让追问揭示“判断题”答案背后的真相

2019-04-12 00:10朱丽萍
小学教学参考(数学) 2019年3期
关键词:判断题

朱丽萍

[摘 要]考题都是经过精心编制的,目的是考查学生对知识的掌握情况,但是很多题型,如判断题,单就卷面答案很难探测出学生的真实水平,这时,需要教师进行巧妙的追问来摸清学生的知识掌握情况。

[关键词]追问;判断题;知识根源

[中图分类号] G623.5[文献标识码] A[文章编号] 1007-9068(2019)08-0032-01

在解答判断题时,学生有时只是凭直觉或者瞎蒙做对了,因此能“做出正确的判断”并不意味着学生真能明辨是非,明晓其中的深刻道理。对此,需要教师通过追问来摸清学生的知識掌握情况。

一、用追问探求知识根源

【例1】近似数是6.32的三位小数不止一个。( )

做这道题时,学生刚学会对一个数取近似值,可以说这道题是新授课后的巩固练习。虽然学生都能判断对错,但是笔者无法确认题中考查的知识信息学生是否掌握到位。为了探测出学生对该知识点的真实掌握水平和程度,笔者启动了如下追问程序。

师:你们能说出满足要求的小数一共有几个吗?

(学生互相递眼色,犹豫不决)

师:你们能随机写出一个满足条件的小数吗?

生1:6.321。

生2:6.319。

……

师:能不能把这些三位小数进行编队,逐一清点,看看到底有多少?

生3:6.315,6.316,…,6.324,共9个。

师:你能将这9个数重新归类吗?

生4:把6.315,6.316,6.317,6.318,6.319这五个数分成一类;把6.321,6.322,6.323,6.324这四个数作为另一类。

师:说说这么分类的理由和标准。

生5:第一类的五个数是“五入”后近似取得的,后面四个数是“四舍”后近似取得的,它们的近似值都等于原数。

……

如果满足于眼前的对错判断,轻描淡写地敷衍过去,这道题的数学价值就会白白浪费掉。如果不紧接着进行刨根问底、一探究竟,至少有一半学生无法掌握“近似数是6.32的所有小数”。因此,教师不能满足于答案表面的正确,要多寻根问底,使学生知其然更知其所以然。

二、用追问触发归纳总结

【例2】有一个锐角的三角形叫锐角三角形。( )

公布题目后,全班学生迅速作出判断,一致认为这道题的答案是“错误”。

师追问:“错在哪里?这句话到底该怎么说才是对的?”

生1说:“因为任何一个三角形都起码含有2个锐角。”

听了生1的话学生集体沉默,几秒后,几个学生试探性地说:“生1好像说错了。”

课堂上多数学生对生1的话一头雾水,没有及时反驳生1。其实很正常,再怎么说也是新授课,学生才刚学会按角的大小和边的长短对三角形进行分类的方法。笔者在备课时,曾预设此题学生可能会歪打正着,用锐角三角形有三个锐角的错误结论去验证这个命题,判断此题答案为“错误”。学生或许会认为这道题的正确表述为:三个角都为锐角的三角形才是锐角三角形。

令人颇感意外的是,生1能说出这么有深度、有水平的话。而生1说的这段话已经“超前”了,因为这句话在笔者教案的结尾才出现,正是笔者用来压轴的戏码,原计划让学生在观察比较直角三角形、锐角三角形和钝角三角形的不同特点后,概括出的一个重大结论,现在被一个学生提前说出来了。不得已,笔者只好调整设计思路,进行如下教学。

三、用追问激发深度思考

师(把生1的观点再叙述一次):任何一个三角形都起码含有2个锐角吗?

生2:好像是对的。

师:生1这句话值得大家认真去评判,请给出你的评判理由。

(学生鸦雀无声)

师:能不能说一说按角度大小分类的各种三角形中包含锐角的数量?

生3:锐角三角形有三个锐角,钝角三角形有两个锐角,直角三角形也有两个锐角。综上所述,生1说的话“三角形中起码要有2个锐角”是对的。

课堂上出现意外很正常,如果教师不深入追问,不诱导学生说出来龙去脉,不把问题交代清楚,让每个学生都亲历整个知识的发展过程,那么大部分学生只会被拖着走,没有自己独立的理解和思考,而学到的知识也是被动灌输的,是填充式的传授,充满泡沫。只有适时地追问,学生才有主动思考和缓慢接受以及发自内心认同的机会。

看来正确的答案背后还潜藏着巨大的知识“冰山”,教师只有拿出不怕麻烦、不畏艰险的精神,学会多问几个“为什么”,追问得正当时,才能为有效教学提供保障。

(责编 黄春香)

猜你喜欢
判断题
推理判断题
推理判断题
不敢答错
阅读理解精练
阅读理解精练
阿伏加德罗常数判断题的常见应对方法
作业太多了
高考英语阅读理解标题判断题解题三要素
答案专页
答案专页