基于振动信号的高压断路器触头超程状态识别

2019-07-22 04:38杨秋玉阮江军黄道春庄志坚
电机与控制学报 2019年6期
关键词:合闸断路器高压

杨秋玉 阮江军 黄道春 庄志坚

摘 要关键词:高压断路器;触头超程;振动信号;经验模态分解; Hilbert边际谱能量

DOI:10.15938/j.emc.2019.06.000

中图分类号文献标志码:A 文章编号:1007 -449X(2019)06 -0000 -00

Abstract:This paper presents a new method for identifying the state of electrical contacts overtravel in highvoltage circuit breaker (HVCB) using vibration signature. The vibration signal generated during the process of HVCB opening/closing operation contains the information of electrical contacts overtravel, which can be extracted by appropriate feature extraction method. The vibration signals of different overtravels are obtained by experimental investigation. The empirical mode decomposition (EMD) is used to decompose the vibration signal, and the marginal spectral energy of the decomposed intrinsic mode function (IMF) is calculated as the feature for identifying overtravel state. Furthermore, the variation rule between the feature and the overtravel is analyzed in detail. The experimental results show that the proposed method can effectively extract the overtravel state information from HVCBs vibration signal, which can realize the accurate identification of the overtravels state. This method provides a feasible approach for online monitoring and diagnosis of HVCBs electrical contact overtravel.

Keywords:highvoltage circuit breaker; overtravel of electrical contact; vibration signal; empirical mode decomposition; Hilbert marginal spectrum energy

0 引 言

高壓断路器是保证电网安全、可靠运行的重要和关键设备。电网的安全、灵活和稳定性主要依赖于断路器的可靠工作[1-4]。因此,为了避免断路器发生故障和延长服役寿命,人们提出了各种维护策略。其中,通过检测高压断路器机械特性来对其性能进行评估是目前最常用的方法[5-8]。高压断路器的机械特性主要有:触头开距、触头超程、分/合闸时间、分/合闸速度、分闸反弹幅值、合闸弹跳时间、同期性等。其中,触头超程是非常关键的机械特性参数:1)触头超程影响着其它机械特性参数;2)触头超程还影响着回路电阻、断路器机械寿命及电寿命等。工程实践和试验研究表明,触头超程随着断路器动作次数(包括空载、额定负载和异常负载)的增加不断减小,且动作越频繁(与机械寿命有关)、开断电流越大(与电寿命有关),超程减小的越快。

目前,只能通过离线的方式对在运高压断路器触头超程进行检测,即在停电检修期间,通过检测高压断路器触头行程曲线,并结合分/合闸脱扣器电流曲线、触头状态曲线等,求取触头超程值[9-10]。这种方法不仅费时费力,还受位移/角度传感器安装的影响,更不能实现在线监测。为解决该现状,本文提出利用高压断路器分/合闸动作过程中产生的振动信号对触头超程状态进行识别,尝试通过合适的信号处理与特征提取方法,提取反映高压断路器触头超程状态变化的特征量,实现触头超程状态的识别。

为了从振动信号中提取触头超程特征,首先应对振动信号进行加工,从中获取尽可能多的信息。常用的振动信号处理方法大致可分为两类:1)基于Fourier变换的经典谱分析方法及其改进方法[11-14],2)时频分析方法[15-18]。基于Fourier变换的经典谱分析方法要求被分析的信号是严格平稳的(工程实际的信号多为非平稳);其改进方法是将原非线性、非平稳信号转换为线性、平稳信号(并非真实信号),或减小原信号的非线性、非平稳特征(存在误差);因此,第一类方法存在着固有的缺陷,不适合用于分析(或分析效果不佳)高压断路器这种复杂的非线性、非平稳振动信号。时频分析方法包括传统的如短时Fourier变换(STFT)、小波变换(WT)等方法;以及新型的如HilbertHuang变换(HHT)、变分模态分解(VMD)等方法。时频分析方法是处理振动信号最常用、最有效的方法。本文采用HHT方法对高压断路器振动信号进行处理。

在特征提取方面,综合考虑1)Hilbert边际谱(可对HHT结果积分得到)是反映信号单位频率内的幅值分布;2)能量能够反映机械运动的状态:信号各频段随机械状态的变化而变化,而频带能量的变化更加显著[19-20]。因此,本文将HHT与频带能量相结合,从高压断路器分/合闸产生的振动信号中提取表征触头超程状态的特征量。

4 结 论

1)通过对高压断路器进行机械寿命试验,得到高压断路器机械寿命期内触头超程变化规律(图10所示)。

2)试验获取高压断路器触头超程变化过程中的振动信号,并采用EMD与IMF分量Hilbert边际谱能量相结合的振动信号特征提取方法,揭示了高压断路器振动信号特征量随触头超程变化的规律。

3)IMF1分量Hilbert边际谱能量可很好地反映高压断路器触头超程状态:合闸时,IMF1分量Hilbert边际谱能量值与触头超程值成反比(即:触头超程越小,IMF1分量Hilbert边际谱能量越大);分闸则反之,即IMF1分量Hilbert边际谱能量值与触头超程值成正比。

4)本文只采用单个加速度传感器、测量单一位置的振动信号,存在一定的局限性。后续可考虑分别在高压断路器三相本体(灭弧室)合适位置安装加速度传感器以分别实现三相触头超程状态的识别。

5)后续工作,还可基于本文所提方法,采用人工智能算法,如支持向量机、神经网络等,实现高压断路器触头超程状态的智能识别。

参 考 文 献:

[1] KEZUNOVIC M, REN Z, LATISKO G, et al. Automated monitoring and analysis of circuit breaker operation [J]. IEEE Transactions on Power Delivery, 2005, 20(3), 1910.

[2] NATTI S, KEZUNOVIC M. Assessing circuit breaker performance using conditionbased data and Bayesian approach [J]. Electric Power Systems Research, 2011, 81(9), 1796.

[3] RAZIKAZEMI A A, VAKILIAN M, NIAYESH K, et al. Priority assessment of online monitoring investment for power system circuit breakersPart I: Qualitativequantitative approach [J]. IEEE Transactions on Power Delivery, 2013, 28(2), 928.

[4] JUN Z, WENYUAN L, CAISHENG W, et al. A rankboost based datadriven method to determine maintenance priority of circuit breakers [J]. IEEE Transactions on Power Delivery, DOI 10.1109/TPWRD.2017.2748146.

[5] 趙书涛,吴成坚,李明,等.基于NCC-P-S优化算法的断路器机械特性测试方法研究[J].中国电机工程学报,2017,37(14):4265.

ZHAO Shutao, WU Chenjian, JI Ming, et al. Research of circuit breaker mechanical characteristic test method based on normalized cross correlationpyramidsector optimization algorithm [J]. Proceedings of the CSEE, 2017, 37(14): 4265.

[6] 刘艳,陈丽安.基于SOM的真空断路器机械故障诊断[J].电工技术学报,2017,32(5):49.

LIU Yan, CHEN Lian. Mechanical fault diagnosis of vacuum circuit breaker based on SOM[J]. Transactions of China electrotechnical Society, 2017, 32(5): 49.

[7] 张显聪,喻冬梅,杨柳,等.位移传感器在中压断路器机械特性监测中的应用研究[J].高压电器,2015,51(7):37.

ZHANG Xiancong, YU Dongmei, YANG Liu, et al. Application study of the displacement sensor used for testing the mechanical properties of medium voltage circuit breaker [J]. High Voltage Apparatus, 2015, 51(7):37.

[8] 陈建平,胡占强,苏晓东.智能化断路器机械特性在线监测关键技术设计[J].高压电器,2014,50(4):108.

CHEN Jianping, HU Zhanqiang, SU Xiaodong. Key technology design to online monitoring of mechanical characteristics for intelligent vacuum circuit breaker [J]. High Voltage Apparatus, 2014, 50(4):108.

[9] 牛为华,梁贵书,赵鹏.基于稀疏表示和MELM的断路器故障诊断模型[J].系统仿真学报,2017,29(11):2828.

NIU Weihua, LIANG Guishu, ZHAO Peng. Fault diagnosis model of circuit breaker based on sparse representation and MELM [J]. Journal of System Simulation, 2017, 29(11): 2828.

[10] 姜生,李世民,王继元.真空断路器机械特性的探讨[J].高压电器,2002,38(4):61.

JIANG Sheng, LI Shimin, WANG Jiyuan. Discussion on the mechanical characteristic of vacuum circuit breaker [J]. High Voltage Apparatus, 2002, 38(4): 61.

[11] 戴煜林.故障树及振动包络分析在风电机组故障诊断中的应用[D].北京: 华北电力大学,2016.

[12] 史红梅,赵蓉,余祖俊,等.基于钢轨振动响应分析的车轮扁疤检测方法研究[J].振动与冲击,2016,35(10):24.

SHI Hongmei, ZHAO Rong, YU Zujun, et al. Detection method for wheel flats based on rail vibration responses analysis [J]. Journal of Vibration and Shock, 2016, 35(10):24.

[13] 林慧斌,丁康.基于振动的发动机转速高精度动态测量新方法[J].振动工程学报,2012,25(5):595.

LI Huibin, DING Kang. A high accuracy dynamical measurement method for engine rotation speed based on vibration [J]. Journal of Vibration Engineering, 2012, 25(5): 595.

[14] 龙海军,孙灿飞,莫固良.直升机振动检测通用算法的研究与实现[J].振动、测试与诊断,2016,36(3):254.

LONG Haijun, SUN Canfei, MO Guliang. Research and implementation of general algorithm for helicopter vibration detection [J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(3):254.

[15] 李辉,李洋,杨东,等.基于EMD相关去噪的风电机组振动噪声抑制及特征频率提取[J].电机与控制学报,2016,20(1):73.

LI Hui, LI Yang, YANG Dong, et al. Noise suppression and characteristic frequency extraction of wind turbine vibration based on EMD correlation denoising [J]. Electric Machines and Control, 2016, 20(1):73.

[16] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proceeding of the Royal Society of London Series AMathematical Physical and Engineering Sciences, 1998, 454(1971):903.

[17] SMITH J S. The local mean decomposition and its application to EEG perception data [J]. Journal of the Royal Society Interface, 2005, 2(5):443.

[18] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3), 531.

[19] 孙一航,武建文,廉世军.结合经验模态分解能量总量法的断路器振动信号特征向量提取[J].电工技术学报,2014,29(3):228.

SUN Yihang, WU Jianwen, LIAN Shijun. Extraction of vibration signal feature vector of circuit breaker based on empirical mode decomposition amount of energy [J]. Transactions of China Electrotechnical Society, 2014, 29(3): 228.

[20] 陈攀,姚陈果,廖瑞金.分频段能量谱及马氏聚类算法在开关柜局部放电模式识别中的应用[J].高电压技术,2015,41(10):3332.

CHEN Pan, YAO Chenguo, LIAO Ruijin. Application of signals separated band energy spectrum and mahalanobis clustering algorithm for switchgear partial discharge pattern recognition [J]. High Voltage Engineering, 2015, 41(10): 3332.

(編辑:贾志超)

猜你喜欢
合闸断路器高压
核电站真空断路器交接试验流程的控制
断路器合闸线圈烧毁原因分析
500kV断路器配PCS-9830型选相合闸装置现场带电调试技术
高压高更危险
220?kV升压站SF6断路器的改造方法研究
220kV断路器防跳回路中的异常处理探析
断路器分合闸线圈保护方案
民用建筑低压断路器选型探讨
2015年全国两会最高检、最高法2014年成绩单
2007年高压开关类试验合格的产品和企业