宋腾飞 刘慧娟 张振洋 刘威
关键词:内置式永磁电机;电动汽车;弱磁能力;过载能力;调速范围
DOI:10.15938/j.emc.2019.06.000
中图分类号文献标志码:A 文章编号:1007 -449X(2019)06 -0000 -00
Abstract:In order to meet the performance requirements of the electric vehicles (EVs) to the interior permanent magnet synchronous motor (IPMSM) with high power density and wide speed range, the design requirements of the drive motor for EVs have been analyzed by taking a 60kW IPMSM as an example. And the factors that affect the overload capacity and speed range of IPMSM are also analyzed by theoretical research. Then, the influence of d, q axis inductances, saliency ratio and fieldweakening magnetic rate on the motor performances under different topology structures are calculated and compared by the 2D FEM model. Furthermore, the topological structure of stator and rotor are optimized. All the results show that Vshape IPMSM has the advantages of high overload capacity and wide speed range and has potential to apply in the EVs applications.
Keywords:interior permanent magnet synchronous motor;electric vehicles;fluxweakening;overload capacity;speed range
0 引 言
隨着环境污染的日益恶化和新能源产业的蓬勃发展,电动汽车以其低排量、高效率、低成本的优势逐渐取代传统燃油车,在乘用、商用车领域得到了广泛的推广[1-3]。其中,永磁同步调速电机以其效率高、调速性能好、功率密度高、性能优异等特点已成为车用驱动电机的首选方案[4-5],各国电动汽车研发人员对其进行了大量研究。
在不同转子结构的研究方面,Vagati[6]等对内置式和表贴式两种转子冲片结构对电机性能的影响进行研究,发现表贴式结构虽然易于制造但其过载能力、调速性能都远低于内置式结构。对于内置式转子冲片结构,刘向东等[7]发现V型转子结构具有较为全面的电磁性能优势,能够很好的满足车用驱动电机的性能要求。文献的研究者们[8-11]也对不同磁极结构的内置式转子电机进行了性能对比,并做出类似的判断。
在定子结构的研究方面,王艾萌[12]等分析比较了定子采用整数槽和分数槽时永磁电机的性能,得出定子采用分数槽可以降低齿槽转矩,减小空载反电动势谐波含量的结论。文献[13]发现分数槽定子集中绕组结构可减小绕组端部长度和定子铁心损耗,而采用整数槽分布式绕组结构,电机具有较高磁阻转矩以及处于高速区时较小转子损耗等优势。
4 结 论
本文以一台商务车用60 kW内置式V型夹角永磁同步电机的电磁设计为例,首先通过理论研究分析了影响永磁调速电机弱磁能力和调速范围的因素;然后建立了电机的有限元模型,从d、q轴电感、凸极率等方面计算研究了不同定转子磁路结构对电机电磁性能的影响,并对电机的拓扑结构进行了相应的优化;最后,制造了样机,搭建样机及其控制系统的实验平台,试验测试了样机在不同工况下的性能,并与仿真结果进行了对比分析,得出如下结论:
(1) 当电机定子端电压和线电流受逆变器容量限制时,永磁同步电机的过载能力主要取决于凸极率ρ和永磁体磁链,而调速范围主要取决于弱磁率ξ;为了提高内置式永磁同步电机的调速能力,应使弱磁率ξ大于1且接近于1;而为了提高内置式永磁同步电机的过载能力,应使电机的凸极率ρ和永磁体磁链ψf尽量大;
(2) 在保证电机效率和定子槽满率不变的情况下,可以通过增加定子齿部宽度或定子轭部厚度的方式来增加电机的凸极率,从而提高永磁同步电机的过载能力,同时还可减小电机的有效铜用量;
(3) 增大转子中的两相邻V型磁钢距离Rib时,电机电磁输出转矩和永磁体利用率增大,同时也调节了电机的弱磁率ξ大小,可增大了电机的调速范围,但过大的Rib值会使磁钢盛放空间变小且气隙磁密发生畸变。
参 考 文 献:
[1] 唐任远. 现代永磁电机:理论与设计 theory and design[M]. 机械工业出版社, 2016.
[2] 符荣, 窦满峰. 电动汽车驱动用内置式永磁同步电机直交轴电感参数计算与实验研究[J]. 电工技术学报, 2014, 29(11):30.
FU Rong, DOU Manfeng. Daxis and qaxis inductance calculation and experimental research on interior permanent magnet synchronous motors for EV[J]. Transactions of China Electrotechnical Society, 2014, 29(11):30.
[3] 张岳, 曹文平, John.电动车用内置式永磁电机(PMSM)设计[J]. 电工技术学报, 2015, 30(14):108.
ZHANG Yue, CAO Wenping. Design of an interior permanent magnet synchronous motor(PMSM)for EV traction[J]. Transactions of China Electrotechnical Society, 2015, 30(14):108.
[4] 冯桂宏, 李庆旭, 张炳义,等. 电动汽车用永磁电机弱磁調速能力[J]. 电机与控制学报, 2014, 18(8):55.
FENG Guihong, LI Qinxu, ZHANG Binyi.Speed adjusting ability with field weakening of permanent magnet motor for electric vehicle [J]. Electric Machines and Control, 2014, 18(8):55.
[5] WANG Aimeng,JIA Yihua,DONG Shuhui.Design and analysis of a novel interior permanent magnet machine for hybrid electric vehicle traction[C]// International Conference on Electrical Machines and Systems. IEEE, 2011:1.
[6] VAGATI A,PELLEGRINO G,GUGLIELMI P.Comparison between SPM and IPM motor drives for EV application[C]// Xix International Conference on Electrical Machines. IEEE, 2010:1.
[7] LIU Xiangdong,CHEN Hao,ZHAO Jing.Research on the Performances and Parameters of Interior PMSM Used for Electric Vehicles [J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3533.
[8] YANG Yinye,CASTANO S, YANG Rong,et al. Design and comparison of interior permanent magnet motor topologies for traction applications[J]. IEEE Transactions on Transportation Electrification, 2017, PP(99):1.
[9] KIM B, LEE J, JEONG Y, et al. Development of 50 kW traction induction motor for electric vehicle (EV)[C]// Vehicle Power and Propulsion Conference. IEEE, 2012:142.
[10] 王晓远, 高鹏, 赵玉双. 电动汽车用高功率密度电机关键技术[J]. 电工技术学报, 2015, 30(6):53.
WANG Xiaoyuan, GAO Peng, ZHAO Yushuang. Key technology of high power density motors in electric vehicles[J]. Transactions of China Electrotechnical Society, 2015, 30(6):53.
[11] DAJAKU G, HOFMANN H, HETEMI F,et al. Comparison of two different IPM traction machines with concentrated winding[J].IEEE Transactions on Industrial Electronics,2016,63(7):4137.
[12] WANG A, LI H, LU W, et al. Influence of skewed and segmented magnet rotor on IPM machine performance and ripple torque for electric traction[C]// Electric Machines and Drives Conference,2009.IEMDC'09.IEEE International.IEEE,2009:305.
[13] TANGUDU J K,JAHNS T M. Comparison of interior PM machines with concentrated and distributed stator windings for traction applications[C]// Vehicle Power and Propulsion Conference. IEEE, 2011:1.
(编辑:贾志超)