杨红干
每一个概念的产生都有丰富的知识背景和学生的经验背景;任何一个概念的获得都是在遇到问题、解决问题的过程中逐步归纳、总结而得的。如果舍弃这些背景,直接抛给学生一连串的概念常常使学生感到茫然,丢掉了培养学生概括能力和创新能力的机会。于教师而言,对教学价值的单向追求,有可能缺失的是知识对学生的“育人价值”;于学生而言,从学科价值的层面认识到一个概念的重要性是需要过程的。苏霍姆林斯基说:“没有对儿童的了解,就没有学校,就没有教育……”。儿童是活生生的人,儿童是发展中的人,这正是吴正宪老师的儿童观。她强调儿童的主体地位,发挥儿童的积极性、主动性,让儿童有尊严的生活,这是吴老师儿童数学教学教育思想的一大亮点。认识儿童、了解儿童,这是儿童教育的起点。吴老师追求的是让课堂教学充满生命的活力。走进吴老师《倍数与因数》的数学课堂,能看到她努力走进学生的经验世界,用心去感悟学生的每一丝发现,尊重概念产生的知识背景和学生的经验背景,给予学生概括能力和创新能力的机会,丰富知识对学生的“育人价值”。把握每一个有意义的教育契机,引导学生在“好吃”中享受“有营养”的数学学习。
1.与生活经验沟通,突出概念由来。
师:今天我们聊一个话题:因数和倍数。过去的学习中在哪里见过因数和倍数?
生:1、2、3、4……
师:这些都是数字,过去学习中见过没有?举个例子。
生:2×2=4,4是2的 2倍。
师:2倍是什么?换个式子6是2的3倍,这个式子会写吗?
生:6÷2=3。
师:6是2的3倍,那倍数是谁呢?
生:3是倍数。
师:没听过因数吗?在哪里找?举个例子。
生:4×5=20。(请一个学生在黑板上写算式)
师:那谁是因数?
生:4和5是因数。
师:7×8 呢?
师:假如 0.4×2=0.8,哪一个是因数?
生:0.4和2是因数。
【赏析:杜威强调,教育必须建立在经验的基础上,教育就是经验的生长和经验的改造。《数学课程标准(2011年版)》指出:“教师应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式教学和因材施教。”学生有经验,自然就有教育的可能和空间。吴老师充分尊重学生已有的“倍数和因数”的经验——“倍数”的经验就是在除法里谁是谁的几倍;“因数”的经验就是存在于乘法里的乘数即因数。经验是学生数学学习的重要资源,学生的学习过程就是建立在经验基础上的一个主动建构的过程,吴老师正是把学生的经验不断地激活、利用、调整、提升。这样的概念教学就有了渗透数学思想“建模”的意义,无形中打开了教学空间。】
2.与认知经验沟通,突出概念的关联性。
师:我明白了,你们在除法里找倍数;在乘法里找因数,但我遗憾地告诉你们 6÷2=3,4×5=20 里面既有因数又有倍数,却不是你们说的倍数和因数;我还告诉你们0.4×2=0.8,这不是我们今天研究的因数和倍数。是不是脑子里有点糊涂?那今天研究的因数和倍数到底又是什么呢?让我们一起来研究它。
【赏析:听完吴老师的这段话,学生蒙了。这下学生的原概念与新概念有了冲突(即老革命遇到了新问题),我想学生的学习真正发生一定有前提:学生已有的原概念,先前的经验和今天的新概念产生矛盾。这样激发了学生学习的内需,学生的学习动力被完全激发,学习真正开始了。】
1.与乘除法联系,呈现概念的由来。
师:谁愿意到黑板上写算式?如果12个人分成小组,每组人数一样多,怎么分?(教师拿出12支粉笔请学生演示。一位学生演示,一位学生记录)
生:平均分成6组,每组2人。(学生记录 2×6=12)
师:还可以怎么记录?
生:12÷6=2、12÷2=6。
生:还可以分成3组。3×4=12、12÷3=4、12÷4=3,也可以分成12组。(学生写出算式)
师:12人,如果每组5人,可以吗?
生:2组。
师:干净了吗?
生:还余2人。
师:那这个式子如何表达呢?
生:12÷5=2……2。
【赏析:由于概念教学在整个数学教学中起着举足轻重的作用,所以吴老师采取了直观演示——平均分组的活动,引领学生建立概念的表象。又因因数和倍数是一对较为抽象的数学概念,因此吴老师让学生经历“分粉笔”这一数学活动时,以乘积等于12这一乘法算式为例,借助形象化手段,揭示因数和倍数的特点。同时还重视在数学概念教学中培养学生的创造性思维——因数和倍数既存在于乘法算式中又存在于除法算式中。倍数和因数的概念是学生初次接触且较难理解的,所以在教学时吴老师引领学生列举大量具体的例子,从学生实际经验的肯定例证中,即通过平分人数的情境中抽象出乘法算式和除法算式,为后续的学习归纳出这一类事物的特征埋下伏笔。】
2.与整数和整倍数联系,突出概念特征。
师:写好的算式我们得对它们有所思考,这么多的式子,我们能把它们分分类吗?怎么分呢?你打算怎么分类?没有对错,只要有标准,都可以分类。
生:我分两类,有余数的和没有余数的。
师:还可以怎么分?
生:乘法一类,除法一类。
师:能用数学的算式来表达你们分类的过程,你们一下子写出了一道乘法算式和两道除法算式,可是今天我们学习的是因数和倍数。因数和倍数都在这里,以2×6=12为例,2和 6是12的因数,12是2和6的倍数。(教师用手比划乘法和除法算式中数的关系)你能学着老师的样子来说说第二组算式吗?(学生试着说倍数和因数)
师:因数和倍数既在乘法里又在除法里,到底什么是因数?什么是倍数?你能试着总结一下吗?一句话或两句话把你心中的倍数和因数表达出来。我知道这很难,但四人小组讨论后一定有发现。(学生讨论,教师巡视收集发现,投影分层展示学生的想法)
【赏析:概念教学主要是要完成概念的形成和概念的同化这两个环节。由于概念本身具有的严密性、抽象性和规定性,传统教学中往往比较重视培养思维的逻辑性和精确性,在方式上以“告知”为主让学生“占有”新概念,学生的主体地位得不到发挥,学生的思维会产生依赖性。大多数版本的教材中明明白白地给出“整数A除以整数B,如果除得的商是整数而没有余数,我们就说数A能被数B整除,数A是数B的倍数,数B是数A的因数。”这不利于创新型人才的培养。令我惊奇的是——这节课自始至终,吴老师没有给出“因数”和“倍数”的定义,而是不断地激活学生的经验、调整经验。“学习最好的途径是自己去发现。”学生就在吴老师创设的情境中像数学家那样去“想数学”,“经历”一次发现、创新的过程,通过教师的一句话学会推理、迁移、发现。】
3.与学生概括展示相联系,把握概念本质。
生:一个数×一个数=另一个数,一个数、一个数是另一个数的因数,另一个数是一个数、一个数的倍数。
师:你们同意吗?为什么不同意?举个例子就可以了。
生:小数也是数,如0.4×2=0.8,0.4、2不是0.8的因数,另一个数不是它的倍数。
师:你明白了吗?那一个数又有什么要求?
生:倍数和因数都是整数,不能有余数。
师:是呀,你们越总结越像因数和倍数了。那我举个例子7+5=12里面有因数和倍数吗?
生:7+5=12里没有因数和倍数,因为因数和倍数要在乘法和除法里。
(教师板书:1.两个数都是整数;2.整倍数)
生:倍数是两个因数的积,同样在除法中倍数又是除数和商的积。
师:你们的总结越来越接近倍数和因数。
生:在乘法算式中,两个乘数是因数,积是倍数;在除法算式里,被除数是倍数,除数和商是因数。
师:咱们数学人讲究简洁,我们最终得出:首先这两数得是——整数,它们还不能有——余数,即必须是整倍数的关系,得符合这两个条件。1.5÷0.5=3中有倍数关系吗?为什么?0.4×2=0.8呢?12÷5=2……2呢?(学生一一回答并说出原因)
师:过去我们学习的因数和倍数只是它的名称而已,此因数非彼因数。(继续与学生巩固因数和倍数的两个条件)因数既可以在乘法里又可以在除法里,而且这两个整数必须是整倍数关系。现在脑子里的因数和倍数清晰了吗?(教师找一名学生说说什么是因数,什么是倍数)
【赏析:在学生初步归纳出一个数的因数和倍数的特征后,教师适时地追问,使得学生的发现由不完全归纳上升到初步的理性思考层面。在这样的学习过程中,学生获得的不仅是知识与技能,还有思考方法和思维方式的提升。同时为帮助学生深刻理解基本数学概念,吴老师教学时充分让学生演示、观察、补充、质疑、概括,把倍数与因数概念的本质属性和普遍意义形象地展现出来,使学生在头脑中建立起这些内容的丰富表象;再组织学生分析、讨论、辨析加深这些概念的感性认识;最后对表象进一步加工形成概念,从而实现学生对概念的深刻理解。学生在与已有的概念加以区别和联系时,不断地形成对倍数和因数的一种陈述性的定义,这就是形成一种概念的过程。在这一过程中吴老师还做到与学生认知结构中原有概念相互联系、作用,从而领会新概念的本质属性,获得新概念。】
师:你看错着错着就对了;聊着聊着就会了。你能举几个例子说一说谁是谁的因数?谁是谁的倍数吗?
生:15是倍数,3和5是因数。
生:不同意。15是3和5的倍数,3和5是15的因数。
师:(教师例举生活中哥哥和弟弟的关系,突出相互依存的关系,因数和倍数总是一对一对出现的)谁能举个除法的例子并说出因数和倍数?
生:10÷2=5。
生:10是2和5的倍数,2和5是10的因数。
师:说得真好,一对一对的说,谁来说说别人没说过的话?(继续引导学生通过举例子巩固因数和倍数的两个条件)
师:我们今天给因数和倍数以新的约定、新的规定,在一堆一堆的式子里,你们把长得一样的、有共性的抽出来,但说法得简洁呀,于是我们总结出了两句话:因数和倍数得是整数,并且是整倍数关系,得一对一对的出现,谁也离不开谁。
【赏析:学生学习概念的过程是一个主动建构与生成的过程,结果式的教学同样让学生“学会”一个概念,并在这个概念的基础上进一步的“数学化”,然而学生缺失的是对一个概念丰富的、个性化的、带有情绪色彩体验的理解。在吴老师的课堂上,因为尊重了学生的活动经验和已有的认知结构,学生学习的才是“熟悉的数学”“有意思的数学”,从而涌动出学生的奇思妙想,呈现课堂的生态,在一次一次的等待中完成倍数和因数概念的理解和完整。】
在倍数和因数这节起始课上,吴老师没有过早或过快地直奔主题,为重要的概念早点聚焦,而是强化教学的“有用”和“有趣”。她深知我们的教育对象是儿童,是经过小学六年就要走完人类数千年数学发展历程的儿童,所以教学得基于学生的认知特点、已有的学习经验、对数学学科价值的反思、对教育目的的追问,才能培养学生抽象、推理、概括的能力,成为学有过程的数学,才能处理好儿童、教育、学科三者之间的关系。因材施教,尊重儿童,让数学概念课既有温度又有深度,既“好吃”又有“营养”,从而丰富儿童的生命,润泽儿童的心灵!
【思考】
《数学课程标准(2011年版)》提出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事教学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思维和方法,同时获得广泛的数学活动的经验。如何设计一种情境,更贴近于学生的生活与已有的知识呢?在教学中,吴老师为了建立因数和倍数的概念,从儿童现有的生活经验出发——在乘法中找倍数,在除法里找因数。当老革命遇到新问题时,学生自然产生认知冲突,从而涌现出探究新知的内需。在学生一次次稚嫩浅显的概括中、一次次补充和质疑中直逼概念本质。并通过举例、归纳、对比、分类等活动,让学生掌握倍数和因数的特征,尊重概念产生的过程,体会数学的学习价值。《倍数和因数》再次诠释了吴老师的儿童观和儿童数学教育观——尊重每一位儿童,她和孩子们的思维共振、情感共鸣的场景历历在目,一次一次很享受地品味着“好吃”又有“营养”的数学大餐。