14-3-3蛋白相关研究进展

2019-07-19 06:43曹雅倩岳试超
安徽农业科学 2019年12期
关键词:配体细胞周期亚型

曹雅倩 岳试超

摘要 14-3-3蛋白家族是一组高度保守的蛋白质家族,在各种真核生物中广泛存在,主要是以同源/异源二聚体的形式存在,在哺乳动物中共有7种亚型。目前,对于14-3-3蛋白的研究表明其在神经发育、细胞周期、疾病发生等生命过程中都发挥着重要作用。通过对近年来14-3-3蛋白的研究成果进行归纳总结,综述了14-3-3蛋白在蛋白质翻译后修饰、细胞周期及疾病形成等方面的最新研究进展,讨论了深入研究14-3-3蛋白的重要性。

关键词 14-3-3蛋白;保守性;结构特征;细胞周期;疾病

中图分类号 Q 51  文献标识码 A

文章编号 0517-6611(2019)12-0019-05

doi:10.3969/j.issn.0517-6611.2019.12.005

开放科学(资源服务)标识码(OSID):

Abstract The 14-3-3 proteins are a family of highly conserved proteins,and the proteins widely express in different eukaryotic cells.The 14-3-3 proteins are mainly in the form of homodimers or heterodimers,which include 7 isoforms in mammals.So far,the research on 14-3-3 proteins showed that it played an important role on neural development,cell cycle,disease occurrence and other life processes.By summarizing the research results of 14-3-3 proteins in recent years,this review summarized the latest research progress of 14-3-3 proteins in the posttranslational modification,cell cycle and disease formation,etc,and discussed the importance of further study on 14-3-3 proteins.

Key words 14-3-3 proteins;Conservation;Structure characteristics;Cell cycle;Disease

14-3-3蛋白最早是由Moore 和 Perez在1967年發现的,他们在牛脑组织中发现了一组蛋白,根据此蛋白经过DEAE cellulose(二乙氨乙基纤维素柱)后得到的片段数目以及其在凝胶电泳中的迁移距离,他们将其命名为14-3-3蛋白[1]。之后,Morrison和Muslin在1994年发现14-3-3蛋白是一个特殊的磷酸化结合蛋白,其能够特异性结合到含有磷酸化苏氨酸和磷酸化丝氨酸的蛋白质肽段上[2]。14-3-3蛋白在哺乳动物中可由不同基因编码产生,共有7个亚型(β,ε,η,γ,θ,σ 和 ζ),并且在不同类型的组织中这些亚型的表达量是有所区别的[3]。而且,无论是在体内还是在体外,14-3-3蛋白都是以同源二聚体或异源二聚体的形式存在的[4]。关于蛋白质与蛋白质的相互作用这一方面,14-3-3是通过改变其结合对象的构象、稳定性、亚细胞定位或活性来发挥作用的,迄今为止,14-3-3蛋白已被证实是高度保守的蛋白质,并可与数百种蛋白质相互作用,能够参与调控多种细胞进程,如神经发育、信号转导、免疫反应、蛋白转运、细胞周期和凋亡等[5-7]。虽然这7种亚型都能与一般的蛋白相互作用,但是由于这些亚型在N端都具有特定的序列,因此每个亚型都有独特的相互作用蛋白[8]。14-3-3蛋白家族同样也与疾病密切相关,并且参与了许多神经系统疾病,例如家族中的一些成员14-3-3ζ、14-3-3γ、14-3-3β和14-3-3σ都与人类癌症有关[9-11]。14-3-3蛋白在大脑中表达量较高,大约占可溶性蛋白的1%,其参与了各种各样的神经过程,如神经突的生长、神经分化、迁移和生存、神经递质释放等[12-14]。笔者着重介绍14-3-3蛋白与蛋白质翻译后修饰、细胞周期和疾病发生等之间的联系。

1 14-3-3蛋白的种类与结构

1.1 14-3-3蛋白的种类

14-3-3蛋白各亚型是由不同的基因编码的,而这些基因又位于不同的染色体上。14-3-3蛋白家族在氨基酸序列上具有高度保守性,比如人类的14-3-3蛋白与非洲爪蟾的14-3-3蛋白在氨基酸序列上同源性达84%[15],就哺乳动物而言,β、γ、ε、η、σ、θ和 ζ 亚型大部分是相同的,当然,部分亚型之间也存在着差异性。在许多真核生物中,都陆续发现了14-3-3蛋白的存在,即14-3-3蛋白的保守性及广泛分布反映了其在真核生物中发挥着很重要的功能。

1.2 14-3-3蛋白的结构

14-3-3蛋白以同源二聚体或异源二聚体的形式存在,其能够同时结合2个配体,至今已有多种14-3-3蛋白及其配体复合物的结晶结构被研究报道,而所有14-3-3蛋白的三级结构都极为相似。14-3-3蛋白的X射线结构显示其为杯子形状的二聚体(图1),每个单体由9个α螺旋(αA ~ αI)组成,并且这些螺旋是反向平行的,其中αA、αC、αD组成二聚体界面,一个单体的αA与另外一个单体的αC、 αD形成一个兼性凹槽[16],这个兼性凹槽是 14-3-3与配体相互作用的结构域,也调节着14-3-3与靶蛋白的结合,沟槽的两侧是不对称的,并且高度保守,带有大量负电荷,一侧是由αG和αI上的疏水性氨基酸残基构成的非极性面,另一侧是由αC和αE上的极性氨基酸残基构成的极性面[17]。14-3-3蛋白分子的3个保守的碱性氨基酸Lys49、Arg56、 Arg127与Tyr128形成一个单独的口袋,而这个口袋与磷酸化磷酸基团又形成了离子键和氢键,这就解释了磷酸化是调控许多配体与14-3-3结合的关键[16]。

2 14-3-3与蛋白质翻译后修饰

蛋白质的翻译后修饰(posttranslational modification,PTM)通过直接和动态地控制蛋白质的功能,使细胞能够对内部和外部的信号做出迅速反应,在调节多种细胞过程中发挥着重要作用,在过去几十年里,磷酸化、乙酰化和泛素化等翻译后修饰都获得了极大的关注[18]。

14-3-3蛋白的磷酸化是公認的调控14-3-3蛋白功能的机制。14-3-3蛋白有3个保守的磷酸化位点,分别是位点S58、S185、S/T232,但并不是所有的亚型都有这3个磷酸化位点,除了14-3-3σ和θ外,其他亚型都有S58磷酸化,S185磷酸化存在于14-3-3β、ε、σ和ζ中,而S/T232磷酸化仅仅存在于14-3-3θ和ζ中[19]。就其磷酸化位点的功能方面来讲,S58位磷酸化调控14-3-3蛋白的二聚化[20],而S185磷酸化调控其与配体的结合[21-22],S232磷酸化可能也会影响配体结合,这是由于C末端尾部能够向后折叠堵塞结合口袋导致的[23]。

最近研究发现,在人类细胞中,14-3-3蛋白能够结合O-GlcNAc基团,而且14-3-3β/α和γ的结构能够结合糖肽段,这能够为O-GlcNAc介导的蛋白质-蛋白质相互作用提供生物物理基础,并且由于14-3-3蛋白也能够结合磷酸化-丝氨酸和磷酸化-苏氨酸,这就表明14-3-3蛋白可能是通过O-GlcNAc和O-磷酸化信号通路共同调控多种生理功能的[24]。

甲硫氨酸亚砜还原酶Msr(methionine sulfoxide reductase)系统以其将蛋白-甲硫氨酸亚砜还原为甲硫氨酸的功能而闻名,哺乳动物的MsrA被证明可以介导14-3-3蛋白的泛素化,尤其是14-3-3ζ蛋白的泛素化,并促进大脑中14-3-3蛋白与α-synuclein的结合,MsrA介导的14-3-3ζ泛素化会影响大脑中α-synuclein降解和多巴胺合成途径的调节[25]。

3 14-3-3蛋白与细胞周期

生物的生存、繁殖、发育和遗传等生命活动都要受到细胞周期的调控,且细胞周期的准确调控至关重要。Cdc25C是一种双特异性蛋白磷酸酶,对细胞周期蛋白依赖性激酶(cdk1)的去磷酸化和活化非常重要,并且通过去磷酸化蛋白激酶Cdc2来控制有丝分裂的进入。14-3-3蛋白与Cdc25C ser-216位磷酸化位点结合,抑制Cdc25C的活性,使细胞滞留于细胞间期[26],而在有丝分裂期间ser-214位的磷酸化,会抑制ser-216位的磷酸化,从而影响Cdc25c与14-3-3的结合,进而影响周期进程[27]。

E2Fs转录因子家族在协调细胞周期进程中发挥着至关重要的作用,E2F7和E2F8表达水平在S期达到峰值,介导许多参与DNA复制、代谢和修复的靶基因的下调。E2Fs作为DNA复制基因的转录抑制剂,能够诱导永久性的S期阻滞和抑制肿瘤的发生,而在人类肝癌细胞中,CHK1(checkpoint kinase 1)和14-3-3蛋白共同发挥作用使E2Fs转录抑制功能失活而调控细胞周期[28] 。14-3-3σ是一个细胞周期调节蛋白,其抑制Cdk2/cyclinE的活性导致G1期细胞周期阻滞,并且隔绝Cdc2/cyclinB到细胞质,能够诱导G2期细胞周期阻滞[29-32]。当发生DNA损伤和DNA复制压力时,需要14-3-3蛋白重新启动细胞周期,抑制基因组不稳定性[33]。14-3-3蛋白能够调控EXO1(Exonuclease 1)的磷酸化位点和其他的未知靶点,来促进复制叉进程、稳定性以及重新启动以响应DNA复制压力[34]。

4 14-3-3蛋白与疾病的关系

4.1 14-3-3蛋白与代谢性疾病

代谢性疾病如今在全球范围内日益增多,也越来越受到人们的关注,而且代谢性疾病也影响着不同年龄、性别和社会经济背景的个人。

生物管是包括肺、肝、肠和肾在内的多种器官的基本结构单位,在生物材料交换和结构支持方面发挥着重要作用,管腺增生则涉及细胞形状和囊泡运输等的变化。14-3-3ε 与ERM(ezrin/radixin/moesin)在基底皮质的结合,能够通过直接转运基质因素到腔顶端表面从而导致管腔的形成,而14-3-3ε又可与UTKO1(小分子管腺增生抑制剂)直接结合,UTKO1的存在阻止其与ERM的结合,并且14-3-3ε蛋白敲低之后也能够降低管腺增生的形成[35]。虽然14-3-3σ在路易体痴呆病(Lewy body disease)发展中的作用尚不明确,但其与路易体痴呆病的病理关系可以扩大人们对路易体痴呆病的认识[36]。在慢性肾病中,14-3-3蛋白尤其是14-3-3σ会高表达,这有可能是钙网蛋白的高表达导致低氧诱导因子-1 (hypoxia inducible factor-1,HIF1α)上调从而诱导14-3-3σ的表达,进而导致慢性肾病的形成[37]。

4.2 14-3-3蛋白与神经性疾病

14-3-3蛋白是在大脑中首次被发现的,并且在大脑中的表达量很高,这也就意味着14-3-3蛋白有可能在大脑中发挥着很重要的作用,同时,许多试验也说明了14-3-3蛋白与很多神经性疾病有关。1986年在散发性克雅氏病人的脑脊液(CSF,cerebrospinal fluid)中发现了2种蛋白,后来被证实其属于14-3-3蛋白家族,之后大量研究也表明脑脊液中14-3-3蛋白与spCJD(sporadic Creutzfeldt-Jakob disease)密切相关,并且世界卫生组织在1998年将14-3-3蛋白阳性作为spCJD的一个辅助性诊断指标[38],之后脑脊液蛋白14-3-3检测仍是诊断克雅氏病的重要手段[39],而后研究也表明脑脊液中14-3-3γ蛋白水平超过100 000 AU/m,则有很大风险会患克雅二氏症CJD[40]。

參考文献

[1]MOORE B W,PEREZ V J,GEHRING M.Assay and regional distribution of a soluble protein characteristic of the nervous system[J].Journal of neurochemistry,1968,15(4):265-272.

[2] MUSLIN A J,TANNER J W,ALLEN P M,et al.Interaction of 1433 with signaling proteins is mediated by the recognition of phosphoserine[J].Cell,1996,84(6):889-897.

[3] KILANI R T,MEDINA A,AITKEN A,et al.Identification of different isoforms of 1433 protein family in human dermal and epidermal layers[J].Molecular and cellular biochemistry,2008,314(1/2):161-169.

[4] JONES D H,LEY S,AITKEN A.Isoforms of 1433 protein can form homoand heterodimers in vivo and in vitro:Implications for function as adapter proteins[J].FEBS Lett,1995,368(1):55-58.

[5] FU H,SUBRAMANIAN R R,MASTERS S C.1433 proteins:Structure,function,and regulation[J].Annual review of pharmacology and toxicology,2000,40(1):617-647.

[6] WEI Y X,LIU W,HU W,et al.Genomewide analysis of autophagyrelated genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt[J].Plant cell reports,2017,36(8):1237-1250.

[7] MORRISON D K.The 1433 proteins:Integrators of diverse signaling cues that impact cell fate and cancer development[J].Trends in cell biology,2009,19(1):16-23.

[8] JIN J,SMITH F D,STARK C,et al.Proteomic,functional,and domain-based analysis of in vivo 1433 binding proteins involved in cytoskeletal regulation and cellular organization[J].Curr Biol,2004,14(16):1436-1450.

[9] FOOTE M,ZHOU Y.1433 proteins in neurological disorders[J].International journal of biochemistry and molecular biology,2012,3(2):152-164.

[10] AGHAZADEH Y,PAPADOPOULOS V.The role of the 1433 protein family in health,disease,and drug development[J].Drug discovery today,2016,21(2):278-287.

[11] LIN H,JIAO X L,YU B X,et al.Clinical significance of serum 1433 beta in patients with hepatocellular carcinoma[J].Cancer biomark,2017,20(2):143-150.

[12] MARZINKE M A,MAVENCAMP T,DURATINSKY J,et al.1433ε and NAV2 interact to regulate neurite outgrowth and axon elongation[J].Archives of biochemistry and biophysics,2013,540(1/2):94-100.

[13] TOYOOKA K,WACHI T,HUNT R F,et al.1433  and   regulate neurogenesis and differentiation of neuronal progenitor cells in the developing brain[J].Journal of neuroscience,2014,34(36):12168-12181.

[14] BERG D,HOLZMANN C,RIESS O.1433 proteins in the nervous system[J].Nature reviews neuroscience,2003,4(9):752-762.

[15] KOUSTENI S,TURA F,SWEENEY G E,et al.Sequence and expression analysis of a Xenopus laevis cDNA which encodes a homologue of mammalian 1433 zeta protein[J].Gene,1997,190(2):279-285.

[16] YAFFE M B.How do 1433 proteins work?-Gatekeeper phosphorylation and the molecular anvil hypothesis[J].FEBS Lett,2002,513(1):53-57.

[17] PETOSA C,MASTERS S C,BANKSTON L A,et al.1433zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove[J].J Biol Chem,1998,273(26):16305-16310.

[18] YANG X Y,QIAN K.Protein OGlcNAcylation:Emerging mechanisms and functions[J].Nat Rev Mol Cell Biol,2017,18(7):452-465.

[19] MCFERRIN M B,CHI X,CUTTER G,et al.Dysregulation of 1433 proteins in neurodegenerative diseases with Lewy body or  Alzheimer pathology[J].Ann Clin Transl Neurol,2017,4(7):466-477.

[20] WOODCOCK J M,MURPHY J,STOMSKI F C,et al.The dimeric versus monomeric status of 1433zeta is controlled by phosphorylation of Ser58 at the dimer interface[J].J Biol Chem,2003,278(38):36323-36327.

[21] SUNAYAMA J,TSURUTA F,MASUYAMA N,et al.JNK antagonizes Akt-mediated survival signals by phosphorylating 1433[J].J Cell Biol,2005,170(2):295-304.

[22] YOSHIDA K,YAMAGUCHI T,NATSUME T,et al.JNK phosphorylation of 1433 proteins regulates nuclear targeting of cAbl in the apoptotic response to DNA damage[J].Nat Cell Biol,2005,7(3):278-285.

[23] OBSILOVA V,HERMAN P,VECER J,et al.1433zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232[J].J Biol Chem,2004,279(6):4531-4540.

[24] TOLEMAN C A,SCHUMACHER M A,YU S,et al.Structural basis of OGlcNAc recognition by mammalian 1433 proteins[J].Proceedings of the national academy of sciences,2018,115(23):5956-5961.

[25] DENG Y,JIANG B C,RANKIN C L,et al.Methionine sulfoxide reductase A (MsrA) mediates the ubiquitination of 1433 protein isotypes in brain[J].Free radical biology and medicine,2018,129:600-607.

[26] PeNG C Y,GRAVES P R,THOMA R S,et al.Mitotic and G2 checkpoint control:Regulation of 1433 protein binding by phosphorylation of Cdc25C on serine216[J].Science,1997,277(5331):1501-1505.

[27] BULAVIN D V,HIGASHIMOTO Y,DEMIDENKO Z N,et al.Dual phosphorylation controls Cdc25 phosphatases and mitotic entry[J].Nat Cell Bio,2003,5(6):545-551.

[28] YUAN R,VOS H R,VAN ES R M,et al.Chk1 and 1433 proteins inhibit atypical E2Fs to prevent a permanent cell cycle  arrest[J].EMBO J,2018,37(5):e97877.

[29] LEE M H,LOZANO G.Regulation of the p53MDM2 pathway by 1433 sigma and other proteins[J].Semin Cancer Biol,2006,16(3):225-234.

[30] YANG H Y,WEN Y Y,CHEN C H,et al.1433 sigma positively regulates p53 and suppresses tumor growth[J].Mol Cell Biol,2003,23(20):7096-7107.

[31] LARONGA C,YANG H Y,NEAL C,et al.Association of the cyclindependent kinases and 1433 sigma negatively regulates cell cycle progression[J].J Biol Chem,2000,275(30):23106-23112.

[32] HERMEKING H,LENGAUER C,POLYAK K,et al.1433sigma is a p53-regulated inhibitor of G2/M progression[J].Mol Cell,1997,1(1):3-11.

[33] LOTTERSBERGER F,RUBERT F,BALDO V,et al.Functions of Saccharomyces cerevisiae 1433 proteins in response to DNA damage and to DNA replication stress[J].Genetics,2003,165(4):1717-1732.

[34] ENGELS K,MUZIFALCONI M,GIANNATTASIO M,et al.1433 proteins regulate exonuclease 1dependent processing of stalled replication forks[J].PLoS Genetics,2011,7(4):1-9.

[35] MIZOTANI Y,SUZUKI M,HOTTA K,et al.1433epsilona directs the pulsatile transport of basal factors toward the apical domain for lumen growth in tubulogenesis[J].Proc Natl Acad Sci USA,2018,115(38):8873-8881.

[36] WAKABAYASHI K,UMAHARA T,HIROKAWA K,et al.1433 protein sigma isoform colocalizes with phosphorylated αsynuclein in Lewy bodies and Lewy neurites in patients with Lewy body disease[J].Neuroscience letters,2018,674:171-175.

[37] RIZOU M,FRANGOU E A,MARINELI F,et al.The family of 1433 proteins and specifically 1433sigma are upregulated during the development of renal pathologies[J].J Cell Mol Med,2018,22(9):4139-4149.

[38] GREEN A J.Use of 1433 in the diagnosis of CreutzfeldtJakob disease[J].Biochem Soc Trans,2002,30(4):382-386.

[39] STOECK K,SANCHEZJUAN P,GAWINECKA J,et al.Cerebrospinal fluid biomarker supported diagnosis of CreutzfeldtJakob disease and rapid dementias:A longitudinal multicentre study over 10 years[J].Brain,2012,135(Pt 10):3051-3061.

[40] HUMPEL C,BENKE T.Cerebrospinal fluid levels of 1433 Gamma:What doesit tell us about sporadic Creutzfeldt-Jakob disease?[J].Pharmacology,2017,100(5/6):243-245.

[41] SAIZ A,GRAUS F,DALMAU J,et al.Detection of 1433 brain protein in the cerebrospinal fluid of patients with paraneoplastic neurological disorders[J].Ann Neurol,1999,46(5):774-777.

[42] COLUCCI M,ROCCATAGLIATA L,CAPELLO E,et al.The 1433 protein in multiple sclerosis:A marker of disease severity[J].Mult Scler,2004,10(5):477-481.

[57] SINGRANG N,KITTISENACHAI S,ROYTRAKUL S,et al.NOTCH1 regulates the viability of cholangiocarcinoma cells via 1433 theta[J].J Cell Commun Signal,2019,13(2):245-254.

[58] MAXWELL S A,CHERRY E M,BAYLESS K J.Akt,1433zeta,and vimentin mediate a drugresistant invasive phenotype in diffuse large B-cell lymphoma[J].Leuk Lymphoma,2011,52(5):849-864.

[59] LI Z G,ZHAO J,DU Y H,et al.Downregulation of 1433zeta suppresses anchorageindependent growth of lung cancer cells through anoikis activation[J].Proc Natl Acad Sci USA,2008,105(1):162-167.

[60] CHATTERJEE D,GOLDMAN M,BRAASTAD C D,et al.Reduction of 9-nitrocamptothecintriggered apoptosis in DU145 human prostate cancer cells by ectopic expression of 1433zeta[J].Int J Oncol,2004,25(2):503-509.

[61] ROOT A,BEIZAEI A,EBHARDT H A.Structurebased assessment and network analysis of targeting 1433 proteins in prostate cancer[J].Mol Cancer,2018,17(1):156.

[62] EBHARDT H A,ROOT A,LIU Y S,et al.Systems pharmacology using mass spectrometry identifies critical response nodes in prostate cancer[J].NPJ Syst Biol Appl,2018,4:26.

[63] CHOI H S,JEONG E H,LEE T G,et al.Autophagy inhibition with monensin enhances cell cycle arrest and apoptosis induced by mTOR or epidermal growth factor receptor inhibitors in lung cancer cells[J].Tuberc Respir Dis (Seoul),2013,75(1):9-17.

[64] KIDD M E,SHUMAKER D K,RIDGE K M.The role of vimentin intermediate filaments in the progression of lung cancer[J].Am J Respir Cell Mol Biol,.2014,50(1):1-6.

[65] ZHONG J T,KONG X X,ZHANG H Y,et al.Inhibition of CLIC4 enhances autophagy and triggers mitochondrial and ER stressinduced apoptosis in human glioma U251 cells under starvation[J].PLoS One,2012,7(6):1-10.

[66] HE C L,BIAN Y Y,XUE Y,et al.Pyruvate kinase M2 activates mTORC1 by phosphorylating AKT1S1[J].Sci Rep,2016,6:215-241.

[67] WANG R C,WEI Y,AN Z,et al.Aktmediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation[J].Science,2012,338(6109):956-959.

[68] FETTWEIS G,DI VALENTIN E,LHOMME L,et al.RIP3 antagonizes a TSC2-mediated pro-survival pathway in glioblastoma cell death[J].Biochim Biophys Acta Mol Cell Res,2017,1864(1):113-124.

[69] MARCHAND B,ARSENAULT D,RAYMONDFLEURY A,et al.Glycogen synthase kinase3 (GSK3) inhibition induces prosurvival autophagic signals in human pancreatic cancer cells[J].J Biol Chem,2015,290(9):5592-5605.

[70] BODEN G,DUAN X,HOMKO C,et al.Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese,insulin-resistant individuals[J].Diabetes,2008,57(9):2438-2444.

猜你喜欢
配体细胞周期亚型
红霉素联合顺铂对A549细胞的细胞周期和凋亡的影响
基于配体邻菲啰啉和肉桂酸构筑的铜配合物的合成、电化学性质及与DNA的相互作用
NSCLC survivin表达特点及其与细胞周期的关系研究
X线照射剂量率对A549肺癌细胞周期的影响
新型三卟啉醚类配体的合成及其光学性能
Ikaros的3种亚型对人卵巢癌SKOV3细胞增殖的影响
熊果酸对肺癌细胞株A549及SPCA1细胞周期的抑制作用
ABO亚型Bel06的分子生物学鉴定
HeLa细胞中Zwint-1选择剪接亚型v7的表达鉴定
基于Schiff Base配体及吡啶环的铜(Ⅱ)、镍(Ⅱ)配合物构筑、表征与热稳定性