邢素丽,杜金钟,刘孟朝,贾良良,刘学彤,赵士诚
大尺度冬小麦-夏玉米微喷灌精准自动施肥增产效应
邢素丽1,杜金钟2,刘孟朝1,贾良良1,刘学彤1,赵士诚3
(1. 河北省农林科学院农业资源环境研究所,石家庄 050051;2. 河北省石家庄市藁城区农业局,石家庄 050000; 3. 中国农业科学院农业资源与区划研究所,北京 100081)
为了明确微喷灌精准自动施肥对冬小麦-夏玉米产量、产值、生产成本效益等的影响,该文以传统施肥技术为对照,设置6.67 hm2大尺度微喷灌精准自动施肥在冬小麦-夏玉米上的应用效果试验,定量分析微喷灌精准自动施肥对冬小麦和夏玉米产量、产值、生产成本、效益、氮磷用量和灌溉量等方面的影响。结果表明:大尺度冬小麦-夏玉米微喷灌精准自动施肥具有增产、增收、节约成本、节肥、节水的良好应用效果。与传统施肥相比,微喷灌精准自动施肥在冬小麦季显著提高小麦产量,增产10.6%,增加效益43.77%,降低生产成本26.17%,减少氮磷化肥24.20%,节约灌溉用水57.45%。微喷灌精准自动施肥在夏玉米季显著增加玉米产量,增产13.73%,增加效益13.73%,降低生产成本17.09%,减少氮、磷养分用量20.34%,节省灌溉用水36.94%。微喷灌精准自动施肥在冬小麦-夏玉米轮作季增产12.26%,增收效益37.39%,降低生产成本21.85%,减少氮磷化肥22.26%,节省灌溉用水46.51%,具有良好的经济效益和生态效益。研究结果可为该技术的推广提供参考依据,促进农业生产力和农业可持续发展。
灌溉;作物;精准自动施肥;冬小麦;夏玉米;增产效应
微喷灌自动施肥系统是由专家依据土壤养分及作物实际需肥规律制定施肥方案,借助计算机控制灌溉系统对作物供应肥水,相比传统施肥技术,能精准、定时、定量、均匀浇灌作物根区,适时、适量满足作物对水分和养分的需求,实现水肥协同和高效利用[1-5]。华北平原冬小麦-夏玉米轮作制度的传统人工施肥管理粗放,盲目过量施用化肥、水肥资源浪费流失、土壤水环境污染等风险,已经越来越不适应现代农业的发展需要。微喷灌精准自动施肥技术目前在国内多用于附加值较高的温室蔬菜[6-7]、花卉或果树生产,尚未见该技术在冬小麦-夏玉米轮作制作物大面积应用效果报道,缺乏大尺度条件下微喷灌自动施肥对作物农学的和经济效益的相关影响分析。本文界定种植面积6.67 hm2(100亩)及以上为大规模尺度,分析研究华北平原冬小麦-夏玉米轮作制条件下微喷灌精准自动施肥对作物产量、成本、效益、肥水用量等方面影响效果,为微喷灌自动化施肥技术在粮食作物应用推广提供科学依据,促进微喷灌自动施肥技术在大田作物的推广、应用和发展,颠覆传统人工操作施肥技术,对华北平原水资源严重短缺条件下的小麦玉米生产具有重大意义。
试验地点位于藁城区西关镇北孟村(38°14′24.87″N,114°46′56.41″E)、丰上村(38°13′21.6″N,114°46′48″E)和辛集王下村(38°2′44.17″N,115°25′32.98″E),3个试验点同属华北北部平原小麦-玉米轮作典型代表区,属暖温带半湿润气候,年均气温12.4~12.6 ℃,≥10℃积温4 181~4 863 ℃,年降水量488.2~498 mm,无霜期190~209 d。基础地力中等偏上,耕层(0~20 cm)土壤类型及养分含量如表1。
小麦品种选用“藁优2018”,玉米品种选用“郑单958”。试验时间2016年10月~2018年6月,历时2个冬小麦-夏玉米轮作季,小麦当季10月中旬播种,次年6月中旬收获。玉米6月中旬播种,9月底~10月初收获。3个试验地均设传统施肥(CK)和微喷灌精准自动施肥2个处理,采用大区试验,每个处理面积设定6.67 hm2为1个处理单元,随机排列,重复3次。CK采用试验点所在地平均传统施肥量,微喷灌精准自动施肥养分施用总量依据试验地点土壤养分含量状况结合试验地点微喷灌小麦、玉米养分吸收量及最佳施肥量专家经验知识确定,不同地点各处理养分用量见表2。
表1 试验地基础土壤养分含量(0~20 cm土层)
表2 不同处理的养分施用量
在不同时期施肥量分配方面,CK小麦季、玉米季均各施底肥1次,追肥1次。各试验点均为小麦季底施复混肥750 kg/hm2,追施尿素(N46%,下同)225 kg/hm2;玉米季底施复混肥600 kg/hm2,追施尿素300 kg/hm2。其中小麦季复混肥N-P2O5-K2O比例各试验点北孟、丰上、王下分别为15∶15∶15,17∶16∶15和22∶14∶10,玉米季底肥N-P2O5-K2O比例分别为28∶6∶6,30∶8∶4和28∶8∶6,折合不同时期肥料分配为:磷钾全部底施,纯氮底肥与拔节肥比例为52%~61%:39%~48%(小麦)和53%~57%:43%~47%(玉米)。微喷灌自动施肥在小麦季、玉米季各施底肥1次,追肥2次,同一作物各试验点采用相同的施肥时期和分配比例如下:冬小麦季底肥、拔节肥、穗肥分别为N 42.5%、42.5%、15%;P2O565%、5%、30%;K2O 60%、20%、20%;玉米季底肥、拔节肥、花粒肥分别为N 50%、45%、5%;P2O560%、20%、20%;K2O 50%、30%、20%。底肥用复混肥(小麦季底肥N-P2O5-K2O比例为18∶15∶10,玉米季底肥N-P2O5-K2O比例为28∶6∶6。追肥用尿素、磷酸二氢铵(又称磷酸一铵,含N 12%、P2O561%)、氯化钾(K2O 60%)、磷酸二氢钾(P2O552%,K2O 34%)每轮作季养分用量相同。
施肥方法结合灌溉,CK小麦季底肥随整地撒施,玉米季底肥随播种机械施入,追肥在小麦和玉米的拔节期随灌溉施入。CK灌溉方式为畦灌。小麦季灌溉量50~70 m3/次,全生育期灌溉3~5次,玉米季灌溉量50~70 m3/次,生育期灌溉3次。微喷灌自动施肥处理底肥施用方法与CK底肥施用方法相同。追肥借助田间微喷灌系统自动控制完成。微喷灌自动化控制系统由计算机首部、肥料罐、田间灌溉管道、传感器等几个主要部分组成,工作原理如图1。施肥时间、施肥量、灌溉时间、灌溉量等由专家知识事先设定并预先输入系统。施肥操作开始前先将肥料溶于肥料母液槽内,由首部计算机控制设备根据内嵌专家系统程序,通过智能按钮启动各个部位连接的电动阀门,不同种养份的肥料根据每次追肥设定量进行自动计量并注入灌溉管道,完成自动化给水、注肥、施肥等全过程。田间管道系统主管道选用PN110,垂直支管PN76,地面橡胶支管CN65,微喷带选用CN40,壁厚0.4 mm,喷孔直径2 mm,孔距15 cm。微喷管铺设行间距180 cm,喷幅半径100 cm,标准工作压力0.15 MPa。小麦行距15 cm,玉米行距60 cm,微喷出水量设定23.3 m3/h。微喷灌自动施肥,小麦季灌溉量设置每次灌溉20~30 m3,全生育期灌溉5次,玉米季灌溉量设置每次灌溉量30~40 m3,全生育期灌溉3次。
春季小麦返青时铺设微喷带,小麦收获时不需收卷微喷带,玉米播种后整平1次,收获前收卷微喷带留做第2年再用。微喷带可反复使用约10 a。其他田间管理措施保持一致。
图1 微喷灌精准自动施肥系统工作原理示意图
作物播种前采用S形取样法采集耕层0~20cm土样,测定土壤pH值、有机质、全氮、有效磷和速效钾养分含量;收获期按各处理实际产量计产。作物生长期记录不同处理的生产管理成本,主要包括肥料成本、灌溉量及灌溉用电费、水肥用工、设备折旧及维修,以及其他播种收获、病虫害防治等必要支出,作为效益核算的依据。
土壤pH值测定采用pH计法,土壤有机质含量测定采用重铬酸钾容量法,土壤全氮含量测定采用凯氏法,土壤有效磷含量测定采用Alson法,土壤速效钾含量测定采用火焰光度法[8]。
试验数据用Excel软件进行统计和作图,用DPS软件进行重复间数据的显著度比较分析。
表3为微喷灌精准自动施肥对冬小麦和夏玉米产量的影响数据表。结果显示,微喷灌自动施肥显著增加冬小麦和夏玉米产量。微喷灌自动施肥2016~2018年2个冬小麦季3个试验点小麦产量平均9 190.50 kg/hm2,CK平均产量8 310.00 kg/hm2,微喷灌自动施肥较CK平均增产880.50 kg/hm2,增产10.60%,产量差异显著;2017~2018年微喷灌自动施肥2个玉米季3个试验点玉米产量平均10 715.75 kg/hm2,CK玉米产量平均9 422.51 kg/hm2,微喷灌自动施肥较CK平均增产1 293.24 kg/hm2,增产13.73%,产量差异显著。小麦玉米轮作季增产2 173.74 kg/hm2,平均增产12.26%。
表3 微喷灌精准自动施肥对冬小麦和夏玉米产量的影响
注:不同小写字母表示在0.05水平上差异显著。下同。
Note: Different lowercase letters indicate significant difference at the level of 0.05. The same below.
微喷灌精准自动施肥显著减少氮磷化肥的用量(表2)。微喷灌精准自动施肥3个试验点小麦季平均投入纯N 172.3 kg/hm2,P2O593.75 kg/hm2,K2O 67.5 kg/hm2,合计投入氮磷钾养分333.55 kg/hm2,其中氮磷养分合计为266.05 kg/hm2。小麦季CK平均投入纯N 238.5 kg/hm2,P2O5112.5 kg/hm2,K2O 75 kg/hm2,合计投入氮磷钾养分426 kg/hm2,其中氮磷养分合计投入351 kg/hm2。冬小麦季微喷灌精准自动施肥较CK显著减少氮磷用量,减少氮磷纯养分84.95 kg/hm2,减少氮磷化肥24.20%。微喷灌精准自动施肥玉米季平均投入纯N 240 kg/hm2,P2O542 kg/hm2,K2O 60 kg/hm2,合计投入氮磷钾养分342 kg/hm2,其中投入氮磷养分为282 kg/hm2。玉米季CK平均投入纯N 306 kg/hm2,P2O548 kg/hm2,K2O 36 kg/hm2,合计投入氮磷钾养分390 kg/hm2,其中投入氮磷养分354 kg/hm2,玉米季微喷灌精准自动施肥较CK显著减少氮肥用量,减少氮磷纯养分72 kg/hm2,减少氮磷化肥20.34%。冬小麦、夏玉米轮作季减少氮磷用量156.95 kg/hm2,平均单季减少氮磷肥料用量22.26%。
微喷灌精准自动施肥较传统施肥技术有显著节水效果(表4)。表4可以看出,微喷灌精准自动施肥2016年~2018年3个试验点冬小麦季每季平均灌溉量2 000 m3/hm2,CK平均灌溉量4 700 m3/hm2,与CK相比,微喷灌精准自动施肥显著减少灌溉量,有效节水2 700 m3/hm2,差异显著,节水率57.45%。微喷灌精准自动施肥夏玉米季每季平均灌溉量1 750 m3/hm2,CK平均灌溉量2 775 m3/hm2,夏玉米季微喷灌精准自动施肥有效节水1 025 m3/hm2,节水36.94%。微喷灌精准自动施肥冬小麦-夏玉米轮作季总灌溉量3 750 m3/hm2,CK总灌溉量6 837.5 m3/hm2,微喷灌精准自动施肥轮作季总计节水3087.5 m3/hm2,平均节水45.16%。
表4 微喷灌精准自动施肥对灌溉用水量的影响
微喷灌精准自动施肥明显降低冬小麦季生产成本,提高产值和效益(表5)。表5显示,微喷灌精准自动施肥3个试验地点2016年~2018年2个冬小麦季平均单季化肥成本1 578.21元/hm2、灌溉电费710.00元/hm2、设备折旧和维修成本1 043.25元/hm2,水肥用工成本844.95元/hm2,其他成本1 500.00元/hm2,合计生产成本6 984.61元/hm2,产值22 057.22元/hm2,效益15 072.61元/hm2。CK处理冬小麦季平均单季化肥成本2 015.85元/hm2、灌溉电费1 668.50元/hm2、水肥用工成本2 560.05元/hm2,其他成本1 500.00元/hm2,合计生产成本9 460.25元/hm2,产值19 944.01元/hm2,效益10 483.76元/hm2。与CK相比,精准微喷灌自动施肥冬小麦季增加产值2 113.20元/hm2,提高效益4 588.85元/hm2,增收43.77%,减少成本2 475.64元/hm2,减少26.17%。
表5 微喷灌精准自动施肥对小麦生产效益的影响
注:1. 计算依据的市场价格:小麦2.4元·kg-1,玉米1.3元·kg-1,纯N 4.6元·kg-1,P2O55.5元·kg-1,K2O 4.0元·kg-1,灌溉电费0.355元·m-3,系统年折旧费按系统使用年限10 a计算,年维修费用按系统投资总额的3%计算[9-10]。其他成本包括播种成本150元·hm-2,除草成本300元·hm-2,病害防治成本450元·hm-2,收获成本600元·hm-2。下同。
Note: 1. The market price on which the calculation is based: wheat 2.4 Yuan·kg-1; maize 1.3 Yuan·kg-1; N 4.6 Yuan·kg-1; P2O55.5 Yuan·kg-1; K2O 4.0 Yuan·kg-1; power charges of irrigation 0.355 Yuan·m-3. The annual depreciation fee of the system is calculated according to the service life of 10 years, and the annual maintenance fee is calculated according to 3% of the total investment of the system[9-10].. 2. The other costs including sowing cost 150 Yuan·hm-2, weeding cost 300 Yuan·hm-2, disease control cost 450 Yuan·hm-2, harvesting cost 600 Yuan·hm-2. The bbelow.
微喷灌精准自动施肥明显降低夏玉米季生产成本,提高产值和效益(表6)。表6显示,微喷灌自动施肥3个试验点2017年~2018年2个夏玉米季平均单季化肥成本1 575元/hm2、灌溉电费479.25元/hm2、设备折旧和维修成本1 043.25元/hm2,水肥用工成本868.80元/hm2,其他成本1 800元/hm2,合计生产成本7 101.30元/hm2,产值13 930.47元/hm2,效益3 214.72元/hm2。CK处理夏玉米季平均单季化肥成本1 815.60元/hm2、灌溉电费843.13元/hm2、水肥用工成本2 434.50元/hm2,其他成本1 800 元/hm2,合计生产成本8 564.83元/hm2,产值12 249.26元/hm2,效益2 826.75元/hm2。与CK相比,微喷灌自动施肥夏玉米季增加产值1 681.21元/hm2,提高效益387.97元/hm2,增收13.73%,减少成本1 463.53元/hm2,减少17.09%。
表6 微喷灌精准自动施肥对玉米生产效益的影响
微喷灌自动施肥冬小麦-夏玉米轮作季产值合计生产成本14 085.91,效益18 287.33元/hm2,较传统施肥CK平均单季增加产值3 794.41元/hm2;提高效益4 976.82元/hm2,增收37.39%;降低生产成本3 939.17元/hm2,节约成本21.85%。
自动化施肥技术在中国粮食作物研究和应用上起步较晚[11-13],结合灌溉方式有滴灌施肥[14-16]、喷灌施肥[17]等方式。微喷灌结合了滴灌和喷灌的优点,造价成本低,可在低电压条件运行,节省能源[18]。微喷灌作物根层土壤水分分布均匀,利于提高土壤储水能力,减少作物耗水量,提高水分利用效率[19-23],解决了传统灌溉大量浪费水资源的缺陷[24-26]。小麦微喷灌溉可提高小麦在关键生长期的叶面积指数,促进光合作用,提高灌浆期旗叶水势和群体光合速率[27-29],显著提高生物量、粒重和籽粒产量[30-31],还可以降低小麦灌浆期冠层温度,提高冠层相对湿度,防控小麦干热风[32]。很多研究表明,微喷灌溉施肥技术对提高水肥利用效率、促进作物生长有明显作用。
本文分析了微喷灌精准自动施肥在粮食作物上的应用效果,通过不同地点的大尺度试验示范肯定了微喷灌精准自动施肥对冬小麦-夏玉米产量、肥水资源、生产成本、经济效益等方面的积极影响,为大田粮食作物推广应用微喷自动化施肥技术提供科学参考依据,从而促进农业生产力水平和可持续发展。
传统施肥全部肥料在作物生长前期完成施入土壤,而当作物对营养需求高峰的花粒期不进行追肥,从而导致过早施入土壤的养分由于被固定、流失等无法发挥良好的效果。本文在不同的土壤条件下,借助微喷自动灌溉施肥系统,比传统施肥方法减少氮磷总量,增加作物生长后期水溶性速效磷钾肥供应,解决了农民传统施肥在作物籽粒形成的养分需求关键期缺乏有效肥料供应的问题,根据作物的阶段营养需求供应水分和养分,契合冬小麦、夏玉米对养分的需求规律,与现有文献的研究结果相吻合[14]。相比传统施肥,显著增产、增效、节肥、节水,验证了该技术比传统施肥技术具有明显的先进性。
1)大尺度冬小麦-夏玉米微喷灌精准自动施肥具有增产、增收、节约成本、节肥、节水的良好应用效果。与传统施肥相比,微喷灌精准自动施肥显著提高小麦产量880.5 kg/hm2,增产10.6%;增加产值2 113.20元/hm2;提高效益4 588.85元/hm2,增收43.77%;降低生产成本2 475.64元/hm2,节约成本26.17%;减少氮磷纯养分用量84.95 kg/hm2,减少氮磷化肥24.20%;节约灌溉用水2 700 m3/hm2,节水率57.45%。
2)微喷灌精准自动施肥显著增加玉米产量1 293.24 kg/hm2,增产13.73%;增加产值1 681.21元/hm2,提高效益387.97元/hm2,增收13.73%;减少生产成本1 463.53元/hm2,节约成本17.09%。减少氮磷纯养分用量 72 kg/hm2,减少氮磷化肥 20.34%;节省灌溉用水1 025 m3/hm2,节水36.94%。
3)冬小麦-夏玉米轮作季微喷灌精准自动施肥增产小麦、玉米总计2173.74kg/hm2,平均增产率12.26%;增加产值3794.41元/hm2;提高效益4976.82元/hm2,增收37.39%;降低生产成本3939.17元/hm2,节约成本21.85%;减少氮磷纯养分用量156.95kg/hm2,减少氮磷化肥22.26%;节省灌溉用水3087.50 m3/hm2,节水46.51%。具有良好的经济效益和生态效益。
[1] 师志刚,刘群昌,白美健,等. 基于物联网的水肥一体化智能灌溉系统设计及效益分析[J]. 水资源与水工程学报,2017,28(3):221-227. Shi Zhigang, Liu Qunchang, Bai Meijian, et al.Water and fertilization integrated intelligent irrigation system design and benefit analysis based on the Internet of Things[J]. Journal of Water Resources and Water Engineering, 2017, 28(3): 221-227. (in Chinese with English abstract)
[2] 赵吉红. 水肥一体化技术应用中存在的问题及解决对策[D]. 杨凌:西北农林科技大学,2015.
Zhao Jihong. The Problems and Solutions in the Aadapation of Fertigation Technology[D]. Yang Ling: Northwest A&F University, 2015. (in Chinese with English abstract)
[3] 路华忠. 水肥一体化技术及其应用[J]. 农业灾害研究,2014(8):50-52. Lu Huazhong. Fertigation technology and its application[J]. Journal of Agricultural Catastrophology, 2014 (8): 50-52. (in Chinese with English abstract)
[4] 张承林,邓兰生. 水肥一体化技术[M]. 北京: 中国农业出版社: 2012.
[5] 陈小彬. 水肥一体化技在设施农业中的应用调查[D]. 福州:福建农业大学,2014. Chen Xiaobin. Investigation on the Application of Fertigation Technology in Facility Agriculture[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014. (in Chinese with English abstract)
[6] 袁洪波,李莉,王俊衡,等. 温室水肥一体化营养液调控装备设计与试验[J]. 农业工程学报,2016,32(8):27-32. Yuan Hongbo, Li Li, Wang Junheng, et al. Design and test of regulation and control equipment for nutrient solution of water and fertilizer integration in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 27-32. (in Chinese with English abstract)
[7] 袁洪波,程曼,庞树杰,等. 日光温室水肥一体灌溉循环系统构建及性能试验[J]. 农业工程学报,2014,30(12):72-78. Yuan Hongbo, Cheng Man, Pang Shujie, et al. Construction and performance experiment of integrated water and fertilization irrigation recycling system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(12): 72-78.(in Chinese with English abstract)
[8] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社,1999.
[9] 中华人民共和国水利部.水利工程水利计算规范SL104-2015 [S] .北京:中国水利水电出版社,2015.
[10] 中华人民共和国水利部.水利建设项目经济评价规范SL72-2013[S]. 北京:中国水利水电出版社,2013.
[11] 白由路.国内外施肥机械的发展概况及需求分析[J]. 中国土壤与肥料,2016(3):1-4. Bai Youlu. Analysis of the development and the demands of fertilization machinery[J]. Soils and Fertilizers Sciences in China. 2016 (3): 1-4. (in Chinese with English abstract).
[12] 白由路. 我国肥料产业面临的挑战与发展机遇[J]. 植物营养与肥料学报,2017,23(1):1-8. Bai Youlu. Challenges and opportunities of fertilizer industry in China[J]. Journal of Plant Nutrition and Fertilizer. 2017, 23(1): 1-8. (in Chinese with English abstract)
[13] 杜建军,廖宗文,王新爱,等. 高吸水性树脂包膜尿素的水肥一体化调控效果研究[J]. 农业工程学报,2007,23(6):71-77. Du Jianjun, Liao Zongwen, Wang Xin'ai, et al. Effects of integral regulation and control of super absorbent polymer coated urea on water and fertilizer use efficiencies[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(6): 71-77. (in Chinese with English abstract)
[14] 何进宇,田军仓. 膜下滴灌旱作水稻水肥耦合模型及组合方案优化[J]. 农业工程学报,2015,31(13):77-82. He Jinyu, Tian Juncang. Model of coupling water with fertilizer and optimum combination scheme of rice cultivated in aerobic soil with drip irrigation under plastic film[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 77-82. (in Chinese with English abstract)
[15] 官雅辉,牛文全,刘璐,等. 肥料类型及浓度对水肥一体化浑水滴灌滴头输沙能力的影响[J]. 农业工程学报,2018,34(1):78-84. Guan Yahui, Niu Wenquan, Liu Lu, et al. Effect of fertilizer type and concentration on sediment transport capacity of dripper in drip fertigation with muddy water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 78-84. (in Chinese with English abstract)
[16] 李康勇,牛文全,张若婵,等. 施肥对浑水灌溉滴头堵塞的加速作用[J]. 农业工程学报,2015,31(17):81-90. Li Kangyong, Niu Wenquan, Zhang Ruochan, et al. Accelerative effect of fertigation on emitter clogging by muddy water irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 81-90. (in Chinese with English abstract)
[17] 赵伟霞,李久生,栗岩峰. 大型喷灌机变量灌溉技术研究进展[J]. 农业工程学报,2016,32(13):1-6. Zhao Weixia, Li Jiusheng, Li Yanfeng. Review on variable rate irrigation with continuously moving sprinkler machines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32 (13): 1-7. (in Chinese with English abstract)
[18] 周斌,封俊,张学军,等. 微喷单孔喷水量分布的基本特征研究[J]. 农业工程学报,2003,19(4):101-103. Zhou Bin, Feng Jun, Zhang Xuejun, et al. Characteristics and indexes of water distribution of punched thin-soft tape forspray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(4): 101-103. (in Chinese with English abstract)
[19] 李英,赵福年,丁文魁,等. 灌溉方式和播期对玉米水分动态与水分利用效率的影响[J]. 中国农学通报,2015,31(6):62-67. Li Ying, Zhao Funian, Ding Wenkui, et al. Effect of irrigation modes and sowing date on maize water dynamics and water use efficiency[J]. Chinese Agricultural Science Bulletin, 2015, 31(6): 62-67. (in Chinese with English abstract)
[20] 李漫. 不同密度及灌溉方式对春玉米对春玉米生长发育及产量的影响[D]. 乌鲁木齐:新疆农业大学,2012. Li Man.The Influence of Growth and Yield under the Different Density and Irrigation Methods on the Spring Corn[D]. Urumqi: XinJiang Agricultural University, 2012. (in Chinese with English abstract)
[21] 王勇,白晓玲,赵举,等. 喷灌条件下玉米地土壤水分动态与水分利用效率[J]. 农业工程学报,2012,28(增刊1):92-97. Wang Yong, Bai Lingxiao, Zhao Ju, et al. Dynamic variations of soil moisture and water use efficiency of maize under sprinkler irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(Supp. 1): 92-97 (in Chinese with English abstract)
[22] 周新国,何俊卿,郭树龙,等. 多孔软管地面灌溉技术研究及应用[J]. 灌溉排水,2002,21(1):55-57. Zhou Xinguo, He Junqing, Guo Shulong, et al. Study and application for multiple outlets hoses surface irrigation technique[J]. Irrigation and Drainage, 2002, 21(1): 55-57. (in Chinese with English abstract)
[23] 刘海军. 微压多孔软管水力性能研究[D]. 杨凌:西北农林科技大学,2008. Liu Haijun. Study on Hydraulic Characteristics of Micro-pressure Perforated Flexible Hose[D]. Yangling: Northwest A & F University, 2008. (in Chinese with English abstract)
[24] 张璐,党高兵,杜红利. 微喷灌对旱地小麦产量和水分利用效率的影响[J]. 中国农技推广,2015(2):44-46. Zhang Lu, Dang Gaobing, Du Hongli. Effects of micro sprinkler irrigation on yield and water use efficiency of winter wheat in dryland[J]. China Agricultural Technology Extension, 2015(2): 44-46. (in Chinese with English abstract)
[25] 张其鲁,姜官恒,魏秀华. 微喷技术在小麦生产上的应用研究[J]. 安徽农学通报,2012,18(9):190-195. Zhang Qilu, Jiang Guanheng, Wei Xiuhua. Study on the application of micro spray technology in wheat production[J]. Anhui Agricultural Science Bulletin, 2012, 18(9): 190-195. (in Chinese with English abstract)
[26] 许骥坤,于振文,石玉,等. 微喷带长宽对不同区段麦田水分和小麦旗叶叶绿素荧光特性的影响[J]. 应用生态学报,2017, 28(11):3599-3609. Xu Jikun, Yu Zhenwen, Shi Yu, et al. Effects of micro-sprinkling hose length and width on wheat field water condition and flag leaf chlorophyll fluorescence characteristics in different sampling districts[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3599-3609. (in Chinese with English abstract)
[27] 王东,徐学欣,张洪波,等. 微喷带灌溉对小麦灌浆期冠层温湿度变化和粒重的影响[J]. 作物学报,2015,41(10):1564-1574. Wang Dong, Xu Xuexin, Zhang Hongbo, et al. Effects of irrigation with micro-sprinkling hoses on canopy temperature and humidity at filling stage and grain weight of wheat[J]. Acta Agronomica Sinica, 2015, 41(10): 1564-1574. (in Chinese with English abstract)
[28] Dogan E, Kirnak H, Dogan Z. Effect of varying the distance f collectors below a sprinkler head and travel speed on easurements of mean water depth and uniformity for a inear move irrigation sprinkler system[J]. Biosystems ngineering, 2008, 99(2): 190-195.
[29] Cavero J, Jiménez L, Puig M, et al. Maize growth and yield under daytime and nighttime solid-set sprinkler irrigation[J]. Agronomy Journal, 2008, 100(6): 1573-1579.
[30] 张英华,张琪,徐学欣,等. 适宜微喷灌灌溉频率及氮肥量提高小麦产量和水分利用效率[J]. 农业工程学报,2016,32(5):88-95. Zhang Yinghua, Zhang Qi, Xu Xuexin, et al. Optimal irrigation frequency and nitrogen application rate improving yield formation and water utilization in winter wheat under micro-sprinkling condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(5): 88-95. (in Chinese with English abstract)
[31] 姚素梅,康跃虎,吕国华,等. 喷灌与地面灌溉条件下小麦籽粒灌浆过程特性分析[J]. 农业工程学报,2011,27(7):13-17.Yao Sumei, Kang Yuehu, Lü Guohua, et al. Analysis on grain filling characteristics of winter wheat under sprinkler irrigation and surface irrigation conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 13-17. (in Chinese with English abstract)
[32] 魏秀华,于海涛,张其鲁. 微喷防控小麦干热风研究[J]. 农业科技通讯,2016(9):82-84. Wei Xiuhua, Yu Haitao, Zhang Qilu.Study on dry hot wind prevention and control for wheat with micro spray[J]. Agricultural science and technology communication. 2016 (9): 82-84. (in Chinese with English abstract)
Yield increasing effect of precision automatic fertilization and micro-spray irrigation for winter wheat-summer maize in large-scale
Xing Suli1, Du Jinzhong2, Liu Mengchao1, Jia Liangliang1, Liu Xuetong1, Zhao Shicheng3
(1.,,050051,;2.,,,050000,;3.,,100081,)
To illustrate the agronomic and economic effectsof precision automatic fertilization and micro-spray irrigation technology on the winter wheat and summer maize,3 field experiments were conducted in Beimeng village(38°14′24.87′′N, 114°46′56.41′′E), Fengshang village(38°13′ 21.6′′N, 114°46′48′′E) and Wangxia village(38°2′44.17′′N, 115°25′32.98′′E) in Xinji City Gaocheng District from October 2016 to June 2018. Each experiments including 2 treatments of CK and precision automatic fertilization and micro-spray irrigation treatment, the plot area is 6.67 hm2for each treatment with 3 replication at random arrangement. The study areas belongs to the typical winter wheat and summer maize rotation in the northern North China Plain, and belongs to the semi-humid climate in warm temperate zone. The average annual temperature is 12.4-12.6 ℃, the accumulated temperature is 4 181-4 863 ℃, the annual precipitation is 488.2-498 mm, and the frost-free period is 190-209 days. The winter wheat sown in mid-October, and harvested in next mid-June, the maize sown in mid-June and harvested from the end of September to the beginning of October. Totally 2 winter wheat-summer maize rotation seasons were included in this experiments. For CK treatment, the fertilization rates and allocation budgets were based on farmers’ survey in the experiments areas. The winter wheat fertilization rates was N 216, 231 and 268.5 kg/hm2, P2O5112.5, 120 and 105 kg/hm2, and K2O 112.5, 37.5 and 75 kg/hm2respectively for each teat sites. All the P and K fertilizer applied before sowing, 52%-61% N as basal fertilizer applied before sowing and 39%-48% applied at shooting stage as topdressing. The summer maize fertilization rates were N 306, 318 and 294 kg/hm2, P2O536, 48 and 60 kg/hm2, K2O 36, 24 and 48 kg/hm2respectivelyfor each teat sites, all the P and K fertilizers applied as basal fertilizer, 53%-57% N as basal fertilizer applied before sowing and 43%-47% applied at 10 leaf stage as topdressing. The irrigation strategy for CK treatment was flooding irrigation. For precision automatic fertilization and micro-spray irrigation, fertilization rates and allocation budgets were based on agriculture experts knowledge. The winter wheat fertilization rates were N 157,180 and 180 kg/hm2, P2O590, 90 and 101.5 kg/hm2, K2O 52.5, 75 and 75 kg/hm2for each teat site. The allocation proportion for N as basal fertilizer, jointing stage topdressing and booting stage topdressing was 42.5%, 42.5% and 15%, respectively. P2O5was 65%, 5%, 30%, respectively. K2O was 60%, 20%, 20%,respectively. The summer maize fertilization rates were N 210, 240 and 270 kg/hm2, P2O537.5, 43.5 and 45 kg/hm2, K2O 52.5, 60 and 67.5 kg/hm2for each teat sites. The allocation proportion for N as basal fertilizer, 10 leaf stage topdressing and flowering stage topdressing was 50%, 45% and 5% respectively, P2O5was 60%, 20% and 20%respectively, K2O was 50%, 30% and 20%respectively. For this treatment, the precision automatic fertilization and micro-spray irrigation was used in the whole growth seasons, fertilizers were accompanied with the irrigation water through the automatic irrigation channel system. The results showed that large scale the precision automatic fertilization and micro-spray irrigation technology used on winter wheat and summer maize could increase the crop yield, decrease the N, P fertilizer application and irrigation water amount, improve the net benefit. Compared with CK, the precision automatic fertilization and micro-spray irrigation technology significantly increased winter wheat yield by 10.6%, increased net income by 43.77%, significantly reduced the production cost by 26.17%, reduced the amount of nitrogen and phosphorus by 24.20%, decreased the irrigation water by 57.45%. Correspondingly, precision automatic fertilization and micro-spray irrigation technology significantly increased summer maize yield by 13.73%, maize net benefits increased by 13.73%, reduced the production cost by17.09%, reduced the amount of nitrogen and phosphorus by 20.34%, decreased the irrigation water by 36.94% than the CK treatment. For the whole winter wheat and summer maize rotation season, the precision automatic fertilization and micro-spray irrigation technology significantly increased the crop yield by 12.26%, increased the net benefits by 37.39%, reduced the production cost by 21.85%, reduced the amount of nitrogen and phosphorus by 22.26%, reduced the irrigation water by 46.51%. This study confirmed the effect of precision automatic fertilization and micro-spray irrigation technology on winter wheat and summer maize, which can provides reference basis for the promotion of this new technology, thus promoting productivity and agricultural sustainable development.
irrigation; crops; precision automatic fertilization; winter wheat; summer maize; yield increasing effect
2018-07-19
2019-03-01
国家科技支撑计划项目(2015BAD23B0207);河北省科技计划项目(14397502D)。
邢素丽,研究员,主要从事作物高效施肥技术研究。 Email:834591172@qq.com
10.11975/j.issn.1002-6819.2019.06.012
S275.6
A
1002-6819(2019)-06-0100-07
邢素丽,杜金钟,刘孟朝,贾良良,刘学彤,赵士诚.大尺度冬小麦-夏玉米微喷灌精准自动施肥增产效应[J]. 农业工程学报,2019,35(6):100-106. doi:10.11975/j.issn.1002-6819.2019.06.012 http://www.tcsae.org
Xing Suli, Du Jinzhong, Liu Mengchao, Jia Liangliang, Liu Xuetong, Zhao Shicheng. Yield increasing effect of precision automatic fertilization and micro-spray irrigation for winter wheat-summer maize in large-scale[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(6): 100-106. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.06.012 http://www.tcsae.org