李志康 严冬 薛张逸 顾逸彪 李思嘉 刘立军 张耗 王志琴 杨建昌 顾骏飞
细胞分裂素对植物生长发育的调控机理研究进展及其在水稻生产中的应用探讨
李志康 严冬 薛张逸 顾逸彪 李思嘉 刘立军 张耗 王志琴 杨建昌 顾骏飞*
(扬州大学 江苏省作物遗传生理国家重点实验室培育点/粮食作物现代产业技术协同创新中心,江苏 扬州 225009;*通讯联系人,E-mail: gujf@yzu.edu.cn)
细胞分裂素(cytokinin, CTK)对植物的形态、生理及产量有重要调控作用,是调控氮素吸收、转运与代谢的主要因子之一。本文概述了氮素的吸收、转运、代谢以及CTK的代谢、转运和信号转导路径,重点阐述了CTK与氮素协作调控根-冠关系的生理机制,即反式玉米素(Z)及其核苷(ZR)受氮素诱导在根中合成,并转运至地上部,调控地上部氮的转运及分布,影响氮代谢酶的生理特性,从而影响植株光合特性及产量;冠层中氮能够诱导异戊烯基腺嘌呤(iP)及其腺苷(iPR)的合成,并通过韧皮部转运至根系,抑制根系氮素吸收、转运,抑制根系形态建成。在此基础上,进一步论述了CTK在协调源-库关系及提高籽粒充实度方面的作用,分析了栽培措施对CTK生理代谢的影响及其与作物生长相关的机理。同时探讨了CTK上述功能应用于水稻大田生产时存在的问题,并对今后的研究方向提出了建议。
细胞分裂素;氮素;作物产量
水稻是我国主要的粮食作物,随着人口增长,人们对稻米的需求量也大幅增加,其产量的提高与粮食安全问题息息相关[1]。现代栽培技术虽然大幅提高了水稻产量,但是往往水、肥等资源的投入也随之升高并且氮肥利用效率较低,同时伴随严重的环境污染等问题。为此,水稻的高产高效栽培机理成为研究热点[1-2]。氮元素作为水稻生长所必需的大量营养元素,与作物的形态、生理及产量密切相关,氮肥的合理运筹对氮素的高效吸收利用及产量的提高具有重要意义[3-6]。作物自身具备复杂且精细的系统来调控氮素吸收及转运[7-8]。土壤中的硝态氮(NO3-)与氨态氮(NH4+)是氮的主要吸收形态[2,6,9],其吸收主要借助氮转运蛋白来实现[10-14]。氮素的吸收、转运及氮代谢过程,同样受到细胞分裂素(cytokinin, CTK)的影响[15-19]。此前相关研究已经表明,CTK对植物体内氮的吸收、转运及代谢具有显著影响,能够通过影响植物地上部及根系的形态生理,提高植物冠层光合适应性及光氮利用效率[20-21],最终提高产量[22-24]。在水稻生产中,合理的水、肥管理措施(增密减氮、前氮后移、轻干湿交替灌溉等)能够显著提高水稻产量与氮肥利用效率[20,25]。在研究其机理时发现,栽培措施对水稻根系、冠层及籽粒的生长发育产生了巨大影响,显著提高水稻根系养分吸收能力、冠层光合同化能力、花后籽粒干物质积累的能力、结实率等[20,26],同时也伴随着相应部位CTK生理水平的显著变化[27-30]。相关研究结果[1, 26, 29-30]表明CTK是调控水稻形态生理及产量的关键因素。然而,目前关于CTK分子机制研究主要以拟南芥为主,在水稻中研究不多,其生理机制还不清楚。为此,本文将重点阐述植物生长发育过程中氮素与CTK互作对根-冠关系以及源-库关系的调控机理,分析栽培与化学控制等措施通过影响CTK合成代谢从而调控冠层光氮匹配及籽粒充实度的机制,讨论水稻生产中存在的问题,并对今后水稻高产高效栽培研究提出建议。
土壤中的无机氮可被植物直接吸收利用,在水淹条件下以氨态氮为主,在旱地条件下以硝态氮为主[6]。硝态氮的吸收体系有低亲和体系(LATS)和高亲和体系(HATS)两种,二者分别负责高浓度及低浓度时硝态氮的吸收[6,31]。硝态氮的吸收及转运依赖于硝酸盐转运蛋白NRT,主要包括NRT1和NRT2。NRT1大多属于LATS,NRT2大多属于HATS[32]。特定环境下,NRT1.1(CHL1/NPF6.3)属于HATS[33-34],具备转运硝态氮及接收硝态氮信号的双重功能,被称为转运及信号接收蛋白(transceptor)[12,34]。与NRT1不同的是,NRT2需要NAR2(NRT3.1)的协助才能转运硝态氮[27],例如NRT2.1、NRT2.2和NRT2.5[33,35-36]。氨态氮的吸收、转运依赖于AMT/MEP[8]。例如,拟南芥AtAMT1;1与NRT1.1功能相似,是氨态氮的转运及信号接收蛋白[14];水稻中,氨态氮的吸收主要依赖于OsAMT1;1,其吸收量占氨态氮吸收总量的25%[37]。氮转运蛋白不仅存在于根系中,而且还大量分布于冠层,它们对根系及冠层生长发育有重要调控作用[11,16,38-40]。
土壤中的氮元素进入植物体内,部分将直接同化并储存在根系中,但是大部分将被运输到地上部并参与氮素的同化[6,14,40]。氮素的同化主要借助硝酸还原酶(NIA)、亚硝酸还原酶(NII)、谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT)的催化功能[6],在植物生长过程中,天冬酰胺合成酶(ASN)及谷氨酸脱氢酶(GDH)对维持植物体内氮素平衡也有重要作用[6,41-42]。研究表明氮素的代谢与转运受CTK的调控,例如CTK能够显著上调、、、基因表达[7,15]。
细胞分裂素(CTK)为腺嘌呤的衍生物,植物体内发挥功效的主要为反式玉米素型(Z-CTK)及异戊烯基腺嘌呤型(iP-CTK),其中,反式玉米素Z及其核苷ZR,异戊烯基腺嘌呤(iP)及其腺苷(iPR)是主要的功能组分[12,17,19,43-45]。植物体内CTK的合成途径主要有两种(图1)。一种是以异戊烯基侧链为底物的从头合成途径;另一种是tRNA分解途径。前者是iP-CTK和Z-CTK的主要合成途径,顺式玉米素型细胞分类素(Z-CTK)的合成主要依赖于后者。CTK合成代谢过程中的几个关键酶已经成为作物分子遗传改良的重要靶点。其中,异戊烯基转移酶(IPT)是CTK合成的限速酶[12],催化合成核苷酸形式的iPR。其次,细胞色素P450单加氧酶CYP735A1和CYP735A2,负责将核苷酸形式的iPR转化成核苷酸形式的ZR。再次,基因编码的一个磷酸核糖水解酶,可以直接将核苷酸形式的CTK转化为自由基形式的CTK,从而激活CTK[46]。最后,CTK氧化酶(CKX)能催化CTK释放出游离腺嘌呤或游离腺嘌呤核苷,使CTK失去生物活性[47-48],CTK的失活还可通过形成配合物的方式,主要依赖UGT、ZOG、GLU三种酶[12,49](图1)。
CTK合成的关键限速步骤是由IPT催化的,因此基因的表达区域在一定程度上代表了CTK的合成部位。曾经认为CTK只在根系中合成,并转运到根的其他部位和冠层[50]。近年来国内外研究进展表明,叶片等地上部分也具有合成CTK的能力[51],例如,在根系与冠层叶片中均有表达。但是不同部位合成的CTK类型不同,例如,和在根系维管束组织中表达,在叶片中几乎不表达[49];在植物的任何部位均有表达。这些基因表达部位的差别表明Z-CTK主要在根系中合成,iP-CTK主要在地上部合成。同时,CTK在不同部位均能调控植物生长发育[49,52-56]。这些暗示CTK是协调根-冠关系、源-库关系的重要信号因子。
黑色箭头代表代谢路径,箭头的粗细代表每步代谢中合成物质的比例;IPT-异戊烯基转移酶;CYP735A-细胞色素单氧化酶P450;tRNA-specific IPT-特异性tRNA异戊烯基转移酶;LOG-细胞分裂素磷酸核糖水解酶;CKX-细胞分裂素脱氢酶;UGT-N-葡糖基转移酶;ZOG-玉米素-O-葡糖基转移酶;GLU-β-葡糖苷酶;iPRTP-三磷酸异戊烯基腺苷;iPRDP-二磷酸异戊烯基腺苷;iPRMP-单磷酸异戊烯基腺苷;iPR-异戊烯基腺苷;iP-异戊烯基腺嘌呤;tZRTP-三磷酸反式玉米素核苷;tZRDP-二磷酸反式玉米素核苷;tZRMP-单磷酸反式玉米素核苷;tZR-反式玉米素核苷;tZ-反式玉米素;prenylated tRNA-异戊烯基tRNA;cZRMP-单磷酸顺式玉米素核苷;cZ-顺式玉米素;N, O-gulcosylation-N, O-葡萄糖基;DMAPP-二甲基烯丙基焦磷酸;ATP-三磷酸腺苷;ADP-二磷酸腺苷;AMP-单磷酸腺苷;HMBPP-4-羟基-3-甲基-2-(E)-丁烯二磷酸。下同。
Fig. 1. Cytokinin synthesis and metabolic pathways.
CTK需要经过转运才能到达靶细胞发挥其生理作用[7]。研究表明Z-CTK主要在根系中合成,通过木质部随着蒸腾流转运至冠层叶片,而iP-CTK主要在冠层叶片中合成,通过韧皮部转运至根系发挥作用[57-60],但其转运机制不清楚。直到Ko等[61]和Zhang等[62]在2014年首次克隆了CTK从根系向冠层叶片的转运因子ABCG14。通过比较基因突变体与正常植株表型差异,Ko等[61]发现突变体根系合成的Z-CTK在根系中积累但并不能转运至冠层叶片,突变体根系伤流液中Z-CTK含量较对照减少了90%,从而导致突变体叶片及花茎显著小于对照野生型。嫁接试验中,野生型植株的根部能够将突变体地上部的生长恢复到正常水平,而突变体的根部并不能维持对照植株冠层的生长发育。这些证据表明:ABCG14是根系中Z-CTK向顶运输的主要载体;根系合成的Z-CTK调控冠层的生长。遗憾的是,目前还没有发现冠层合成的iP-CTK向根系长距离转运的转运蛋白因子。
当CTK到达作用部位,CTK的跨膜转运主要借助嘌呤透性酶(PUP)及核苷转运蛋白(ENT),PUP倾向于转运自由基形态的CTK,如iP及Z,ENT倾向于转运核苷形式的CTK,如iPR及ZR[59,63-65]。例如,在水稻中有12种OsPUP及4种OsENT蛋白,其中,OsPUP7及OsPUP14主要负责转运iP及Z[64],OsENT2主要负责转运iPR及ZR[57],而水稻中其他转运蛋白的功能还有待进一步研究。
CTK借助信号转导系统对植物众多生理过程进行调控[18-19,66]。CTK信号传递是基于双元信号系统,主要由组氨酸激酶(HK)、磷酸转移蛋白(HP)、反应调控因子(RR)构成。细胞膜上的CTK受体组氨酸激酶(HK)主要负责接受自由基形态的CTK,如iP、Z[67]。拟南芥AHK大多位于内质网膜上,包括AHK2、AHK3、AHK4/CRE1/WOL[68],三者在植株体内的分布及对CTK的亲和性存在差异[66-67]。拟南芥中AHP有6种,其中与AHP1~AHP5具有竞争关系,且上游信号不能诱导其磷酸化,这将抑制信号传递[18]。作为信号下游,A型ARR对B型ARR的信号传递也起到抑制作用[69-70],从而构成反馈调节回路。此外,CTK反应因子(CRF)也能够对植物生长发育进行调控,并且具备部分B型ARR的功能[71-74]。
冠层群体的光合与水稻干物质的积累,与同化物的供应联系紧密[75]。冠层中光氮不匹配被认为是限制水稻产量潜力与氮素利用效率的一个重要因素[20],氮素作为Rubisco酶与叶绿体的重要组成部分,在冠层中的分布是限制作物群体同化能力的关键因素[21, 76-77]。植物冠层氮素分布呈现上层高下层低的梯度形态,这有利于其适应外界光环境,提高冠层光合同化力及氮素利用效率[78-80],但自然条件下植物冠层光、氮的分布梯度并不是最优的[81-83]。研究显示,冠层氮梯度若被调控到光氮最佳匹配状态(即增加氮素的分布梯度差,增加上部叶片含氮量,减少下部叶片含氮量),植物冠层光合能将提高20%[84],而这一指标也可以作为育种中的重要选择靶标[85]。此外,增加冠层的光能利用对于提高水稻冠层光合同化能力也至关重要。
近年来国内外研究表明,根系合成的CTK对冠层的氮素优化分布至关重要,根系合成的CTK随着蒸腾流通过木质部转运至冠层,调控冠层中氮素分配[49,51,86];同样冠层合成的CTK也会反馈调节根系的生长[15,49,87](图2,表1)。然而,在水稻中CTK根-冠关系的调控机制研究不多。
土壤中硝态氮和铵态氮能够增加根系中硝酸盐转运蛋白(NRT)和铵态氮转运蛋白(AMT)的活性[6],增加氮素吸收,并上调CTK合成关键酶基因的表达,促进Z-CTK的合成[52,88-90],增加木质部中Z-CTK浓度与冠层叶片中Z-CTK含量,调控冠层发育。例如,当施用氮肥后,水稻CTK合成基因、、、表达上调,CTK的含量增加[91](图2,表1),Kamada-Nobusada等[91]发现,此过程主要受谷氨酰胺的调控。
根系合成的Z-CTK对于冠层发育有重要影响。冠层中顶部新叶受到较多太阳照射,蒸腾速率高;基部叶片受到太阳辐射少,蒸腾速率低。根系新合成的Z-CTK随着蒸腾流,通过木质部转运,较多地被转运至顶部叶片[86,92](图2)。该运输途径也是氮营养元素的重要路径,因而这部分叶片是营养生殖阶段植物重要的库源,相较于衰老或受光条件差的下层叶片而言拥有更高的蒸腾及代谢速率以及Z-CTK含量。外源喷施6-BA(一种人工合成的CTK)能够有效缓解下层叶片的衰老,提高下层叶片光合同化能力[86],这表明CTK对于冠层发育具有重要调控作用。随着分子生物学技术的发展,突变体试验更进一步证实上述作用是受到内源Z-CTK调控的。与正常植株而相比,在和双基因突变材料中, CTK的总含量保持不变,Z-CTK的含量显著减少,冠层形态短小;若将正常植株根系嫁接到突变体地上部则能使突变体地上部发育恢复正常,外源喷施Z于突变体地上部也能达到相同效果,而外源喷施iP则无效[56]。此外,Z及ZR在调控冠层发育方面功能有所差异。Osugi等[51]在研究多基因突变体材料时发现,ZR虽然是基部运输至冠层的主要CTK组分,但是Z也可以直接由基部转运至冠层并作用于冠层,二者功能差异主要表现为ZR能够调控叶片大小及分生组织活性,但是必须通过LOG酶催化生成Z后才具有上述功能;根系合成的Z对冠层调控作用不依赖于LOG酶活性,但是其功能目前只局限于调控叶片大小,并不能对分生组织活性产生影响。这些证据表明根源Z-CTK对于冠层形态发育具有重要调控作用(图2)。
除了调控植株冠层形态发育外,根源Z-CTK在调控冠层氮素分布,协调冠层光氮匹配,提高冠层光合同化方面具有重要作用。木质部蒸腾受光照条件影响明显,因而相比下层衰老或受光条件较差的叶片,上层叶片拥有更高的光合同化效率及蒸腾速率,拥有更多的Z-CTK及氮营养[86,92]。相关研究表明,CTK能够调控冠层氮素的分布,加速氮素从基部衰老叶片向顶部新叶的转运,增加上层冠层中氮的分配比例,提高冠层光合适应(photosynthetic acclimation),从而影响光合氮素利用效率[20,86]。更进一步的研究表明[15],CTK的上述功能主要借助调控氮的转运及代谢过程而实现。例如,在拟南芥中等氮转运蛋白基因主要在冠层中表达,并且Z-CTK能够显著上调以上四种基因表达(表1)。虽然NRT1.3及NRT2,7蛋白的功能研究尚不深入,但是已有的研究结果表明,NRT1.4[11],NRT1.7[93]分别对氮素由叶片转出及老叶中氮素向新叶中的运输起重要作用,表明Z-CTK对于调控冠层氮分布梯度及氮素利用效率有重要作用(表1)。在冠层氮代谢过程中,CTK能上调,,,等编码氮代谢酶的基因表达[7,15,22],提高氮代谢酶活性,促进核酸和蛋白质的合成,增加叶绿素和蛋白质的合成,增加光合能力,促进物质的积累[7](表1)。进一步研究表明,上述CTK的功能与其信号转导元件有关,包括AHK2、AHK3、ARR1、ARR12[94]。以上证据从生理及分子层面证明了CTK在调控冠层光及氮素分布,提高冠层光氮利用效率方面的重要作用。
黑色箭头代表物质转运路径;紫色箭头代表细胞分裂素代谢路径;红色箭头代表正向信号调控;红色虚线平头箭头代表反向信号调控;红色曲线代表木质部蒸腾流;黄色底纹代表细胞分裂素代谢酶;蓝色底纹代表氮转运蛋白。
Fig. 2. Model for coordinated and interdependent regulation of nitrogen and cytokinin.
表1 细胞分裂素及氮素对植物根系及冠层中无机氮素吸收、分布、代谢以及细胞分裂素合成、代谢及信号功能的调控
续表1:
基因名称 Gene nameAGI 码 AGI code蛋白名称Protein name互作效应 Interaction response 反式玉米素型细胞分裂素 tZ-CTK细胞分裂素Cytokinis硝态氮Nitrate铵态氮 Ammonium氮肥施用Nitrogen application 氮代谢 Nitrogen metabolism 硝态氮还原 Nitrate reduction NIA1At1g77760硝酸还原酶1 Nitrate reductase 1U [7]U [7] NIA2At1g37130硝酸还原酶2 Nitrate reductase 2U [7] NIIAt2g15620 亚硝酸还原酶 Nitrite reductaseU [7] 辅因子 Cofactor CNX2At2g31955钼喋呤合成酶 Molybdopterin synthetaseU [7] UPMAt5g40850硫-腺苷甲硫氨酸尿卟啉原III S-adenosylmethionine uroporphyrinogen IIIU [7] 氨同化 Ammonia assimilation GLN1;1At5g37600谷氨酰胺合成酶1;1 Glutamine synthetase 1;1D [7]D [7] GLN1;2At1g66200谷氨酰胺合成酶1;2 Glutamine synthetase 1;2D [7]U [7] GLN2At5g35630谷氨酰胺合成酶2 Glutamine synthetase 2U [7] GLT1At5g53460NADH-谷氨酸合成酶1 NADH-glutamate synthase 1U [7] 氨基酸代谢 Amino acid metabolism GDH1At5g18170谷氨酸脱氢酶1 Glutamate dehydrogenase 1U [7] GDH2At5g07440谷氨酸脱氢酶2 Glutamate dehydrogenase 2U [7] ASP1At2g30970天冬氨酸转氨酶1 Aspartase aminotransferase 1D [7]U [7] ASN1 At3g47340天冬酰胺合成酶1 Asparagine synthetase 1U [7] ASN2At5g65010天冬酰胺合成酶2 Asparagine synthetase 2U [7]U [7] 细胞分裂素生理过程 Cytokinin physiological process 细胞分裂素合成 Cytokinins biosynthesis AtIPT3At3g63110异戊烯基转移酶3 Isopentenyltransferase 3U [7] OsIPT4Os03g0810100异戊烯基转移酶4 Isopentenyltransferase 4U [91] OsIPT5Os07g0211700异戊烯基转移酶5 Isopentenyltransferase 5U [91] OsIPT7Os05g0551700异戊烯基转移酶5 Isopentenyltransferase 7U [91] OsIPT8Os01g0688300异戊烯基转移酶8 Isopentenyltransferase 8U [91] CYP735A2At1g67110细胞分裂素反式羟化酶 Cytokinin trans-hydroxylase U [7]U [7] 细胞分裂素代谢 Cytokinins metabolism CKX4At4g29740 细胞分裂素氧化酶4 Cytokinin oxidase 4 U [7]U [7] CKX5At1g75450细胞分裂素氧化酶5 Cytokinin oxidase 5 U [7] 转录调控 Transcriptional control ARR3At1g59940A型反应调控因子3 Type-A response regulator 3U [7]U [7] ARR4At1g10470 A型反应调控因子4 Type-A response regulator 4U [7] ARR5At3g48100A型反应调控因子5 Type-A response regulator 5U [7]U [7] ARR6At5g62920A型反应调控因子6 Type-A response regulator 6 U [7]U [7] ARR7At1g19050 A型反应调控因子7 Type-A response regulator 7 U [7]U [7] ARR8At2g41310A型反应调控因子8 Type-A response regulator 8 U [7]U [7] ARR9At3g57040 A型反应调控因子9 Type-A response regulator 9 U [7]U [7] ARR15 At1g74890 A型反应调控因子15 Type-A response regulator 15 U [7]U [7] ARR16 At1g74890 A型反应调控因子16 Type-A response regulator 16U [7]
“U”表示基因表达上调; “D”表示基因表达下调;“I”表示对施氮无响应; “R”表示缺氮时基因下调表达;“IN”表示缺氮时基因上调表达;“[ ]”参考文献。
U, Up-regulation of the corresponding gene expression; D, Down-regulation of the corresponding gene expression; I, Irresponsive to N supply; R, Repressed by N starvation; IN, Induced by N starvation. [ ], The reference.
土壤中的氮素能够增加氮素转运蛋白(NRT和AMT)的活性,增加氮素的吸收与根系CTK(Z与ZR)的合成。但是,植物也存在着反馈抑制调节机制。研究表明,随着氮素的吸收,冠层中氮的积累将诱导冠层合成iP-CTK,iP-CTK将经由韧皮部运输到根中,从而调控根系形态及生理特性,表现为抑制根系对过量氮素的吸收与转运,抑制侧根的生长发育[15,95-97]。
在拟南芥中,CTK能抑制根系中主要氮素转运蛋白基因表达,包括,进而抑制植株对氮素的吸收及转运[15](图2,表1)。进一步研究结果表明CTK通过CTK受体AHK3和AHK4调控氮素转运蛋白合成,抑制氮素吸收[98-100]。Guo等[101]通过外源施用PI-55(CTK合成抑制剂)及外源细胞分裂素6-BA,发现CTK对侧根生长具有抑制作用,并且能够抑制根系中氮素转运蛋白基因表达(、、、、),验证了CTK对根系氮素吸收具有抑制作用(图2,表1)。
CTK除了对氮素转运蛋白功能有抑制作用,对根系生长也具有明显的抑制作用。施加外源CTK、过表达基因或组成型激活B型基因均显著抑制主根、侧根的生长发育,而过表达CTK降解基因或负向调控因子A型基因则促进根系生长[96-97,102-103]。在烟草和拟南芥的根系中组织特异表达基因明显促进根系生长发育,增加转基因植物的生物量并增强其抗旱能力与营养元素的吸收富集能力[104]。
Sasaki等[87]研究了根瘤菌侵染大豆根系后根系的形态生理变化,发现根瘤菌侵染后,借助HAR1信号,冠层CTK合成基因表达上调,冠层中iP-CTK的含量增加,而Z-CTK的含量不变。随后iP-CTK由冠层转运至根中,抑制根系侧根的发生,限制菌根的过量生长。
以上证据表明冠层合成的叶源iP-CTK能够响应植株体内氮素水平,调控根系对氮素的吸收与利用,在形态生理方面,还能调控侧根及根节的生长发育。
植物如何协调CTK在低氮水平下促进氮素吸收,在高氮水平下氮素吸收呢?CTK如何在冠层促进氮转运蛋白基因的表达,提高冠层光适应,增加冠层光合能力;而在根系中抑制氮转运蛋白基因表达,抑制侧根发生,减少氮素吸收呢?
根据国内外的最新研究进展[7,15,17,49],笔者认为可归纳为下面两方面的原因:1)根系合成的Z-CTK与冠层合成的iP-CTK功能存在差异。例如,Z和ZR能够促进冠层分生组织活性、叶绿素的合成和氮素的转运,提高冠层光合适应;而iP和iPR抑制根系对氮素吸收与利用,抑制侧根及根节的生长。2)根系与冠层中主要表达的氮素转运蛋白不同。例如,冠层中主要表达的氮素转运蛋白为AtNRT2.7、AtNRT1.3、AtNRT1.4、AtNRT1.7,根系中主要表达的氮素转运蛋白为AtNRT2.1、AtNRT2.2、AtNRT1.1、AtNRT1.5。这些表明CTK在冠层中与根系中的响应因子并不一样,因而CTK对地上部氮素分配与代谢起促进,而对根系氮素吸收起抑制作用。
总之,在植物体中,CTK及氮素在根、冠中具有复杂的相互作用,根系吸收的硝态氮能够上调CTK合成基因表达,促进Z-CTK在根中合成并转运到冠层,从而调控冠层生理生化特性;冠层中积累的氮素,又将促进iP-CTK合成并运输至地下部,调控根系形态及生理特性[7,15,49,58](图2)。
水稻生长周期中叶片光合能力(源强)和籽粒库容(库强)的动态变化对籽粒灌浆非常重要。CTK是调节源-库关系的一种重要激素[12]。CTK负调控叶绿素分解酶相关基因的表达,同时诱导叶绿素分解酶降解,从而导致叶绿素含量增加,保持叶片正常的光合能力,保持光合系统的结构与功能,增加光合作用有效期及光合同化物的供给,是目前已知的唯一能够延缓叶片衰老的植物激素[105]。此外,CTK还能够增加叶绿素循环中四吡咯化合物[106],以及叶绿素合成中间体7-羟甲基叶绿素的含量[107]。与此相关,CTK的一个主要生理功能是在叶片衰老的过程中调控碳水化合物源-库的分配以及氮元素的循环利用。Kim等[108]研究表明CTK受体AHK3通过下游的转录因子ARR2特异地调控叶片衰老过程,这一调控机理依赖于ARR2的磷酸化。过量表达基因可以延缓黑暗诱导下离体叶片的衰老,而突变则加速离体叶片的衰老。Cortleven等[94]最新研究也证实CTK可以调控信号路径上AHK2和AHK3,及ARR1与ARR12,延缓叶片衰老,抵抗光损伤。Maria等[24]研究发现对小麦植株喷施外源细胞分裂素6-BA后,叶片中蛋白质、Rubisco酶、叶绿素的浓度均增加,延缓了叶片衰老,延长了叶片光合功能期,为籽粒灌浆提供更多的碳水化合物。当然,过量合成的CTK也会导致植株“贪青迟熟”,阻碍干物质向籽粒的转运,降低产量[26,109]。
CTK对籽粒库容(库强)也有重要调节作用[23,110]。在花器官分生组织发育过程中,增加CTK浓度或增强CTK信号通路的活性,将促进花器官分生组织的细胞分裂和分化,进而增加生殖器官数目[110]。通过降低CTK氧化酶CKX活性,可以提高CTK含量,增加籽粒库容。在水稻中,影响产量的一个重要数量遗传性状基因QTL编码一个CTK氧化酶基因在花分生组织中特异表达。通过对低产品种和高产品种的分析发现,高产品种中基因均携带不同的功能缺失性突变,促使体内CTK含量增加,特别是在分生组织与生殖器官中增加更为显著,因而导致小穗数和小穗中籽粒数显著增加,产量提高20%以上[111]。拟南芥和基因主要在分生组织中表达。与水稻突变体相似,拟南芥和双突变体中,花分生组织和生殖器官明显增大或数目增多,其种子产量较野生型提高55%[112]。综上,Jameson等[23]提出适当增加叶片中细胞分裂素含量,尤其是逆境条件下植物叶片CTK含量将有效增加光合同化物的供给;增加花器官分生组织或籽粒中CTK含量将有效增加籽粒数目及籽粒充实度。
我们曾通过增密减氮、前氮后移、深翻、增施有机肥、轻干湿交替灌溉等栽培措施增加水稻根系活力,促进根系CTK的合成与运输,从而加速冠层氮素从老叶向新叶的转运,增加冠层氮素梯度,优化冠层光氮匹配,分别提高了高产水稻甬优2640和武运粳24产量与氮肥生理利用效率[20]。证明了水肥管理等栽培措施对CTK的合成代谢及作物生产有重要影响。
研究表明轻干湿交替灌溉可以改善水稻弱势粒灌浆,增加结实率,提高产量[26]。在轻干交替灌溉过程中,适度干旱后的复水灌溉可以显著提高叶片中的CTK含量[113],这将有助于提高作物的光合能力和对氮素的吸收利用[107]。Hansen和Dörffling[27]发现在复水后6 h木质部中的ZR含量提高了5倍,这将有助于复水后气孔打开,增强叶片光合能力[28-29,112]。适度干旱后复水灌溉同样也能显著增加籽粒中CTK的含量,加速胚乳细胞增殖,提高籽粒产量[30,111]。
氮肥管理措施对源-库关系也有重要调理作用。适当增加氮肥用量,叶片与籽粒中CTK的含量增加,提高水稻光合能力,同时促进细胞分裂,增加水稻胚乳细胞数目[114],增加籽粒重量,提高产量,增加氮肥利用效率。低氮肥条件下,将减少作物体内CTK的合成,导致植株叶片早衰,降低水稻产量和氮肥利用效率。而过量使用氮肥,CTK将导致植物“贪青迟熟”[26,109],非结构性碳水化合物滞留叶片与茎秆中,从而导致籽粒充实度差[26]。因此,明晰水稻在不同水肥栽培调控措施下,CTK的合成代谢与转运机理,及其对水稻氮素代谢、光合、与产量的影响机制,将有助于提出适应现代水稻高产高效的氮肥运筹策略。
CTK能够调控植物对氮的吸收及分布;调控植物生长发育,协调植物根-冠关系,源-库关系;提高冠层光氮利用率,对于氮肥利用效率及产量的提高具有重要意义。然而目前相关分子机制研究多集中于拟南芥等模式植物,水稻中CTK功能相关的关键酶和基因的调控路径还不清楚;生产中CTK响应栽培措施,调控植株氮肥高效吸收与利用,促成水稻高产高效的调控途径还未掌握。解决好上述问题,对于当前水稻产量及氮肥利用效率的进一步提高意义重大。
为此,建议从以下三个方面开展研究:
1)明确水稻中CTK代谢、转运机理,探明其与植株形态生理及产量的相关性。建议设计试验,于不同生长期,测定不同种水稻各器官中CTK种类及含量,了解CTK在植株体内分布规律;测定不同种水稻各器官中CTK关键代谢酶的蛋白及基因表达水平,进一步掌握水稻体内CTK的代谢规律;同时,测定水稻其他形态生理及产量指标,分析其与CTK分布及代谢的相关性,分析CTK生理功能,并通过喷施外源激素试验或者转基因材料进行验证。
2)明确水稻中CTK与其他激素的互作效应机理,探明其与水稻形态生理及产量的相关性。激素对于作物的调控非常复杂。例如,根分生组织和茎端分生组织的发育,包括侧根、侧芽的分化与生长,均受到细胞分裂素和生长素的协同调控;而在叶片衰老和籽粒灌浆过程中,细胞分裂素与脱落酸、乙烯互相拮抗而调控植物的相关生长发育。在水稻中该机理还不是很清楚,而其对于水稻的生长发育及产量具有重要影响,因而在接下来的工作中,有必要针对此进行重点研究。
3)明确CTK对不同栽培措施的生理响应机制,提出高产高效栽培新途径。在不同水肥管理或化控模式下,研究常规水稻、杂交水稻(籼、粳)、超级稻品种中CTK的生理变化规律,明确栽培措施对水稻CTK的生理调控机制;并结合植株形态生理指标对其的响应,从植株根系养分吸收能力、冠层光合同化能力、花后籽粒干物质积累的能力、结实率等方面,综合分析栽培措施调控下的CTK的生理改变对于植株氮肥利用效率及产量的影响机理,在此基础之上,提出适应当前高产水稻品种的高产高效栽培新途径。
[1] Yang J. Approaches to achieve high yield and high resource use efficiency in rice., 2015, 2(2): 115-123
[2] GRiSP (Global Rice Science Partnership). Rice Almanac. 4th edition, Los Baňos (Philippines): International Rice Research Institute, 2013, 283.
[3] 孙永健, 孙园园, 徐徽, 李玥, 严秦君, 蒋明金, 马均. 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014, 40(9):1639-1649.
Sun Y J, Sun M M, Xu H, Li Y, Yan Q J, Jiang M J, Ma J. Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies., 2014, 40(9): 1639-1649. (in Chinese with English abstract)
[4] 王小纯, 王晓航, 熊淑萍, 马新明, 丁世杰, 吴克远, 郭建彪. 不同供氮水平下小麦品种的氮效率差异及其氮代谢特征. 中国农业科学, 2015, 48(13): 2569-2579.
Wang X C, Wang X H, Xiong S P, Ma X M, Ding S J, Wu K Y, Guo J B. Differences in nitrogen efficiency and nitrogen metabolism of wheat varieties under different nitrogen levels.2015, 48(13): 2569-2579 (in Chinese with English abstract).
[5] Kant S, Peng M, Rothstein S J. Genetic regulation by NLA and microRNA827 for maintaining nitrate- dependent phosphate homeostasis in., 2011, 7(3): e1002021.
[6] Xu G, Fan X, Miller A J. Plant nitrogen assimilation and use efficiency., 2012, 63(1): 153- 182.
[7] Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development., 2006, 11: 440-448.
[8] Xuan W, Beeckman T, Xu G. Plant nitrogen nutrition: sensing and signaling., 2017, 39: 57-65.
[9] Ho C H, Tsay Y F. Nitrate, ammonium, and potassium sensing and signaling., 2010, 13(5): 604-610.
[10] Yan M, Fan X, Feng H, Miller A J, Shen Q, Xu G. Rice OsNAR2. 1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges., 2011, 34(8): 1360.
[11] Wang Y Y, Hsu P K, Tsay Y F. Uptake, allocation and signaling of nitrate., 2012, 17(8): 458-467.
[12] Jameson P E. Cytokinins., 2017, 114(8): 391-402.
[13] Lima J E, Kojima S, Takahashi H, Wirén N V. Ammonium triggers lateral root branching inin an ammonium transporter 1; 3-dependent manner., 2010, 22(11): 3621-3633.
[14] Liu Y, von Wirén N. Ammonium as a signal for physiological and morphological responses in plants., 2017, 68(10): 2581-2592.
[15] Kiba T, Kudo T, Kojima M, Sakakibara H. Hormonal control of nitrogen acquisition: Roles of auxin, abscisic acid, and cytokinin., 2011, 62(4): 1399-1409.
[16] Joshi R, Sahoo K K, Tripathi A K, Kumar R, Gupta B K, Pareek A, Singla-Pareek S L. Knockdown of an inflorescence meristem-specific cytokinin oxidase- OsCKX2 in rice reduces yield penalty under salinity stress condition., 2017: 1-11.
[17] Werner T, Schmülling T. Cytokinin action in plant development., 2009, 12: 527-538.
[18] Hwang I, Sheen J, Müller B. Cytokinin signaling networks., 2012, 63: 353-380.
[19] Kieber J J, Schaller G E. TheBook: Cytokinins, 2rd edn. Washington: The American Society of Plant Biologists Press, 2014. e0168.
[20] Gu J, Chen Y, Zhang H, Li Z K, Zhou Q, Yu C, Kong X S. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice., 2017, 206: 74-85.
[21] Hikosaka K. Leaf canopy as a dynamic system: Ecophysiology and optimality in leaf turnover., 2005, 95: 521-533.
[22] Yang J, Peng S, Visperas R M, Sanico A L, Zhu Q, Gu S. Grain filling pattern and cytokinin content in the grains and roots of rice plants., 2000, 30: 261-270.
[23] Jameson P E, Song J. Cytokinin: A key driver of seed yield., 2015, 67: 593-606.
[24] Criado M V, Caputo C, Roberts I N, Castro M A, Barneix A J. Cytokinin-induced changes of nitrogen remobili zation and chloroplast ultrastructure in wheat ()., 2009, 166(16): 1775-1785.
[25] Reguera M, Peleg Z, Abdel-Tawab Y M, Tumimbang E B, Delatorre C A, Blumwald E. Stress-induced cytokinin synthesis increases drought tolerance through co-ordinated regulation of carbon and nitrogen assimilation in rice., 2013, 163: 1609-1622.
[26] Yang J, Zhang J. Grain-filling problem in ‘super’ rice., 2010, 61: 1-5.
[27] Hansen H, Dörffling K. Root-derived-zeatin riboside and abscisic acid in drought-stressed and rewatered sunflower plants: Interaction in the control of leaf diffusive resistance?, 2003, 30: 365-375.
[28] Hu L, Wang Z, Huang B. Effects of cytokinin and potassium on stomatal and photosynthetic recovery of Kentucky bluegrass from drought stress., 2013, 53: 221-231.
[29] Dodd I C, Puértolas J, Huber K, Pérez-Pérez J G, Wright H R, Blackwell M S A. The importance of soil drying and re-wetting in crop phytohormonal and nutritional response to deficit irrigation.2015, 66: 2239-2252.
[30] Zhang H, Li H, Yuan L, Wang Z, Zhang J. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice., 2012, 63: 215-227.
[31] 胡春吉, 雷宁, 邹良平, 彭明. 植物中氮素利用及硝态氮转运蛋白的研究进展.分子植物育种, 2016(8): 2188-2196.
Hu C J, Lei N, Zou L P, Peng M. Research progress on nitrogen utilization and nitrate transport protein in plant., 2016, (8): 2188-2196 (in Chinese with English abstract).
[32] Krapp A, David L C, Chardin C, Girin T, Marmagne A, Leprince A S, Chaillou S, Ferrario-Méry S, Merry S, Daniel-Vedele, F. Nitrate transport and signaling in., 2014, 65(3): 789-798.
[33] Dechorgnat J, Nguyen C T, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F. From the soil to the seeds: The long journey of nitrate in plants., 2011, 62(4): 1349-1359.
[34] Léran S, Varala K, Boyer J C, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong J M, Halkier B A, Harris J M, Hedrich R, Limami A M, Rentsch D, Seo M, Tsay Y F, Zhang M Y, Coruzzi G, Lacombe B. A unified nomenclature of NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER family members in plants., 2014, 19(1): 5-9.
[35] Li W, Wang Y, Okamoto M, Crawford N M, Siddiqi M Y, Glass A D. Dissection of the AtNRT2.1: AtNRT2.2 inducible high-affinity nitrate transporter gene cluster., 2007, 143(1): 425-433.
[36] Kotur Z, Mackenzie N, Ramesh S, Tyerman S D, Kaiser B N, Glass A D M. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1., 2012, 194(3): 724-731.
[37] Li C, Tang Z, Wei J, Qu H, Xie Y, Xu G. The osamt1.1 gene functions in ammonium uptake and ammonium- potassium homeostasis over low and high ammonium concentration ranges., 2016, 43(11): 639-649.
[38] Yuan L, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wirén N. The organization of high-affinity ammonium uptake inroots depends on the spatial arrangement and biochemical properties of AMT1-type transporters., 2007, 19(8): 2636-2652.
[39] Kiba T, Feria-Bourrellier A B, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakakibara H, Krapp A. The Arabidopsis nitrate transporter NRT2. 4 plays a double role in roots and shoots of nitrogen-starved plants., 2012, 24(1): 245-258.
[40] Wang Y Y, Tsay Y F. Arabidopsis nitrate transporter NRT1. 9 is important in phloem nitrate transport., 2011, 23(5): 1945-1957.
[41] Lam H M, Coschigano K T, Oliveira I C, Melo-Oliveira R, Coruzzi G M. The molecular-genetics of nitrogen assimilation into amino acids in higher plants.l, 1996, 47(1): 569-593.
[42] Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture., 2010, 105(7): 1141-1157.
[43] Letham D. Zeatin, a factor inducing cell division isolated from Zea Mays., 1963, 8: 569-573.
[44] 张红梅, 王俊丽, 廖祥儒. 细胞分裂素的生物合成、代谢和受体. 植物生理学通讯, 2003, 39: 267-272.
Zhang H M, Wang J L, Liao X R. Biosynthesis, metabolism and receptor of cytokinins., 2003, 39: 267-272 (in Chinese with English abstract).
[45] 邓岩, 王兴春, 杨淑华, 左建儒. 细胞分裂素:代谢、信号转导、交叉反应与农艺性状改良. 植物学报, 2006, 23(5): 478-498.
Deng Y, Wang X C, Yang S H, Zuo J R. New insights into cytokinins: Metabolism, signal transduction, cross talks and potentials in agricultural applications., 2006, 23(5): 478-498. (in Chinese with English abstract)
[46] Tokunaga H, Kojima M, Kuroha T, Ishida T, Sugimoto K, Kiba T, Kiba T, Sakakibara H.lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation., 2012, 69(2): 355-365.
[47] Houba-hérin N, Pethe C, D’Alayer J, Laloue M. Cytokinin oxidase from: Purification, cDNA cloning and expression in moss protoplasts., 1999, 17(6): 615-626.
[48] Morris R, Bilyeu K, Laskey J, Cheikh N N. Isolation of a gene encoding a glycosylated cytokinin oxidase from Maize., 1999, 255: 328-333.
[49] Osugi A, Sakakibara, H. How do plants respond to cytokinins and what is their importance?, 2015, 13(1): 102.
[50] Letham D S. Cytokinins as phytohormones-sites of biosynthesis, translocation and function of translocated cytokinin// Mok D W S, Mok M C. Cytokinins Chemistry Activity & Function. Boca Raton, FL: CRC Press, 1994: 57-80.
[51] Osugi A, Kojima M, Takebayashi Y, Ueda N, Kiba T, Sakakibara H. Systemic transport of trans-zeatin and its precursor have differing roles inshoots., 2017, 3: 17112.
[52] Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakabara H. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in., 2004, 45: 1053-1062.
[53] Werner T, Motyka V, Laucou V, Smets R, Onckelen H V, Schmülling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity., 2003, 15: 2532-2550.
[54] Miyawaki K, Matsumoto-Kitano M, Kakimoto T. Expression of cytokinin biosynthetic isopentenyl transferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate., 2004, 37: 128-138.
[55] Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H. Functional analyses of LONELY GUY cytokinin- activating enzymes reveal the importance of the direct activation pathway in., 2009, 21: 3152-3169.
[56] Kiba T, Takei K, Kojima M, Sakakibara H. Side-chain modification of cytokinins controls shoot growth in Arabidopsis., 2013, 27: 452-461.
[57] Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation., 2008, 59: 75-83.
[58] Kudo T, Kiba T, Sakakibara H. Metabolism and long-distance translocation of cytokinins., 2010, 52: 53-60.
[59] Zürcher E, Müller B. Cytokinin synthesis, signaling, and function-advances and new insights., 2016, 324: 1-38.
[60] Lacombe B, Achard P. Long-distance transport of phytohormones through the plant vascular system., 2016, 34: 1-8.
[61] Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, Kim K Y, Kwon M, Endler A, Song W Y, Martinoia E, Sakakibara H, Lee Y.ABCG14 is essential for the root-to-shoot translocation of cytokinin., 2014, 111: 7150-7155.
[62] Zhang K, Novak O, Wei Z, Gou M, Zhang X, Yu Y, Yang H, Cai Y, Strnad M, Liu C.abcg14 protein controls the acropetal translocation of root-synthesized cytokinins., 2014, 5: 3274.
[63] Girke C, Daumann M, Niopek-Witz S, Möhlmann T. Nucleobase and nucleoside transport and integration into plant metabolism., 2014, 5: 443.
[64] Durán-Medina Y, Díaz-Ramírez D, Marsch-Martínez N. Cytokinins on the Move., 2017, 8: 146.
[65] Qi Z, Xiong L. Characterization of a purine permease family geneinvolved in growth and development control in rice., 2013, 55: 1119-1135.
[66] Stolz A, Riefler M, Lomin S N, Achazi K, Romanov G A, Schmülling T. The specificity of cytokinin signaling inis mediated by differing ligand affinities and expression profiles of the receptors., 2011, 67: 157-168.
[67] Lomin S N, Krivosheev D M, Steklov M Y, Arkhipov D V, Osolodkin D I, Schmülling T, Romanov G A. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands., 2015, 66: 1851-1863.
[68] Heyl A, Riefler M, Romanov G A, Schmülling T. Properties, functions and evolution of cytokinin receptors., 2012, 91: 246-256.
[69] Müller B. Generic signal-specific responses: cytokinin and context-dependent cellular responses., 2011, 62(10): 3273-3288.
[70] Wallmeroth N, Anastasia A K, Harter K, Berendzen K W, Mira-Rodado V.response regulator 22 inhibits cytokinin-regulated gene transcription., 2017, 254(1): 597-601.
[71] Rashotte A M, Mason M G, Hutchison C E, Ferreira F J, Schaller G E, Kieber J J. A subset ofap2 transcription factors mediates cytokinin responses in concert with a two-component pathway., 2006, 103(29): 11081-11085.
[72] Takei K, Sakakibara H, Taniguchi M, Sugiyama T. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator., 2001, 2(1): 85-93.
[73] Shtratnikova V Y, Kudryakova N V, Kudoyarova G R, Korobova A V, Akhiyarova G R, Danilova M N, Kusnetsov V V, Kulaeva O N. Effects of nitrate and ammonium on growth ofplants transformed with the ARR5::GUS construct and a role for cytokinins in suppression of disturbances induced by the presence of ammonium., 2015, 62(6): 741-752.
[74] Roche J, Love J, Guo Q, Song J, Cao M, Fraser K, Huege J, Jones C, Novák O, Turnbull M H, Jameson, P E. Metabolic changes and associated cytokinin signals in response to nitrate assimilation in roots and shoots of., 2016, 156(4): 497-511.
[75] Long S P, Zhu X, Naidu S L, Ort D R. 2006. Can improvement in photosynthesis increase crop yields?, 29: 315-330.
[76] Grindlay D J C. Towards an explanation of crop nitrogen demand based on the optimization of leaf nitrogen per unit leaf area., 1997, 128: 377-396.
[77] Dreccer M F, Slafer G A, Rabbinge R. Optimization of vertical distribution of canopy nitrogen: An alternative trait to increase yield potential in winter cereals., 1998, 1: 47-77.
[78] Hirose T, Werger M J A. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy., 1987, 72: 520-526.
[79] Hikosaka K, Terashima I, Katoh S. Effects of leaf age, nitrogen nutrition and photon flux density on the distribution of nitrogen among leaves of a vine (Cav.) grown horizontally to avoid mutual shading of leaves., 1994, 97: 451-457
[80] Drouet J L, Bonhomme R. Do variations in local leaf irradiance explain changes to leaf nitrogen within row maize canopies?, 1999, 84: 61-69.
[81] Pons T L, Schieving F, Hirose T, Werger M J A. Optimization of leaf nitrogen allocation for canopy photosynthesis in Lysimachia vulgaris// Lambers H, Cambridge M L, Konings H, Pons T L. Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants. The Hague, The Netherlands: SPB Academic Publishing, 1989: 175-186.
[82] Anten N, Schieving F, Werger M. Patterns of light and nitrogen distribution in relation to whole canopy carbon gain in C3 and C4 mono-and dicotyledonous species., 1995, 101: 504-513.
[83] Yin X, Lantinga E A, Schapendonk A H, Zhong X. Some quantitative relationships between leaf area index and canopy nitrogen content and distribution., 2003, 91: 893-903.
[84] Hikosaka K. Optimal nitrogen distribution within a leaf canopy under direct and diffuse light., 2014, 37: 2077-2085.
[85] Dingkuhn M, Penning d V F W T, De Datta S K, Van Laar H H. Concepts for a new plant type for direct seeded flooded tropical rice//Direct Seeded Flooded Rice in the Tropics. Los Baños, Philippines: International Rice Research Institute 1991: 17-38.
[86] Boonman A, Pons T L. Cytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients,, 2007, 143: 1841-1852.
[87] Sasaki T, Suzaki T, Soyano T, Kojima M, Sakakibara H, Kawaguchi M. Shoot-derived cytokinins systemically regulate root nodulation., 2014, 5: 4983.
[88] Krouk G. Hormones and nitrate: A two-way connection., 2016, 91: 599-606.
[89] Rahayu Y S, Walchliu P, Neumann G, Römheld V, von Wirén N, Bangerth F. Root-derived cytokinins as long-distance signals for NO3--induced stimulation of leaf growth., 2005, 56: 1143-1152.
[90] Müller D, Waldie T, Miyawaki K, To J P C, Melnyk C W, Kieber J J, Kakimoto T, Leyser O. Cytokinin is required for escape but not release from auxin mediated apical dominance., 2015, 82: 874-886.
[91] Kamada-Nobusada T, Makita N, Kojima M, Sakakibara H. Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: The role of glutamine metabolism as an additional signal., 2013, 54: 1881-1893.
[92] Boonman A, Prinsen E, Voesenek L A, Pons T L. Redundant roles of photoreceptors and cytokinins in regulating photosynthetic acclimation to canopy density., 2009, 60: 1179-1190.
[93] Fan S C, Lin C S, Hsu P K, Lin S H, Tsay Y F. The Arabidopsis nitrate transporter NRT1. 7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate., 2009, 21(9): 2750-2761.
[94] Cortleven A, Nitschke S, Klaumünzer M, Abdelgawad H, Asard H, Grimm B, Riefler M, Schmülling T. A novel protective function for cytokinin in the light stress response is mediated by the ARABIDOPSIS HISTIDINE KINASE2 and ARABIDOPSIS HISTIDINE KINASE3 receptors., 2014, 164: 1470-1483.
[95] Medford J I, Horgan R, El-Sawi Z, Klee H J. Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene., 1989, 1: 403-413.
[96] Li X, Mo X, Shou H, Wu P. Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis., 2006, 47: 1112-1123.
[97] Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez M B, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M. Cytokinins act directly on lateral root founder cells to inhibit root initiation., 2007, 19: 3889-3900.
[98] Franco-Zorrilla J M, Martin A C, Solano R, Rubio V, Leyva A, Paz-Ares J. Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in., 2002, 32: 353-360.
[99] Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H. A novel regulatory pathway of sulfate uptake inroots: implication of CRE1/WOL/ AHK4-mediated cytokinin-dependent regulation., 2004, 38: 779-789.
[100]Séguéla M, Briat J F, Vert G, Curie C. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway., 2008, 55: 289-300.
[101]Guo Q, Love J, Song J, Roche J, Turnbull M H, Jameson P E. Insights into the functional relationship between cytokinin-induced root system phenotypes and nitrate uptake in., 2017, 44(8): 832-844.
[102]Sun J, Hirose N, Wang X, Wen P, Xue L, Sakakibara H, Zuo J. The Arabidopsis SOI33/A/ENT8 gene encodes a putative equilibrative nucleoside transporter that is involved in cytokinin transport in planta., 2005, 47: 588-603
[103]Ren B, Liang Y, Deng Y, Chen Q, Zhang J, Yang X, Zuo J. Genome-wide comparative analysis of type-Aresponse regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling., 2009, 19: 1178-1190.
[104]Werner T, Nehnebajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmülling T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco., 2010, 22: 3905-3920.
[105]Talla S K, Panigrahy M, Kappara S, Nirosha P, Neelamraju S, Ramanan R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes., 2016, 67: 1839-1851.
[106]Kim H J, Ryu H, Hong S H, Woo H R, Lim P O, Lee I C, Sheen J, Nam H G, Hwang I. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in., 2006, 103: 814-819.
[107]Talla S K, Panigrahy M, Kappara S, Nirosha P, Neelamraju S, Ramanan R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes., 2016, 67: 1839-1851.
[108]Kim H J, Ryu H, Hong S H, Woo H R, Lim P O, Lee I C L, Sheen J, Nam H G, Hwang I. Cytokinin-mediated control of leaf longevity by AHK3 through phosphory lation of ARR2 in.2006, 103: 814-819.
[109]Gregersen P L, Culetic A, Boshian L, Krupinska K. Plant senescence and crop productivity., 2013, 82: 603-622.
[110]Han Y, Yang H, Jiao Y. Regulation of inflorescence architecture by cytokinins., 2014, 5: 669.
[111]Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production., 2005, 309: 741-745.
[112]Bartrina I, Otto E, Strnad M, Werner T,Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation and thus seed yield in., 2011,
[113]Zhang H, Chen T, Wang Z, Yang J, Zhang J. Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation., 2010, 61: 3719-3733.
[114]Yang J, Zhang J, Huang Z, Wang Z, Zhu Q, Liu L. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice., 2002, 90: 369-377.
[115]付景, 杨建昌. 超级稻高产栽培生理研究进展. 中国水稻科学, 2011, 25(4): 343-348.
Fu J, Yang J C. Research Advance in Physiology of Super Rice under High-Yielding Cultivation., 2011, 25(4): 343-348. (in Chinese with English abstract)
[116]朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯. 中国水稻高产栽培技术创新与实践. 中国农业科学, 2015, 48(17): 3404-3414.
Zhu D F, Zhang Y P, Chen H Z, Xiang J, Zhang Y K. Innovation and practice of high-yield rice cultivation technology in China., 2015, 48(17): 3404-3414. (in Chinese with English abstract)
[117]吴文革, 张洪程, 吴桂成, 翟超群, 钱银飞, 陈烨, 徐军, 戴其根, 许珂. 超级稻群体籽粒库容特征的初步研究. 中国农业科学, 2007, 40(2): 250-257.
Wu W G, Zhang H C, Wu G C, Qu C Q, Chen Y F, Chen Y, Xu J, Dai Q G, Xu K. Preliminary study on super rice population sink characters., 2007, 40(2): 250-257. (in Chinese with English abstract)
[118]Ju C, Buresh R J, Wang Z, Zhang H, Liu L, Yang J. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application., 2015, 175: 47-55.
[119]程方民, 蒋德安, 吴平, 石春海. 早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征. 作物学报, 2001(2): 201-206.
Chen F M, Jiang D A, Wu P, Shi C H. Change of starch synthesis enzymes during the grain filling stage and effects of temperature upon it., 2001(2): 201-206. (in Chinese with English abstract)
[120]Peng S, Buresh R J, Huang J, Yang J, Zou Y, Zhong X, Wang G, Zhang F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China., 2006, 96: 37-47.
[121]江立庚, 曹卫星, 甘秀芹, 韦善清, 徐建云, 董登峰, 陈念平, 陆福勇, 秦华东. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. 中国农业科学, 2004(4): 490-496.
Jiang L G, Cao W X, Gan X Q, Wei S Q, Xu J Y, Dong D F, Chen N P, Lu F Y, Qin H D. Different nitrogen management and influence on grain yield and quality in rice., 2004(4): 490-496. (in Chinese with English abstract)
[122]Peng S, Tang Q, Zou Y. Current status and challenges of rice production in China., 2009, 12: 3-8.
Regulations of Plant Growth and Development by Cytokinins and Their Applications in Rice Production
LI Zhikang, YAN Dong, XUE Zhangyi, GU Yibiao, LI Sijia, LIU Lijun, ZHANG Hao, WANG Zhiqin, YANG Jianchang, GU Junfei*
(,,,;Corresponding author,:)
Cytokinins (CTKs) play important roles in regulating crop morphology, physiology, and yield. In the development of crops, CTKs are the main factors controlling the uptake, translocation, and metabolisms of nutrients, especially for nitrogen. In this paper, we summarized the uptake, translocation and metabolism of nitrogen, and synthesis, translocation and signaling of cytokinins, with a focus on the coordination of CTKs and nitrogen in regulating root-shoot relationships and their influences on crop agronomic traits. Generally, the synthesis of-zeatin (Z) andZ riboside (ZR) was up-regulated by nitrogen in roots, and they are translocated to shoots, regulating the portioning and metabolism of nitrogen, influencing the photosynthetic characteristics and yield. In shoots, the synthesis of6-(2-isopentenyl)- adenine (iP) and iP riboside (iPR) were up-regulated by nitrogen, and they are translocated to roots by phloem, reducing the uptake and translocation of nitrogen, influencing the root morphology. Based on current knowledge, we further discussed the role of CTKs in coordinating source-sink relationships and improving grain filling. We also analyzed the influence of cultivation practices on metabolism of CTKs and its correlation with crop growth. At the same time, we also discussed the existing problems in the application of CTKs in rice production systems. We hope that it could provide valuable information for high yielding and high efficiency rice production.
cytokinin; nitrogen; crop yield
S143.1; S511.01
A
1001-7216(2018)04-0311-14
2018-03-14;
2018-05-05。
国家973计划资助项目(2015CB150401);国家自然科学基金资助项目(31501254, 31671614, 31371562);扬州大学高端人才支持计划资助项目(201511)。
10.16819/j.1001-7216.2018.8027