人工智能怎么深耕到指挥调度?一体化指挥调度技术分两部分:一部分在网上,一部分在边上。今天透过交通和汽车可以展望一体化指挥调度技术在新时代会有什么变化,因为城市的交通指挥调度是反映一个城市水平的最直接的名片。
自动驾驶等级度量
2018年是信息时代和智能时代交错的时代,信息时代还没有完全过去,智能时代已经来了。在这种情况下,传统车企、造车新势力、互联网企业、新兴行业,还有一大批创新创业青年,都看好自动驾驶,乐此不疲。全球智能芯片、智能网联、智能计算、智能控制的黑科技全都聚焦到同一个载体——汽车上,都在为自动驾驶烧钱,不无道理。
长期以来,J3016 标准主导了自动驾驶等级全球舆论。也就是从L0到L5,我在几年前就对这个标准提出置疑,我说很简单,就是L2和L3,让公安交管部门怎么度量它是L3还是L2?有的公司提出来L2.5,这是什么意思?我们认为这四个点很重要:第一点自动驾驶转换点如何度量?第二点操控权如何交接?第三点操控权交接过程中的事故责任如何认定?第四点给自动驾驶车发什么驾照?要可操作才行。
全球都认可“感知、决策、控制”这个路线,好像没有分歧,都希望自动驾驶的模式越来越多,最后一下子跳到全自动。自动化的人就研究确定性窗口条件的描述,从事交通的就研究车联网,现在5G很火,也确实很重要, 要想想5G在自动驾驶中究竟充当什么角色?大家都希望有一个智能的路,一个聪明的车,他们加在一起是不是就可以全自动?
汽车人已经把汽车的自动化做到了极致。但是无需驾驶员的自驾驶,必须能像人一样具有学习能力,能应对各种边缘工况。因此,对L0到L5这个等级划分要进行重新的认识。要以特定地区驾驶可靠性为导向新的等级度量方法,根据安全驾驶可靠性统计把出错率不高于10的-2次方自动驾驶车辆定义为L2,出错率1%,就是出去开100次,拿了一个罚单回来。人是什么水平?一般驾驶员一天开4小时,一年开250天,一年开1000小时拿了一次罚单,这是一个好的驾驶员,可把他的水平认定是L3。如果你的自动驾驶汽车达到L3,给你发个L3驾照,如果L4就发L4的驾照,这意味着自动驾驶车等级永远没有完全自动。这就为交通部门给自动驾驶车发照(或收照)有了可度量、可操作的简捷方法,极大地加速自动驾驶技术迅速落地过程,也为无人驾驶车辆的应用开辟了新的空间。
传承学习和自主学习
当汽车从人类的代步工具、由人操控的机器,演化为有主体认知能力的轮式机器人,汽车行业的传统法则将被重新书写。人和轮式机器人不仅是控制和被控制的关系,而且是教和学的关系,是交互和协同的关系。
谈到“学习”,最火的一门课叫机器学习,其实机器有什么好学的,应该是机器人学习,监督学习、半监督、弱监督学习、无监督学习,现在的深度学习就是有监督的学习。深度学习是人工智能第三轮浪潮的最显著的标志。
从人类的成长学习过程引申到机器人学习,可分为两种:一是传承学习,一是自主学习。
前面是接受知识和运用知识的能力。只有通过传承学习,自动驾驶车才能拥有人类累计的驾驶知识或驾驶文化,这就对当前自动驾驶进入寒冬有一个解释,为什么遇到寒冬?因为没有传承,没有认知的积累,做不到到处跑。举个例子,传承学习主要是顯性知识,适应生态文明,由上而下,主导型强。自主学习是隐性知识,反复实践,成为本能,由下而上,主体性强。
说车辆靠右边行驶,无人驾驶车怎么知道?比如说,北京现在要求礼让斑马线,路上一个老太太走得很慢,你先穿过去还是等她走过去?靠激光雷达怎么表现?所以大家可以想像:未来的汽车一定是在云上有一个窗口把指令发过去。反过来,有些事情靠传承学习是学不好的。这些事情就像平时学游泳一样,一定要到水里去游,而不是听别人教,技巧需要自主学习。
我们现在正在做驾驶脑,我们注重的不是车,我们侧重人,要做一个驾驶员的智能代理,由若干处理器、交换机、存储器的芯片组成,配有各种传感器接口、相关软件和数据包,构成一个物理设备。它和人的驾驶认知有高度同构性,驾驶认知涉及视听觉、思维、记忆、学习、交互、控制等一系列活动。学习并替代驾驶员的驾驶认知能力,积累驾驶技巧,实现有个性的拟人驾驶。
希望不同的车辆平台、不同的传感器配置、场景,按照前面定义的等级评定准则,可能拿的评测就是L3、L4、L5、L6。如果一个客车在北京做到L5,可以上路。但是在重庆,道路上立体感很强,可能要重庆市公安局和北京市公安局协商一下,这两个区域的L5是否可以等同,所以特定地区是前提条件。
人和轮式机器人在一起有四种工作状态:标杆驾驶员开车机器人学习(监督学习);机器人开车人可干预(半监督学习、弱监督学习);机器人开车机器人自学习(无监督学习);如果机器当教练,教人或其他机器人开车(教人:逆监督,教新机器人:监督学习)。在标杆驾驶员开车机器学习时主要用深度学习,在机器开车人可干预是用强化学习,机器人开车、机器人自学习时,就是生成一大堆对抗样本,用对抗样本生成再学习,从而构成一个迭代的过程。
驾驶认知不是一次完成,而是迭代学习,既包括深度学习,还包括强化学习、包括生成对抗样本学习,从而形成一个逐步稳定的认知。可以让机器人成为司机,不但可以成为人类出行的代理,机器人还可以成为“执勤交警”和“路巡员”,因为可以检查路面情况,随时报告交通中心。轮式机器人群体知识共享和传承的速度远大于自然人群体。
引领行业转型升级
对人工智能要有敬畏之心。机器人将来会开车、会学习、会交互、有个性。如果开车问题一旦解决,就变成移动问题,那么主持、看病、陪护、手术、卖货、理财一大批机器人都会出现。人类就多了一类朋友。
构成轮式机器人的三大重要部件:一个是灵活的腿脚——数控底盘,一个是强大的心脏——新能源,一个是智慧的大脑——驾驶脑。自主驾驶难在不确定性驾驶——边缘驾驶。要把“最后一公里问题”当做最先一公里来解决,自主应对驾驶过程中常常遇到的、偶发的各种各样的不确定性。机器人一旦成为移动社会的传感器、大数据的重要源泉,那么将为一体化指挥调度带来极大的便利,因为每个边缘系统都是数据发生器,机器人驾驶认知的进化速度可以超过自然人,边缘计算、云计算一同产生群体智能。
今后轮式机器人还有三个关键词:那就是模块化定制,数据驱动的控制和学习,以及未来出行的科技服务商。原来研究的车辆动力学不等于驾驶员在学习的车辆动力学,轮式机器人动力学等于驾驶脑在学习的车辆动力学。知识、数据双驱动的迭代学习将变成一个今后的方向,智能的路,聪明的车,会让轮式机器人玩出更多的精彩。
无人驾驶有望消灭疲劳驾驶和醉酒开车,会学习的轮式机器人会开车、会交互,有个性,有悟性,能够防范各种严重事故,甚至可以玩出各种特技来。
随着道路的智能化和学习型轮式机器人的普及,路越来越智能,车越来越聪明,驾驶和交通的数据累积越来越多,人类的出行方式就真的变了。人工智能将引领我国交通运输行业的转型升级。
(根据李德毅公开演讲整理而成,未经本人确认。)