王珊珊, 池 姗, 张 磊, 刘 涛, 吕娜娜, 唐学玺
(1.中国海洋大学海洋生命学院,山东 青岛 266003; 2.青岛海大蓝科生物科技有限公司,山东 青岛 266200)
藻类Dol-P甘露糖转移酶的系统进化分析❋
王珊珊1, 池 姗2, 张 磊1, 刘 涛1, 吕娜娜2, 唐学玺❋ ❋
(1.中国海洋大学海洋生命学院,山东 青岛 266003; 2.青岛海大蓝科生物科技有限公司,山东 青岛 266200)
蛋白质O-甘露糖基化是一种广泛存在于生物体内的蛋白质翻译后修饰过程,即在Dol-P甘露糖转移酶(PMT)催化下将长萜酰甘露糖上的甘露糖连接到肽链上丝氨酸或者苏氨酸羟基的过程。本文对国际千种植物转录组计划(1KP)中22种海洋红藻及19种海洋褐藻的转录组数据库进行搜索,获得了6条来自海萝(Gloiopeltisfurcata)的PMT基因序列。通过对其序列特征的分析发现藻类PMT序列与真菌及动物具有相似的亲疏水性列谱,表明真核生物PMT间具有相似的跨膜区。藻类PMT的N端较为保守,但较其他真核生物PMT的loop5存在222个氨基酸的缺失,导致其loop5处缺少了3个MIR结构域使得loop5明显减小。此外,利用贝叶斯法构建系统进化树表明藻类的PMT基因来自于内共生过程的质体基因转移。
藻类; O-甘露糖糖基化;Dol-P甘露糖蛋白甘露糖转移酶;系统进化
蛋白质O-甘露糖基化是一种广泛存在于生物体内的蛋白质翻译后修饰过程,该过程形成的O-甘露糖蛋白在细胞生长、细胞免疫及信号传导等方面起到重要作用[1-4]。1968年,Sentandreu等人在酿酒酵母(Saccharomycescerevisiae)细胞壁中发现了首个O-甘露糖蛋白[6]。此后,其他真菌、动物及细菌的O-甘露糖蛋白及催化O-甘露糖糖基化的生物酶也逐步被发现[1]。Dol-P甘露糖蛋白甘露糖转移酶(Dolichyl-phosphate-mannose-protein mannosyltransferase,PMT,EC:2.4.1.109)催化长萜酰甘露糖(Dol-P-mannose)上的甘露糖糖基转移到丝氨酸或苏氨酸的羟基上生成甘露醇蛋白[6]。真核生物的PMT定位于内质网上,是首个参与蛋白质O-甘露糖基化的关键酶,对生物体内O-甘露糖蛋白的合成起到关键作用。PMT属于糖基转移酶家族的GT39类糖基转移酶家族,在各生物中都较为保守[7]。根据系统进化及底物特异性的分析表明,PMT家族可分为PMT1,PMT2和PMT4三个亚家族[8]。
酿酒酵母的Dol-P甘露糖蛋白甘露糖转移酶是目前研究最彻底的Dol-P甘露糖蛋白甘露糖转移酶。在酿酒酵母中一共存在7种Dol-P甘露糖蛋白甘露糖转移酶(ScPMT1-7),其蛋白序列一致性为57.5%[6,8],其中ScPMT1和ScPMT5属于PMT1亚家族,ScPMT2、ScPMT3及ScPMT6属于PMT2亚家族,ScPMT4属于PMT4亚家族,而ScPMT7暂时未被归类于任何一个亚家族。在催化甘露糖糖基转移时,PMT1和PMT2亚家族成员会形成异源二聚体,而ScPMT4则会形成同源二聚体来保证反应的高效性[8-10]。此外,在白色念珠菌(Canidiaalbicans)等其他真菌中也发现了与酵母ScPMT1-7同源的PMT[11-12]。不同于酿酒酵母等真菌,在动物中仅发现了2种Dol-P甘露糖蛋白甘露糖转移酶(POMT1,POMT2),其中POMT1属于PMT4亚家族,而POMT2属于PMT2亚家族,来源于人类的HsPOMT1和HsPOMT2氨基酸序列的一致性为34.5%[13]。此外,研究表明动物的PMT2和PMT4亚家族蛋白可形成异源二聚体来催化糖基转移反应[14-16]。相对于真菌和动物,细菌的Dol-P甘露糖蛋白甘露糖转移酶发现得较晚[17]。在各类细菌中仅发现了一种Dol-P甘露糖蛋白甘露糖转移酶,其与真核生物PMT氨基酸序列的一致性仅为12.66%~24.78%,但其蛋白质亲疏水性与真核生物的PMT基本一致[18]。
在酿酒酵母中,糖蛋白占其细胞壁干重的20%,而O-甘露糖蛋白占这些糖蛋白的50%左右。在动物脑组织中30%以上的O-聚糖都是O-甘露聚糖[12-13]。在含有大量甘露醇的海洋藻类中是否存在O-甘露糖蛋白一直鲜有研究[19-20]。目前已有大量文章对真菌及动物的Dol-P甘露糖蛋白甘露糖转移酶进行了报道[5,7-11],但未有文章对植物和绿藻的Dol-P甘露糖蛋白甘露糖转移酶进行报道,为研究藻类中的O-甘露糖基化,鉴定藻类Dol-P甘露糖蛋白甘露糖转移酶带来了困难。随着测序技术的发展,大量藻类的基因组及转录组数据被报道,使研究藻类Dol-P甘露糖蛋白甘露糖转移酶有了数据基础。本文通过对千种植物转录组计划1KP中22种海洋红藻及19种海洋褐藻转录组数据库进行搜索,获得了6条海萝(Gloiopeltisfurcata)的PMT序列。此外,本文通过生物信息学的方法对藻类的Dol-P甘露糖蛋白甘露糖转移酶进行了系统地分析,为藻类O-甘露糖糖基化的研究奠定了一定的基础。
22种海洋红藻及19种海洋褐藻样品分别于2010—2012年采集于在中国沿海地区(见表1)。采用改良CTAB法提取红藻样品的RNA,采用改良Trizol法提取褐藻样品的RNA。利用Illumina Hiseq 2000测序平台对样品进行转录组测序,用SOAPdenovo-Trans对获得的序列进行拼接。使用PuTTY和SecureFX软件对转录组数据进行本地同源序列的调取,得到同源性较高的预选序列。此过程中所用的模板序列为从NCBI(http://www.ncbi.nlm.nih.gov/guide)下载的真菌、动物、细菌及藻类Dol-P甘露糖蛋白甘露糖转移酶的CDS序列。采用MEGA5.0将获得的预选序列与NCBI下载的CDS序列进行比对,截取全长的CDS序列并保存为fasta格式[21]。使用CLUSTALX 2.1软件对藻类的PMT氨基酸序列进行多重序列比对及保守位点分析[22]。
使用在线分析工具Compute pI/Mw tool(http://web.expasy.org/compute_pi/)进行蛋白质等电点及分子量计算。使用在线分析工具ProtScale(http://web.expasy.org/protscale/)进行蛋白质的亲疏水性分析[23]。使用SignalP(http://www.cbs.dtu.dk/services/SignalP/)进行信号肽预测。使用欧洲生物信息研究所(European Bioinformatics Institute,EMBI)的在线分析工具Pfam(http://pfam.xfam.org/)对蛋白质结构域进行预测。
表1 22种红藻和19种褐藻样品信息Table 1 The information of 22 Rhodophyta and 19 Phaeophyteae
将通过本地比对获得的PMT序列及从NCBI下载的序列用MEGA5.0软件进行比对后存储为.nex格式的文件。使用MrBayes v3.1.2软件构建系统进化树。建树时,采用混合模型(aamodelpr=mixed),利用马可夫链-蒙特卡罗(Markov Chain Monte Carlo, MCMC)数据模拟技术估算后验概率,取样频率为100,运行1 000 000代以上至p值小于0.01后结束运算,分别舍弃前后端25%的老化样本后构建进化树[24-25]。使用FigTree 3.1软件对贝叶斯系统进行树进行编辑。
表2 Dol-P甘露糖蛋白甘露糖转移酶基因建树序列信息Table 2 Information of dolichyl-phosphate-mannose-protein mannosyltransferase genes used to construct the Bayesian phylogenetic tree
续表2
分类Taxonomy物种Species标签Label序列登陆号GenBanknumberCyanobacteriaMicrocystisaeruginosaMaPMTASZQ01000231.1ActinobacteriaMycobacteriumtuberculosisMtPMTNP_215518.1ActinobacteriaCorynebacteriumglutamicumCgPMTWP_011013949.1ActinobacteriaCorynebacteriumdiphtheriaeCdPMTWP_010934625.1ActinobacteriaCorynebacteriumefficiensCePMTWP_006770071.1
对22种海洋红藻及海洋褐藻的转录组进行测序,共产生了503 310 608条原始读长,总数据量为89.2 Gb,经拼接组装后得到了2 161 986 scaffolds。所得到scaffolds的平均长度为717 bp,N50为1 751 bp。
通过对1KP计划中22种海洋红藻及19种海洋褐藻转录组数的同源性比对分析,发现在海洋褐藻中不存在PMT基因;在海洋红藻数据库中获得了19条与PMT基因同源性较高的序列,其中13条为PMT基因的非全长/13条为来自于(Gloiopeltisfurcata)的PMT基因全长序列,其他13条为PMT基因的部分序列。使用CLUSTALX 2.1软件对部分藻类、酵母、人类、蓝细菌及放线菌的PMT的氨基酸序列进行多重序列比对,发现各物种PMT序列的N端较为保守。除定鞭藻Emilianiahuxleyi的一条PMT序列外,其他藻类序列的N端都存在Asp-Glu基元(Motif)以保证PMT的活性。与真核生物的PMT序列相比,藻类、蓝细菌及放线菌的PMT序列loop5处约有222个氨基酸的缺失,导致了loop5处3个MIR结构域的丢失(见图1)。
(*Represents amino acids sequences that are exactly the same;Represents more conserved amino acids sequences;Represents less conserved amino acids sequences. The Asp-Glu motifs are highlighted in gray. The lack of 222 amino acids at C-terminal is highlighted with rectangles.)
图1 Dol-P甘露糖蛋白甘露糖转移酶氨基酸序列多重比对
Fig.1 Multiple sequence alignment of dolichyl-phosphate-mannose-protein mannosyltransferase
采用Kyte & Doolittle法绘制的不同生物PMT亲疏水性列谱显示,各生物PMT序列的亲疏水性列谱表现出高度的一致性,说明藻类与其他生物的PMT具有相似的跨膜区。但图2的灰色阴影部分表明藻类、蓝细菌及放线菌loop5明显小于真菌及动物的loop5,这可能是由于上述三类生物此处序列缺失造成的。此外,表1所列出的藻类PMT序列特征显示藻类PMT由335~593个氨基酸组成,蛋白分子量为36.29~68.00 kDa。理论等电点均大于7,说明PMT蛋白为碱性蛋白质。
图2 Dol-P甘露糖蛋白甘露糖转移酶的亲疏水性列谱(Kyte & Doolittle法)Fig.2 Hydropahy profiles of dolichyl-phosphate-mannose-protein mannosyltransferase from different organism. Hydropahy profiles were generated according to Kyte & Doolittle using a window of 17 amino acids Loop5 domains are shaded in gray
标签Label序列登陆号GenBanknumber氨基酸长度Numberofaminoacids/aa分子量Molecularweight/kDa等电点TheoreticalPi信号肽Signalpeptide结构域DomainCmPMT1XM_005534956.156563.869.47NoPMT;PMT_4TMCCmPMT2XM_005538434.158265.6410.05NoPMT;PMT_4TMCGsPMT1XM_005708943.149057.128.79NoPMT;PMT_4TMCGsPMT2XM_005707374.151559.349.27NoPMT;PMT_4TMCGfPMT1KY11158153159.889.84NoPMT;PMT_4TMCGfPMT2KY11158255062.6310.16NoPMT;PMT_4TMCGfPMT3KY11158653059.479.57NoPMT;PMT_4TMCGfPMT4KY11158350357.569.97NoPMT;PMT_4TMCGfPMT5KY11158550757.749.06NoPMT;PMT_4TMCGfPMT6KY11158453161.479.51NoPMT;PMT_4TMCCcPMT1XM_005714905.153259.609.40NoPMT;PMT_4TMCCcPMT2XM_005715986.151558.169.94NoPMT;PMT_4TMCCcPMT3XM_005717925.153258.979.69NoPMT;PMT_4TMCCcPMT4XM_005715872.145952.179.69NoPMT;PMT_4TMCCcPMT5XM_005717830.159368.009.24NoPMT;PMT_4TMCCcPMT6XM_005715812.153060.849.73NoPMT;PMT_4TMCEhPMT1XM_005793100.133536.298.72NoPMTEhPMT2XM_005792708.144147.989.95NoPMT
联合NCBI数据库下载的PMT基因序列及本研究获得的海萝(G.furcata)的PMT序列,利用MrBayes v3.1.2软件进行PMT基因的系统进化树构建(见图3)。进化树分为了PMT1亚家族、PMT2亚家族和PMT4亚家族三大分支,且各分支间的后验概率均为1,表明该结果是可信的。来自于藻类、蓝细菌及放线菌的所有序列都聚于PMT4亚家族的分支,表明其PMT属于PMT4亚家族的成员。此外,该树形还表明红藻PMT基因来自于初次内共生过程中蓝细菌的内共生基因转移(Endosymbiotic gene transfer, EGT),而定鞭藻的PMT基因则来自于二次内共生过程中红藻内共生体的EGT。
图3 Dol-P甘露糖蛋白甘露糖转移酶贝叶斯进化树Fig.3 Bayesian phylogenetic tree of dolichyl-phosphate-mannose-protein mannosyltransferase
来自于酿酒酵母的PMT1是首个被发现的Dol-P甘露糖蛋白甘露糖转移酶,此后,来源于其他真菌、动物、细菌的PMT也逐渐被发现[17,25-27]。尽管如此,近年来也未有关于藻类PMT的相关报道。作为国际千种植物转录组计划(1KP)的参与者,本研究以包括22种海洋红藻及19种海洋褐藻的转录组数据库为目标搜索海洋红藻及褐藻的PMT基因。经比对,本研究只获得了6条海萝(G.furcata)的PMT全长序列,而未获得任何褐藻的PMT序列,表明褐藻与绿藻一样,不具有PMT基因[11]。这也可能是在含有大量甘露醇的海洋褐藻中未发现O-甘露糖蛋白的原因。
通过系统进化分析,本研究证实了藻类的PMT基因起源于内共生的蓝细菌。在初次内共生事件中,藻类通过质体基因转移获得了蓝细菌来源的PMT基因。但灰胞藻及绿藻的PMT基因在进化过程中丢失了只有红藻保留了PMT基因。在此后的二次内共生事件中,定鞭藻获得了红藻来源的PMT基因。但其他以红藻为内共生体的二次内共生藻类(例如:甲藻、隐藻、褐藻及硅藻等)却遗弃了PMT基因。此外,本研究还发现藻类、蓝细菌的PMT相比真菌及动物的PMT缺少了约222个氨基酸,这正是造成其loop5处3个MIR结构域缺失的原因。藻类PMT基因来自于蓝细菌PMT基因的内共生基因转移的结论恰当地解释了真核藻类与真核生物PMT序列差别较大,而与原核细菌PMT基因相似的现象。由于藻类PMT的N端的Asp-Glu基元(Motif)不仅与PMT的活性有关,还与形成多酶复合体密切相关。因此,虽然藻类PMT在loop5处存在大量氨基酸的缺失,但其N端却十分保守。由于酿酒酵母PMT4形成同源二聚体来行使催化功能,我们推测属于PMT4亚家族的藻类PMT也可能形成同源二聚体来发挥作用[9]。虽然藻类的PMT均属于PMT4亚家族,但相比于只有一个PMT4亚家族基因的真菌、动物及细菌,藻类的PMT基因拷贝数明显多于其他生物。这说明藻类的PMT基因在进化过程中发生了一次或多次的基因复制事件,其进化方式与其他生物存在一定的差异。
[1] Spiro R G. Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds [J]. Glycobiology, 2002, 12(4): 43R-56R.
[2] 杨淑凤, 邓国英, 刘欣, 等. 真核生物蛋白质O-甘露糖基化的研究进展[J]. 生命的化学, 2015, 35(1): 5-8.
Yang S F, Deng G Y, Liu X, et al. Protein O-mannosylation in eukaryotes [J]. Chemistry of Life, 2015, 35(1): 5-8.
[3] 尹恒, 王文霞, 赵小明, 等. 植物糖生物学研究进展[J]. 植物学报, 2010, 45(5):521-529.
Yin H, Wang W X, Zhao X M, et al. Research progress in plant glycobiology [J]. Chinese Bulletin of Botany, 2010, 45(5): 521-529.
[4] 耿莉娜, 党晓群, 吴海晶, 等. 微孢子虫O-甘露糖糖基化通路相关酶基因序列的比较分析[J]. 蚕业科学, 2012, 38(3): 512-522.
Geng L N, Dang X Q, Wu H J, et al. Comparative analysis of gene sequences of related enzymes in O-mannosylation pathway of microsporidian [J]. Science of Sericulture, 2012, 38(3): 512-522.
[5] Lussier M, Gentzsch M, Sdicu A M, et al. Protein O-glycosylation in yeast. The PMT2 gene specifies a second protein O-mannosyltransferase that functions in addition to the PMT1-encoded activity [J]. Journal of Biological Chemistry, 1995, 270(6): 2770-2775.
[6] Sentandreu R, Northcote D H. The structure of a glycopeptide isolated from the yeast cell wall [J]. Biochemical Journal, 1968, 109(3): 419-432.
[7] Strahl-Bolsinger S, Gentzsch M, Tanner W. Protein O-mannosylation [J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1999, 1426(2): 297-307.
[8] Loibl M, Strahl S. Protein O-mannosylation: What we have learned from baker′s yeast [J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2013, 1833(11): 2438-2446.
[9] Girrbach V, Strahl S. Members of the evolutionarily conserved PMT family of protein O-mannosyltransferases form distinct protein complexes among themselves [J]. Journal of Biological Chemistry, 2003, 278(14): 12554-12562.
[10] Gentzsch M, Tanner W. The PMT gene family: Protein O-glycosylation inSaccharomycescerevisiaeis vital [J]. The EMBO Journal, 1996, 15(21): 5752-5759.
[11] Lommel M, Strahl S. Protein O-mannosylation: Conserved from bacteria to humans [J]. Glycobiology, 2009, 19(8): 816-828.
[12] Prill S K H, Klinkert B, Timpel C, et al. PMT family ofCandidaalbicans: Five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance [J]. Molecular Microbiology, 2005, 55(2): 546-560.
[13] Stalnaker S H, Stuart R, Wells L. Mammalian O-mannosylation: Unsolved questions of structure/function [J]. Current Opinion in Structural Biology, 2011, 21(5): 603-609.
[14] Akasaka-Manya K, Manya H, Hayashi M, et al. Different roles of the two components of human protein O-mannosyltransferase, POMT1 and POMT2 [J]. Biochemical and Biophysical Research Communications, 2011, 411(4): 721-725.
[15] Bausewein D, Engel J, Jank T, et al. Functional similarities between the protein O-mannosyltransferases Pmt4 from bakers′ yeast and human POMT1 [J]. Journal of Biological Chemistry, 2016, 291(34): 18006-18015.
[16] Lommel M, Willer T, Strahl S. POMT2, a key enzyme in Walker-Warburg syndrome: Somatic sPOMT2, but not testis-specific tPOMT2, is crucial for mannosyltransferase activity in vivo [J]. Glycobiology, 2008, 18(8): 615-625.
[17] VanderVen B C, Harder J D, Crick D C, et al. Export-mediated assembly of mycobacterial glycoproteins parallels eukaryotic pathways [J]. Science, 2005, 309(5736): 941-943.
[18] Wehmeier S, Varghese A S, Gurcha S S, et al. Glycosylation of the phosphate binding protein, PstS, inStreptomycescoelicolorby a pathway that resembles protein O-mannosylation in eukaryotes [J]. Molecular Microbiology, 2009, 71(2): 421-433.
[19] 殷钢, 刘铮, 李琛, 等. 螺旋藻糖蛋白的分离纯化及其性质研究[J]. 高等学校化学学报, 1999, 20(4): 565-568.
Yin G, Liu Z, Li C, et al. Isolation, characterization and properties ofSpirulinaglycoprotein [J]. Chemical Journal of Chinese University, 1999, 20(4): 565-568.
[20] 全香花, 于霞, 李帅, 等. 海藻色素糖蛋白制备及其对小鼠肝癌生长抑制作用[J]. 青岛大学医学院学报, 2011, 47(4): 296-297.
Jin X H, Yu X, Li S, et al. The preparation of seaweed pigment glycoprotein from eucheuma and it inhibits growth of liver cancer in mice [J]. Acta Academiae Medicinae Qingdao Universitatis, 2011, 47(4): 296-297.
[21] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
[22] Thompson J D, Gibson T, Higgins D G. Multiple sequence alignment using ClustalW and ClustalX [J]. Current Protocols in Bioinformatics, 2002: 2.3.1-2.3.22.
[23] Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein [J]. Journal of Molecular Biology, 1982, 157(1): 105-132.
[24] Ronquist F, Huelsenbeck J P. MrBayes 3: Bayesian phylogenetic inference under mixed models [J]. Bioinformatics, 2003, 19(12): 1572-1574.
[25] 王勇, 陈克平, 姚勤. 系统发生分析程序MrBayes 3. 1使用方法介绍[J]. 安徽农业科学, 2009, 37(33):1666-1668.
Wang Y, Chen K P, Yao Q. An introduction to the operation method of phylogenetic analysis program MrBayes 3. 1 [J]. Journal of Anhui Agricultural Sciences, 2009, 37(33): 1666-16668.
[26] Strahlbolsinger S, Tanner W. Protein O-glycosylation in Saccharomycescerevisiae. Purification and characterization of the dolichyl-phosphate-D-mannose-protein O-D-mannosyltransferase [J]. European Journal of Biochemistry, 1991, 196(1): 185-190.
[27] Jurado L A P, Coloma A, Cruces J. Identification of a human homolog of the Drosophila rotated abdomen gene (POMT1) encoding a putative protein O-mannosyl-transferase, and assignment to human chromosome 9q34. 1 [J]. Genomics, 1999, 58(2): 171-180.
PhylogeneticAnalysesofAlgalDolichyl-Phosphate-Mannose-ProteinMannosyltransferase
WANG Shan-Shan1, CHI Shan2, ZHANG Lei1, LIU Tao1, LV Na-Na2, TANG Xue-Xi1
(1.College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; 2.Qingdao Haida Blue Tek Biotechnology Co. , Ltd, Qingdao 266200, China)
Protein O-mannosylation is an extensive posttranslational modification. This reaction is catalyzed by a family of dolichyl-phosphate-mannose-protein mannosyltransferase (PMT), starts with the transfer of mannose from dolichyl mannose to seryl or threonyl residues of secretory proteins. As part of the 1 000 Plant Project (1KP), we provided marine macroalgal transcriptome of 22 red species and 19 brown species from China. In this study, the transcriptome database of 22 red algae Phaeophyceae and 19 brown algae Phaeophyceae were searched. SixPMTgene copies ofGloiopeltisfurcatawere obtained from red algae database and nonePMTgene was found in the brown algae database. It suggested that brown algae lostPMTgene in their evolutionary process. Then, the analysis of hydropahy profiles suggested that the amino acid sequence of algal PMT had similar hydropahy profiles with the PMT from fungi and animal, indicating that there were similar transmembrane regions among eukaryotes. Compared with other eukaryotes, the N-terminal amino acid sequences of algal PMT were relatively conserved. The Asp-Glu motif in N-terminal of PMT is essential for the formation and stability of PMT complexes. However, the lack of 222 amino acids at loop5 made the algal PMT lose three MIR domains. And the same deletion also happened in bacterial PMT. According to the Bayesian phylogenetic tree, the algalPMTgene was derived from endosymbiont by endosymbiotic gene transfer (EGT). Rhodophyta acquired thePMTgene via cyanobacteria during the primary endosymbiotic event and Haptophyta acquired thePMTgene via red-like endosymbiont during the secondary endosymbiotic event. Later, Gene duplication brought differentPMTgene copies.
algae; O-mannosylation; dolichyl-phosphate-mannose-protein mannosyltransferase; phylogenetic analyses
Q178.53
A
1672-5174(2018)02-056-08
10.16441/j.cnki.hdxb.20160379
王珊珊,池姗,张磊,等. 藻类Dol-P甘露糖转移酶的系统进化分析[J]. 中国海洋大学学报(自然科学版), 2018, 48(2): 56-63.
WANG Shan-Shan, CHI Shan, ZHANG Lei, et al. Phylogenetic analyses of algal dolichyl-phosphate-mannose-protein mannosyltransferase[J]. Periodical of Ocean University of China, 2018, 48(2): 56-63.
广东省省级科技计划项目(2013B021100008);青岛市应用基础研究计划项目(14-2-4-102-jch);青岛创业创新领军人才计划项目资助
Supported by Provincial Science and Technology Program of Guangdong Province(2013B021100008); Qingdao Applied Basic Research Project(14-2-4-102-jch);Qingdao Entrepreneurial and Imovation Leading Talents Project
2016-11-15;
2017-01-17
王珊珊(1988-),女,博士生,主要从事海藻生物技术研究。E-mail:mgbl_14@ouc.edu.cn
❋ ❋ 通讯作者:E-mail:tangxx@ouc.edu.cn
责任编辑 高 蓓