAQUS开展堆芯熔融物堆积形态下堆芯熔融物收集装置的应力应变分析,并基于时间分数法与延性耗竭法对堆芯熔融物收集装置进行蠕变强度校核。

1 结构描述

堆芯熔融物收集装置焊接在堆内支承下表面,为一焊接钢结构,由支承架和托盘组成。托盘安装在支承架的凸台上。支承架由水平板,上、下钠通道及放射状肋组成。在各条肋上设有支承凸台,供安装托盘用。所有凸台的表面都具有由中央向周边倾斜的不大的倾角,肋板上及支架水平板上均设有许多供载热剂流通的孔道。

托盘由底盘、锥形盘和烟囱所组成,烟囱的上部装有顶盖,烟囱上还有许多供载热剂流通的孔。托盘靠锥块和螺栓固定到支承架上。

在托盘的表面及烟囱顶盖上表面,都有用难熔材料钼合金做成的覆面板,托盘的覆面板与托盘之间的固定采用不锈钢螺栓连接件。为防止熔融物对这些不锈钢件的作用,采用难熔材料钼合金做成保护帽。堆芯熔融物收集装置结构如图1所示。

堆芯熔融物收集装置应具有以下两个功能要求:1) 熔融物落入堆芯熔融物收集装置后,设计时间内堆芯熔融物收集装置不发生蠕变过度变形和强度失效;2) 最大竖直位移不得大于设计指标要求,使得熔融物保持在次临界状态。

2 温度场分析

冷却剂自下冷池流入下腔室后,通过堆芯熔融物收集装置下方空间进入,之后一部分冷却剂通过烟囱向上流动,一部分通过侧壁向上流动。在冷却熔融物后,一部分冷却剂继续向上流动,通过堆芯进入热池,再通过中间热交换器向下流入冷池。另一部分冷却剂则通过侧壁上方的横流流道直接进入堆芯熔融物收集装置外部的下腔室空间。

图1 堆芯熔融物收集装置结构示意图Fig.1 Structure schematic of reactor core melt collector

通过自然循环计算,堆芯熔融物收集装置部分结构所达到的最高温度列于表1。

表1 堆芯熔融物收集装置部分结构的最高温度Table 1 The highest temperature of partial structure for reactor core melt collector

3 寿命分析

3.1 计算方案

高温蠕变失效是堆芯熔化事故下堆芯熔融物收集装置的主要失效模式。参考堆芯熔融物滞留在反应堆压力容器策略有效性评估方法IVR-DOE10460,采集R66[5]和ASME规范[6]中316钢的材料数据,利用有限元分析软件ABAQUS在事故工况下进行数值仿真模拟及结构完整性评定。

材料本构方程通过用户子程序自定义。利用分段Norton-Bailey方程归一化单轴蠕变数据,并利用有限元计算热力耦合下的应力场及与时间相关的蠕变应力应变场,最后根据时间分数法与延性耗竭法的双判据完成分析过程[7-8]。

3.2 计算模型

考虑到模型的对称性,取1/4整体模型建模。考虑两种假设的堆积形态,分别为堆积高度和堆积角度不同的梯形堆积形态,表示为堆积形态1和堆积形态2。将堆芯熔融物的质量以堆积形态的形状函数用静载的方式施加到托盘上表面,温度载荷按照表1中各部位最高温度进行施加,其余未设置边界条件的面默认为绝热。由于堆芯熔融物收集装置上有齿形开孔,内外连通,因此无热应力。

3.3 本构关系

1) 时间分数法相关参数方程

(1) 多轴等效应力

用Huddleston公式[9]计算,将不考虑应力状态的Mises等效应力σoe换算为多轴等效应力σe,换算公式为:

(1)

(2) 蠕变寿命

本评定方法采用时间-温度参数法推算蠕变寿命。利用的时间-温度参数为Manson-Haferd参数MHP[10],其参数方程为:

MHP=103(13.72-lgtf/(θ-227))

(2)

式中:θ为温度,℃;tf为蠕变寿命,h。

用于拟合的多项式为:

σe=0.645 6MHP2-

13.647 1MHP+66.487 3

(3)

利用ASME Ⅲ-NH中的316H蠕变断裂数据验证上述关系,结果如图2所示。由图2可见,式(3)与实验结果符合较好。

图2 ASME Ⅲ-NH中的蠕变数据与计算结果对比Fig.2 Comparison between ASME Ⅲ-NH creep data and calculation result

(3) 应变分数

在计算时间分数时,需假设在该蠕变分析增量步的时长Δti内结构的应力水平不发生变化。采用式(1)~(3)计算出该时长内对应的蠕变断裂寿命tf,i,并对所有时长进行损伤分数求和,获得时间分数Dt:

(4)

2) 延性耗竭法相关参数

(1) 蠕变本构方程

蠕变本构方程采用Norton-Bailey时间硬化蠕变本构方程[11],其具体解析式如下:

εc=Aσntm

(5)

式中:εc为累积蠕变应变;A、n、m为蠕变本构方程的材料参数;σ为应力,MPa;t为时间,h。

参数A、n和m通过拟合ASME Ⅲ-NH中316钢的等时应力应变曲线获得,其中n、m假设与温度无关,分别为lgσ-lgεc等时曲线及lgt-lgεc等应力曲线的斜率。经拟合调整后,可得n=5.85、m=0.8。A是与温度相关的参数,通过调整不同温度下t-εc等应力曲线与标准值的拟合程度获得。经拟合调整后:当温度为700 ℃时,A=9.876×10-16;当温度为750 ℃时,A=3×10-14;当温度为800 ℃时,A=3×10-13;当温度为815 ℃时,A=9×10-13。在其余温度下,A的取值由线性插值获得。

将上述本构模型计算值与ASME Ⅲ-NH中316钢的704~815 ℃的等时应力应变图上的应变取值进行对比,本文所采用的本构模型预测出的蠕变应变与标准值之间存在些许相对误差,其范围为-0.002 1~0.034 5。正误差使计算的蠕变应变偏大,结果更为保守;负误差使蠕变应变计算值偏小,低于实际值0.21%的平均蠕变变形相对误差在工程实践中是可接受的[12]。

(2) 多轴蠕变延性计算方程[13-14]

在评定时,需考虑多轴应力状态对断裂延性的限制。基于英国高温气冷堆方面开展的大量实验测试结果,通过回归分析,提出了用于316H材料的多轴应力修正因子。基于该模型,利用Spindler公式,可换算得到三轴应力下的断裂延性:

(6)

为确保结果保守,限制多轴蠕变延性的上限不超过单轴拉伸时的延性值,即:

(7)

(3) 应变分数

计算应变分数时,同样需要假设在该蠕变分析增量步的时长Δti内结构的应力水平不发生变化。利用式(7)计算当前时步i应力状况下对应的有效断裂延性εf,i,结合i时步的蠕变应变增量Δεi计算当前步的应变分数,最后对所有时步进行求和。对塑性应变造成的损伤当量,按蠕变0.01 h的等效塑性应变状况计算相应的应变分数,一并纳入损伤公式考察。应变分数公式为:

(8)

式中:Dε为应变分数;εp为累积塑性应变;εf,0为初始时刻的多轴蠕变延性;Δεi为第i个时步内的累积蠕变变形量;εf,i为第i个时步中的蠕变延性。

3.4 计算结果

经过对所考虑的两种堆积形态的分析对比,堆积形态2的时间分数和应变分数较堆积形态1的稍大。以堆积形态2为例给出了分析结果。取蠕变720 h后应力最大处作应力随时间的松弛曲线和蠕变应变随时间的增长曲线,如图3所示。由图3可见,蠕变720 h后的等效蠕变应变为0.002 2,Mises等效应力为60 MPa。

经历720 h后堆芯熔融物收集装置结构由于蠕变产生竖直方向的位移U2(mm),如图4所示。蠕变后垂直向下方向的位移为18.96 mm,蠕变致使该位移增加了1.52 mm。

图3 应力最大处的等效应力松弛曲线与蠕变变形曲线Fig.3 Equivalent stress relaxation curve and creep deformation curve at maximum stress position

图4 蠕变720 h后的竖直位移分布Fig.4 Vertical creep displacement distribution after 720 h

蠕变前、后三轴度应力(静水(平均)压力与Mises等效应力的比)的分布如图5所示。由图5可见,堆芯熔融物收集装置结构整体的三轴度应力水平是大于1/3的区域为主。

a——蠕变0 h;b——蠕变720 h图5 三轴度应力分布Fig.5 Three-axis stress distribution

堆芯熔融物收集装置结构时间分数(多轴蠕变时间/寿命分数)的分布如图6所示。由图6可见,时间分数最大值为0.015 01,出现在钢支承结构钢梁末端。

堆芯熔融物收集装置结构的应变分数(多轴蠕变应变/延性分数)分布如图7所示。由图7可见,应变分数最大值为0.016 26,出现在钢支承结构钢梁末端,此处等效蠕变应变虽较小,但有着较大的三轴度应力,导致此处的断裂延性大幅度降低,损伤更易出现。

a——总分布;b——钢支承结构图6 时间分数分布Fig.6 Time fraction distribution

a——总分布;b——钢支承结构图7 应变分数分布Fig.7 Strain fraction distribution

4 结论

1) 堆芯熔融物收集装置同时满足时间分数法及延性耗竭法判据,以此对结构蠕变强度进行校核,是一种保守的评价方法。

2) 蠕变720 h后,在堆积形态2的情况下,计算出的以时间分数为代表的损伤量最大值为0.015 01,以应变分数为代表的损伤量最大值为0.016 26,均小于1。

3) 托盘垂直向下的最大位移为18.96 mm,小于设计的限值要求。

4) 堆芯熔融物收集装置在堆芯熔化严重事故下,能保证结构的完整性。

猜你喜欢
堆芯延性本构
新型堆芯捕集器竖直冷却管内间歇沸腾现象研究
安徽省《高延性混凝土应用技术规程》解读
基于强震动数据的等强度延性谱影响因素分析
应用CDAG方法进行EPR机组的严重事故堆芯损伤研究
锯齿形结构面剪切流变及非线性本构模型分析
高密度聚乙烯单轴拉伸力学性能及本构关系研究
矩形钢管截面延性等级和板件宽厚比相关关系
B和Ti对TWIP钢热延性的影响
HP-STMCs空间堆堆芯稳态热工特性分析
基于SOP规程的大亚湾堆芯冷却监测系统改造