秦胜飞,黄纯虎,张本健,杨雨,袁苗
(1.中国石油勘探开发研究院,北京 100083;2.中国石油西南油气田公司川中气矿,四川遂宁 629000;3.中国石油西南油气田公司川西北气矿,四川江油 621709;4.中国石油西南油气田分公司勘探开发研究院,成都 610051)
煤成气的研究、勘探和开发推动了中国天然气工业的快速发展。中国无论是在发现大气田的数量,还是天然气总探明储量,以及天然气产量上都以煤成气为主[1-3]。近年来,非常规天然气勘探越来越受重视,其中的致密砂岩气也以煤成气为主[4]。所以,煤成气的研究在中国天然气研究中地位十分重要。
用地球化学参数判断天然气成熟度最常用的是前人建立的δ13C1与Ro关系式,最具代表性的公式是Stahl[5]、戴金星[6]、刘文汇[7]等建立的。在这些公式中,无一例外地明确了随δ13C1变重,成熟度逐渐增加。因此,在无法确定气源或气源岩成熟度时,它们曾被广泛应用。虽然油田公司下属各矿区等一般都有能力分析天然气组分,但却不具有测定天然气碳同位素组成的仪器设备,而且样品外送分析周期较长,给研究和生产带来了不便。
长期以来人们一直关注能否从天然气组成中寻求反映其成熟度的参数。近期,戴金星根据煤成气中重烃含量与折算镜质体反射率Ro间较好的相关性,建立了煤成气湿度系数(C2—5/C1—5)与成熟度之间的关系式[8]。另外,通过对天然气组分的研究,还可以追踪天然气的运移[9-10]。
随着分析仪器的更新,对天然气组分分析的精度比以前有了很大提高,特别是对含量较低的丁烷和戊烷异构体的测定,使得研究天然气中重烃组分和计算相关参数成为可能。
天然气中iC4/nC4和iC5/nC5值常被研究人员忽略。异构烷烃由于沸点低,饱和蒸汽压高,分子间作用力较小,因而扩散系数要大于同碳数的正构烷烃[11]。所以,iC4和iC5的运移速率分别大于nC4和nC5。在气相色谱测定天然气组分时,异构烷烃出峰时间早于同碳数的正构烷烃。据此推测随天然气运移距离的增加,iC4/nC4与iC5/nC5值可能会增大。笔者曾利用这些参数追踪四川盆地西部前陆盆地中天然气运移;研究发现,随天然气运移路径增加,两者比值确有增加[9]。关于iC4/nC4与iC5/nC5值与烃源岩成熟度之间的关系也有人曾做过研究,有观点认为这些比值会随成熟度增加而降低[12-13],但因缺乏研究实例,提供的证据都不够充分。笔者研究发现,iC4/nC4与iC5/nC5值并非随成熟度增加而降低。为了揭示iC4/nC4与iC5/nC5值与成熟度之间的关系,本文选择四川盆地中部(以下简称川中)一些气田三叠系须家河组(T3x)原生气藏中天然气作为研究对象,这些气田为广安气田、安岳气田、龙岗气田、合川气田、龙女寺气田、磨溪气田、南充气田和潼南气田。川中须家河组天然气为致密气,分布广泛,纵向气层较多且互相叠置,天然气并未经历明显的横向和纵向运移[14],组分运移分馏作用很小,这为研究煤成气各种组分随成熟度的变化提供了理想的实例,也为潜在成熟度参数的提出奠定了基础。
研究层位须家河组位于三叠系上统,其下伏地层为三叠系中统雷口坡组(T2l),上覆地层为下侏罗统(J1)。须家河组由多套煤系烃源岩和砂岩互层组成,自下而上可划分为须一段(T3x1)至须六段(T3x6),其中须一段(T3x1)、须三段(T3x3)、须五段(T3x5)以煤系为主夹薄层砂岩,为主要气源岩。须二段(T3x2)、须四段(T3x4)和须六段(T3x6)以灰白色、灰色细—中粒砂岩为主,夹薄层暗色泥岩,是较好的储集层(见图1)。雷口坡组以白云岩为主,夹石膏和薄层灰黑色页岩,是全区优质封隔层。须家河组上覆的下侏罗统黑色湖相页岩不仅是川中地区侏罗系油气藏的优质烃源岩,也是下伏须家河组天然气的优质区域盖层。
川中须家河组储集层广泛分布、纵向叠置,大面积含气,绝大部分地区构造比较平缓,气藏主要以构造-岩性复合气藏为主[15-16],储集层物性较差,孔隙度为4%~8%,渗透率为(0.01~1.00)×10-3μm2,属低孔、低渗和特低孔、特低渗储集层[17-18]。虽然喜马拉雅运动在川中地区表现为整体抬升,但未形成大的断裂系统,这对原生天然气藏的保存非常有利。
前人对四川盆地须家河组天然气地球化学特征及其成因类型做过很多研究,结论比较一致。从烷烃气碳同位素组成特征看,其乙烷碳同位素组成大于-28.0‰;根据中国含油气盆地天然气成因类型判别标准[19],为典型的煤成气。但需要强调的是,川中须家河组天然气是典型煤系烃源岩生成的热解气,因为这些天然气的干燥系数(C1/C1+)为0.84~0.96,平均为0.91(见表1)。如果以干燥系数等于0.95作为划分干气和湿气的界限[20],小于该值为湿气,大于该值为干气,那么川中地区须家河组天然气主要为湿气。
在Whitcar图版上,川中地区须家河组天然气分布在热成因气区域(见图2),表明这些天然气未经历过明显的热裂解,这为研究煤系源岩生成的天然气重烃气地球化学特征提供了较好的地质和地球化学条件。
前人所不曾注意到的是,川中地区须家河组不同层段天然气中iC4/nC4、iC5/nC5值明显不同,总体为下部层位高于上部层位,如T3x6、T3x4和T3x2天然气中,iC4/nC4值分别是1.04,1.22和1.26,iC5/nC5值分别为1.89,2.15和2.27。这种现象如用运移分馏作用难以解释,因为上部层段的天然气不大可能越过下伏烃源岩层运移到下部储集层中。例如,T3x6段天然气不大可能往下穿过T3x5段烃源岩运移至T3x4段储集层中,依次类推。由于川中地区须家河组天然气为原生气藏,天然气未经历过规模性的纵向或横向运移[14];由此推测,煤成气中iC4/nC4、iC5/nC5值与其成熟度有关。
图1 川中须家河组气田分布和油气系统
须家河组T3x5、T3x3和T3x1段烃源岩随埋藏深度的增加Ro逐渐增大,例如广安气田的广100井,T3x5段1 840 m井深处Ro值为1.28%,T3x3段2 043 m井深处Ro值为1.53%;龙女寺气田女107井T3x5段1 895 m井深处Ro值为1.30%,T3x3段2 090 m井深处Ro值为1.52%[21]。并且,同一口井中,自T3x2到T3x4、T3x6,重烃气含量依次增加,干燥系数依次降低,这与T3x1、T3x3和T3x5烃源岩成熟度逐渐降低相吻合[4]。
笔者选取了一批T3x4和T3x6气藏天然气样品进行上、下气藏天然气差异研究,T3x4气藏中天然气湿度系数明显高于T3x6气藏,重烃气含量T3x6气藏天然气高于T3x4气藏。
笔者还对广安及其他气田一些钻穿整个须家河组的钻井,把不同深度气藏中的天然气一些地球化学特征进行对比发现,自下而上,即从T3x2到T3x4、T3x6,天然气密度逐渐增大,甲烷含量逐渐降低(见表1),与T3x1、T3x3和T3x5烃源岩成熟度逐渐降低相吻合。这也说明上、下气藏之间天然气没有混合现象,天然气为原位成藏,成藏后没有经过明显运移。
广安气田开发层位较多,其主要产层为T3x4和T3x6,不同产层天然气最有可能来自气藏下部的T3x3和T3x5煤系烃源岩,沉积地层埋藏深度决定了T3x3烃源岩的成熟度要高于上部T3x5段烃源岩。如图3所示,广安气田T3x4段天然气的干燥系数和iC4/nC4值高于T3x6。这一差异不大可能是T3x6气藏的天然气向下越过T3x5段烃源岩运移至下部的T3x4储集层中,致使T3x4天然气干燥系数和iC4/nC4值变大。同理,从组分特征来看,T3x4气藏天然气也不大可能运移至T3x6气藏;如果天然气自T3x4气藏运移至T3x6气藏,根据运移分馏效应,T3x6气藏中的天然气干燥系数和iC4/nC4、iC5/nC5值都应分别高于T3x4气藏,而事实却恰恰相反。上述现象可以用烃源岩成熟度的不同进行解释:随烃源岩成熟度增加,天然气干燥系数增加,iC4/nC4值增加,甲烷碳同位素组成变重。
把表1中所有的样品中的iC4/nC4、iC5/nC5值数据做成相关图(见图4)发现,随iC4/nC4值增加,iC5/nC5值也随之增加,两者变化趋势基本一致,呈很好的相关性,复相关系数(R2)达0.818 5。此外,iC4/nC4和iC5/nC5值最低出现在南充气田,广安气田部分样品以及合川气田该比值相对较高。其中广安气田样品分别来自T3x4和T3x6气藏,对应的烃源岩为T3x3和T3x5,烃源岩成熟度跨度相对较大,这可能是其iC4/nC4和iC5/nC5比值差异大的原因。
表1 川中须家河组主要气田天然气组分和碳同位素组成
图2 川中地区须家河组天然气δ13C1-C1/(C2+3)鉴别图
图3 广安气田T3x4和T3x6气藏天然气中iC4/nC4和C1/C1+关系图
图4 川中地区须家河组气藏iC4/nC4和iC5/nC5关系图
随着成熟度(Ro)的增加,煤系烃源岩所生成天然气的干燥系数也会逐渐变大,甲烷碳同位素组成逐渐变重。因此,天然气干燥系数和甲烷碳同位素组成从某种程度上也能反映烃源岩的成熟度。为了便于比较,本文分别建立iC4/nC4、iC5/nC5值与天然气干燥系数、甲烷碳同位素组成和折算Ro之间的关系图版和关系式。
戴金星等研究煤成气湿度系数与其成熟度关系结果表明,随成熟度增加,湿度系数降低[8]。湿度系数与干燥系数的变化趋势呈相反关系,因此随成熟度增加,天然气干燥系数会相应增大。本文中天然气iC4/nC4、iC5/nC5值都与干燥系数呈较好的正相关关系,即随干燥系数增加,iC4/nC4和iC5/nC5值随之增大(见图5)。由图5还可见,iC4/nC4值与干燥系数之间复相关系数为0.748 0,iC5/nC5值与干燥系数之间复相关系数为0.593 5,相较而言丁烷的相关系数更高,这可能是因为各种因素导致的测试误差对戊烷含量影响更显著,导致iC5/nC5值与干燥系数之间相关系数略有降低。
无论是煤成气还是油型气,甲烷碳同位素组成与其成熟度之间都有较好的相关性,即随成熟度增加,碳同位素组成变重。据此,前人建立了很多Ro-δ13C1关系式。川中地区须家河组煤成气iC4/nC4、iC5/nC5值与甲烷碳同位素组成都呈较好的正相关关系,即随干燥系数增加,两比值都随之增大(见图6)。同样地,相对戊烷而言,iC4/nC4值与甲烷碳同位素组成之间相关性更高,复相关系数达0.786 4,戊烷的相关系数略低,复相关系数为0.572 0。
图5 川中地区须家河组气藏iC4/nC4和iC5/nC5值分别与C1/C1+关系图
首先根据公式δ13C1≈14.12lgRo-34.39[6]换算出相应的Ro值,再利用川中地区部分钻井的实测Ro值对计算值进行校正,用校正后的Ro值分别与iC4/nC4、iC5/nC5值作拟合图。由图7可见,随烃源岩成熟度增加,川中须家河组煤成气iC4/nC4、iC5/nC5值与Ro值也都分别呈较好的正相关关系。同样地,iC4/nC4值与Ro值之间相关性高于iC5/nC5值,前者复相关系数为0.774 2,后者复相关系数为0.599 0。
图6 川中地区须家河组气藏iC4/nC4、iC5/nC5值和δ13C1关系图
图7 川中须家河组气藏iC4/nC4、iC5/nC5值和Ro值关系图
国内一些学者认为,在有机质成熟过程中生成的正构烷烃与异构烷烃,两者有着不同的生成机制,前者主要来自于自由基断裂反应,后者主要来自碳阳离子反应,自由基断裂反应在相对高成熟阶段占优势,而碳阳离子反应则在相对低成熟阶段占优势,导致iC4/nC4值随成熟度增加而降低[12-13,26]。研究人员通过腐殖煤加水热模拟实验得出,从300 ℃到360 ℃生成天然气中iC4/nC4和iC5/nC5值都逐渐降低,认为热作用可使得其支链断裂而趋于生成碳数更低的正构烷烃,导致烷烃的异正构比降低[27]。模拟实验通常利用短时间、高温来弥补地质历史中的漫长、低温状态下有机质演化特征,但高温容易促使烃类裂解,得出的iC4/nC4和iC5/nC5值随成熟度变化规律的可靠性存疑。
国外有学者对Mississippian盆地Barnett组和Fayetteville组页岩气和常规天然气组分进行详细研究得出,在天然气湿度小于5%时,即成熟度相对较高时,随湿度变小(成熟度增加),iC4/nC4值快速降低;天然气湿度大于5%时,随湿度变小(成熟度的增加),iC4/nC4值缓慢增加[28]。在天然气湿度小于5%时湿气发生裂解,异丁烷的稳定性低于正丁烷,异丁烷减少的速率快于正丁烷[29],导致iC4/nC4值快速降低;但在天然气湿度大于5%时,为什么iC4/nC4值随成熟度增加而有序增加未作解释。
川中须家河组天然气都属于湿气,伴随湿气还有少量凝析油产出,尚未达到湿气裂解阶段,湿度都大于5%(见表1),iC4/nC4和iC5/nC5值随成熟度增加逐渐增大;其中,iC4/nC4值的变化趋势与Mississippian盆地类似。至于为何iC4/nC4和iC5/nC5值随成熟度增加而增加,这可能是由于支链烷烃相比直链烷烃从干酪根断裂需要更高的能量,在成熟度较高但还未达到湿气裂解阶段,生成的异构烷烃的量相对较多。因此,本文所使用的数据来自未发生大规模运移的煤成湿气,属原生气藏,且湿气尚未经过裂解,天然气中丁烷和戊烷主要来自干酪根热解,提出的iC4/nC4和iC5/nC5值作为煤成气成熟度指标比较可靠,适用于湿度系数大于5%且未经长距离运移的煤成气,也适用于其他煤成气盆地。
天然气中iC4/nC4和iC5/nC5值受母源类型、成熟度、运移和生物降解或氧化作用等诸多因素的影响,理论上这些比值能反映出很多地质现象;但长期以来,正是因为这些比值具有多解性,在应用方面具有较大的局限性。因此,先弄清天然气在生成过程中这些比值随成熟度的变化规律十分必要。结合地质背景,研究iC4/nC4和iC5/nC5值变化规律可以解决很多地质问题;例如,在原生气藏中,利用这些比值可以大致判断烃源岩的成熟度;其次,已知烃源岩成熟度,利用这些比值可以帮助揭示天然气的运移动态和成藏过程;如果天然气未经历大规模运移,该比值的变化或许揭示了遭受生物降解或氧化作用。
川中须家河组天然气为中等成熟度煤系烃源岩生成的热解湿气,未达到裂解气阶段,天然气也未曾经历过大规模的运移和改造,属原生气藏,为研究煤成气丁烷和戊烷的异正构比值变化规律提供了理想的地质条件。煤成气中丁烷和戊烷异正构比值呈很好的正相关关系,在中—低成熟度阶段,即天然气湿度大于5%时,煤成气iC4/nC4和iC5/nC5值随天然气干燥系数增加、甲烷碳同位素组成变重而逐渐呈线性增大,即随成熟度增加,比值逐渐变大。由于支链烷烃从干酪根断裂相比直链烷烃需要更高的能量;随成熟度增加,生成的异构烷烃的量相对较多,使iC4/nC4和iC5/nC5值变大。本研究揭示了煤成气丁烷和戊烷异正构比值随热演化的变化规律,提供了新的煤成气回归方程和成熟度计算指标,也为煤成烃地球化学和成藏研究提供了重要参考。