邻苯二甲酸酯的环境污染和生态行为及毒理效应研究进展

2018-06-19 02:38曹龙张朝升陈秋丽韦伟
生态毒理学报 2018年2期
关键词:邻苯二甲酸浓度环境

曹龙,张朝升,*,陈秋丽,2,韦伟

1. 广州大学土木工程学院, 广州 510006 2. 仲恺农业工程学院城市建设学院,广州 510230

PAEs(phthalate esters, PAEs,酞酸酯)是一类由邻苯二甲酸酐与醇在酯化作用下形成的有机物。全球每年的PAEs用量在1.8亿吨左右。由于PAEs并未聚合到高分子碳链上而是与塑料基质以氢键或范德华力结合,故PAEs容易从产品中泄露或挥发到有机相中并参与生态循环和食物链传递[1-2]。目前各主要工业国的生态环境中均普遍检出有PAEs,过去一直认为PAEs是一种无毒或低毒的化合物,但现今的研究多认为PAEs对动物的脏器功能、神经系统、遗传表达等存在稳定的干扰作用[3-5]。因此,我国把DMP、DEP、DnOP纳入环境优先控制污染物。

为更系统地认识PAEs在生态系统中的转移积累及危害水平,本次研究从PAEs的物化性质及环境污染分布、生物蓄积与代谢途径、环境降解机理及毒理效应等方面对近年来国内外相关研究文献进行总结与回顾,并也对今后减低PAEs危害提出建议和展望。

1 PAEs的物化性质及应用(Physicochemical properties and applications of PAEs)

PAEs具有亲酯性及难降解性,其化学结构是由一个刚性平面芳环及2个可塑的非线型脂肪侧链(R1、R2)组成,有邻、间、对位3种异构体。侧链结构不同的PAEs具有不同的产品用途:烷基链碳原子数不高于4的PAEs常用做染料、密封剂及粘合物质,如DMP、DEP;碳原子数高于6的PAEs主要作为塑料改性剂和增强剂,如BBP、DEHP。6种优先控制的PAEs污染物的物化特性指标如表1所示。

表1 6种优先控制PAEs污染物的物化参数Table 1 Physicochemical parameters of 6 kinds of priority control PAEs pollutants

注:PV为蒸气压;Koc为沉积物中有机碳-水中的分配系数;KB为微生物-水分配系数(μg·L-1);KOX为自由基氧化速率常数;KHA为酸性水解常数;KHB为碱性水解常数。

Note:Pv, vapor pressure;Koc, partition coefficient in organic carbon-water in sediment;KB, microorganism-water partition coefficient (μg·L-1);KOX, free radical oxidation rate constant;KHA, acidic hydrolysis constant;KHB, basic hydrolysis constant.

2 PAEs环境污染现状(Environmental pollution of PAEs)

环境中的PAEs少部分来自于自然途径,如木质素的氧化以及微生物合成,葡萄、烟叶等植物组织也含有少量PAEs;主要来源仍然是化工合成,即通过费歇尔反应使邻苯二甲酸与特定的醇合成目标PAEs。由于PAEs在各行各业的广泛使用及不恰当的处置方式,使得PAEs在大气[6]、土壤[7]、水体[8]、沉积物[9]甚至生物体[10]中均有不同程度检出,被称为第2个全球性“PCB污染物”[11]。目前,环境介质中PAEs的分析方法主要有高效液相色谱法(HPLC)[12]、气相色谱-质谱联用法(GC-MS)[13]、液相色谱-质谱联用法(LC-MS)[14]和化学发光免疫分析法(CLIA)[15]。

2.1 大气污染

PAEs工厂废气释放、塑料膜的老化沤解以及各种化工液体的挥发均会造成PAEs外逸。大气中的PAEs含量与大气颗粒物浓度呈正相关趋势,其中,烷基链PAEs大于6个碳原子的PAEs多依附于大气颗粒及液滴表面,随着粉尘沉降进入水体和土壤[16]。

有学者检测了巴黎[17]、瑞典[18]、荷兰[19]等地大气区域中的PAEs含量,分析显示,各地均有不同程度的PAEs检出且夏季污染浓度高于冬季。在国内,有学者调查了鞍山[20]、上海[21]、天津[22]的大气及PM10中PAEs的季节含量动态,在各试样中检出的酞酸酯种类包括DMP、DEP、DBP、DEHP,污染程度同样受到季节温度的显著影响,即夏季浓度高于冬季浓度,这是由于PAEs的热稳性差,温度较高时,PAEs从产品中挥发出来的速率更快。米立杰等[23]调查了太平洋西部边缘海域大气中的PAEs水平,发现PAEs的总浓度范围为75~311 ng·m-3,以DiBP污染最为严重,DEHP及DnBP的浓度高于美国大湖及墨西哥湾的污染水平,但相比于汉密尔顿及爱内塔克环礁又是偏低的,这是由于城市地区大气的PAEs含量高于海洋及临海大气;工业区大气的PAEs浓度高于非工业区。

2.2 水体污染

水体中PAEs主要来源于各种含有PAEs的工商业污废水、塑料垃圾的浸润、大气颗粒沉降及雨水循环。由于大多数PAEs的正辛醇-水分配系数(Kow)较高而蒸气压较低,故进入水环境的PAEs挥发性极低且容易通过各种水体途径迁移转化。

据报道,我国七大水系及华北、东南沿海地区的部分水源地都不同程度地受到了EDCs污染。李婷[24]研究了珠江河口PAEs含量的四季变化,发现夏季污染水平最高,这与夏季雨水冲刷物排入水体较多且当季的农业药剂使用量大有关。张英等[25]在对东莞市的地下水样及地表水样的PAEs测定结果显示,地下水中PAEs检出率为39.0%,6种PAEs的浓度为0~6.70 μg·L-1;地表水中PAEs的分布特征与地下水类似,均以DEHP及DnBP的污染较为突出。Zhang等[26]研究发现,长江流域的阳澄湖西部及太湖一带为主要PAEs污染区,其浓度范围为0.061~28.55 μg·L-1。在一些邻海区域的沉积物中也发现有PAEs,张泽明等[27]测定出长江流域沉积物的PAEs种类多为DMP、DBP、DCHP和DPHP,总含量约为0.79~34.8 μg·kg-1。国外学者在加利福尼亚自来水[28]、荷兰地表水体[29]、西班牙地表水[30],加拿大 False Creek 港沉积物[31]中均部分检测出DEP、DBP和DEHP。有文献指出,国内外淡水水体中的PAEs污染水平多在μg·L-1级别,而由于海水等苦咸水所含盐分太高,故PAEs在这些环境中的含量及种类分布不均匀[32]。

2.3 土壤和沉积物污染

土壤及沉积质中的PAEs主要是来自于农业污废水灌溉、塑料薄膜的使用、工业烟尘的沉降。20世纪末,中国的农用薄膜超过150万公顷,此类薄膜的稳定性较差,基质中的PAEs极易在自然力的作用下溶入土壤。我国各地区土壤中的DEHP含量与农膜使用量有良好的相关性(r=0.58,P<0.004)[33]。Zhu等[34]研究发现土壤中PAEs浓度与大气PAEs含量的Pearson相关系数为0.825(双尾检验,P<0.01),这说明大气沉降也是土壤的PAEs污染源。2005年以来,环境累积毒性较强的PAEs一直被列为我国土壤污染现状调查专项的必检指标,美国环保署将上述6种PAEs的土壤环境标准分别控制在0.020、0.071、0.081、1.125、4.350 mg·kg-1。

粗放式生产在我国的耕地种植面积中占比大,这造成土壤中PAEs的种类与含量具有很大的地区差异性。杨彦等[35]抽检了太湖流域苏南农业区土壤中的15种PAEs,发现PAEs总浓度为44.56 mg·kg-1,以DCHP及DNHP含量最高,当地的小麦、水稻及数10种蔬菜均检出有PAEs。人口经济发达的广州和深圳地区,其农业土壤中6种PAEs物质的平均浓度为21.03 mg·kg-1,而中东部省份的部分农业土壤中PAEs分别只有0.07 mg·kg-1和0.16 mg·kg-1[36-37]。在对襄阳23块农业土壤的分析中,同样检测出超标的DEHP含量[38]。沉积在土壤中的PAEs会造成农产品失绿,辣椒素及花青素含量减少,其果蔬品质及安全性缺乏保障。国外调查显示,英国[39]、荷兰[40]、丹麦[41]等地区的土壤总体PAEs浓度集中在1 μg·L-1附近。现有研究表明,我国部分土壤的PAEs污染程度高于欧美国家的PAEs治理标准,土壤生态功能健康值降低。

表2 不同国家环境介质中的PAEs污染水平Table 2 Pollution levels of phthalate in environmental media from different countries

3 PAEs的生态行为(Ecological behavior of PAEs)

3.1 生物蓄积与代谢行为

人和动物的PAEs暴露途径主要包括:皮肤接触和食物摄入。护肤品、油漆等产品中的PAEs成分容易挥发,PAEs通过呼吸或直接与皮肤接触而进入生物体。另一方面,由于PAEs的稳定性及亲酯性良好,一旦生态系统中的低级动植物蓄积该类物质,则容易通过食物网传递给更高一级的生物体,处于食物链顶端的人类将面临高风险的PAEs摄入。

3.1.1 人体积蓄与代谢

人体的血液、羊水、精液及尿液中均已检测到PAEs类及其代谢产物[52]。鲍佳沁[53]调查了护理产品中的PAEs含量水平,发现BEP、DPP、DEHP在护发素、指甲油、面霜中均有检出,该研究中DEP的人群最大每日暴露量为3.2 μg·(kg·d)-1低于加拿大报道的78 μg·(kg·d)-1,而高于美国报道的0.99 μg·(kg·d)-1,这与地区人口使用习惯及调查设计有关[54-55]。Buckley等[56]发现,使用过眼影的成年女性尿液中,短时间内的MBP和MIBP(分别为DBP和DIBP的代谢产物)浓度是未使用过眼影的2倍。Park等[57]通过对6 000名韩国成人的调查,发现成人血液中的T3和T4含量与其尿液中的PAEs类代谢产物呈负相关性。有文献显示,不同年龄阶段的婴幼儿、青年、成年人的尿液及血液中均检出有DINP及其代谢产物,而DINP在部分抓食PVC塑料玩具的幼婴儿皮肤中的渗透率是成人的2倍且容易扩散到皮下组织参与血液循环[58]。目前,DBP、DEHP、DMEP、DPP及BBzP在欧盟及中国已经限制使用。

人体内PAEs的代谢途径一般分为2步:第1阶段为形成邻苯二甲酸单酯的生物转化,即小分子PAEs在肾脏中代谢形成单酯经尿液排出;第2阶段主要是亲脂性的MBP、MEHP、MBzP与葡萄糖醛酸反应,产物为各自的葡糖醛酸结合物,该阶段主要是降低PAEs的疏水性及生物活性,使PAEs随尿液及粪便排出体外,部分经过皮肤接触及呼吸道吸入的PAEs,可以在肝脏、肺通道和血清中得到水解[59-62]。郭佳林等[63]在母体和胎儿体外灌流液及新生儿粪便中检出了PAEs代谢产物,这说明PAEs可以通过组织和血液途径释放外排。PAEs的体内和体外研究指出,当PAEs以第1阶段的单酯形式存在时,生物活性高,毒性也更大。

3.1.2 动植物蓄积与代谢

有学者调查了江苏省部分蔬菜样品的PAEs富集情况,以DEP为例,蔬菜对DEP的富集优先次序为根菜类>果菜类>花菜类>叶菜类和茎菜类,6种PAEs的浓度范围为42.26~276.76 μg·kg-1,检出率达到100%[64],这与吴山等[65]研究的汕头市蔬菜产区的结果类似。在水生生物方面,已有研究发现,PAEs 及其代谢产物能够在鱼体、藻类蓄积,浮游生物和甲壳类动物体内富集单个 PAEs的量低于100~900 ng·g-1,白鲸肝脏内富集的 DEHP 含量高达 4.15 μg·g-1[66-67]。一项针对PAEs小球藻-真鲷鱼苗二级食物链中的酞酸酯转移调查[68]显示,PAEs含量大小为DEHP>DNOP>DBP>BBP>DEP,其在小球藻和真鲷鱼的富集放大具有明显的浓度效应,另一方面,由于分子量较大的PAEs结构复杂,不易被代谢分解,因而DEHP相较于DEP表现出更强的生物富集性[69]。

葛建等[70]观察了PAEs在草鱼体内的代谢规律,发现BBP及DEHP在血清、肝胰脏匀液及小肠匀液中均出现了不同程度的代谢,而在肝细胞未见明显的代谢行为,上述PAEs物质的代谢产物分别为单酯类的MBzP及MEHP,并指出PAEs主要是被组织水解酶消化,小肠和血清是该类物质的第一代谢场所,这与人类不同。李明揆等[71]将DEP以20 mg·kg-1喂饲罗非鱼,测定不同时间里血浆和组织中的DEP含量,发现DEP在肌肉和脑中的半衰期分别为111.77 h和99.00 h,认为DEP在罗非鱼体内消化属于有吸收二房室动力学模型,其代谢动力学实验及残留研究表明DEP在可食性组织的吸收传递较快,但代谢较缓。李文兰等[72]运用HPLC-MSn法研究了邻苯二甲酸丁基苄酯在小鼠尿液中的代谢产物,实验检测出6种邻苯二甲酸单酯及葡萄糖醛酸结合物,推测邻苯二甲酸丁基苄酯的代谢途径是先水解成各种单酯类化合物,部分单酯之间脱羧生成的苯甲酸与内源性甘氨酸结合生成马脲酸,而内源性β-D-葡萄糖醛酸则和另外的单酯,结合生成水溶性更大的葡萄糖醛酸结合物。

3.2 PAEs环境降解行为

3.2.1 PAEs的光化学降解

光解主要有敏化、氧化及直接光解3种形式。水体中PAEs的光解主要是吸收290~400 nm的入射紫外光反应,使 2 个全酯基团同时断裂,留下完整的联羧基酸结构,然后是连接2个羧基的芳环上的 C—C 键断裂,降解产物有邻苯二甲酸、邻苯二甲酸酐、苯甲酸酯、三烷基氧基苯肽等[73-75]。由于紫外光穿透液相时会使能量大大衰弱,对PAEs的完全矿化程度较低,因而PAEs光解更容易发生在气相环境。

Norrish和Poter在1948年创立了闪光光解技术,即把一定强度脉冲光入射到样品,利用检测系统记录样品随入射时间的变化数据[76]。有学者运用该方法研究了DMP和DEP的脉冲辐解反应,发现DMP和DEP与羟基自由基的瞬态吸收值仅为氧化亚氮体系的50%,且在480 nm时,出现了一个小的吸收峰,这说明DMP和DEP与·OH的反应产物进一步被氧化成其他过氧自由基。Xu等[77]在强氧化剂的作用下,利用UV/H2O2提高PAEs光解速度,结果表明,98%的DEP可以在60 min 内分解完成。在紫外光助芬顿深度降解垃圾渗滤液中的难降解有机物实验中,多环芳烃、苯系物、PAEs类均能在该过程中得到良好降解。Matteo[79]指出Fe(Ⅲ)经过太阳光照射产生部分活性基团如单氧或氢氧自由基,这些自由基团会先破坏PAEs的苯环,DEP及其光解产物最终将被完全矿化。

3.2.2 PAEs的水解

自然条件下烷基链越长的PAEs水解越缓慢,但在呈弱酸或弱碱性的水环境中有助于PAEs的水解,由于反应速率受到醇的空间阻隔影响,因而水解过程不能完全进行。

在国内,高旭等[80]考察了长江万州段泥沙对PAEs的静态吸附效果,经双氧水处理后,3种PAEs在12 h内达到吸附平衡,泥沙对PAEs的吸附符合Freundlich及Langmuir等温吸附模型,随着PAEs浓度升高,分配作用也逐渐增强,说明泥沙对PAEs主要起到表面吸附作用。Turner等[81]国外学者模拟了颗粒物对河口地区DEHP的吸附动力学行为的影响,发现颗粒物含量越多,沉积物-水分配系数越小,在研究水-底泥体系中DEP、DBP、DEHP的迁移情况时,发现3种PAEs的水-底泥分配系数分别为1、22和1 400。这说明烷基链长的DEHP被强烈吸附,转移效果弱化。

3.2.3 PAEs的生物降解

自然条件下,微生物对有机物的降解方式有2种:一种是将被分解的有机物做为微生物的生长原料;另一种是功能代谢。通常认为生物降解PAEs会生成单酯、醇、双酚化合物等中间产物,最终在三羧酸循环的作用下,进一步降解成CO2和H2O。

国内外学者对PAEs的生物降解进行了许多研究,报道过可以降解PAEs的细菌包括:Enterobactersp.[82]、Gordoniasp.[83]、Arthrobactersp.[84]、Variovoraxsp.[85]、Bacillussp.[86]。高静静等[87]在二沉池活性污泥中分离出一株以DEHP为唯一碳源的革兰氏阴性菌(XB),不同初始浓度下 DEHP 的降解动力学实验表明:XB对 DEHP 的降解符合一级动力学模型,且检测出MEHP和2-乙基己基醇等代谢产物。类似的,Zeng等[88]也发现DEP、DMP、DNBP及DIBP在特定菌株的降解作用下,3 h内几乎能达到全部去除,其降解同样符合一级动力学模型。在河流底泥与石化污泥中,Chang等[89]从河流底泥与石化污泥中分离出了DK4和O18,这些菌株对5种短链酞酸酯类物质包括DEP、DPrP、DBP、BBP、DPP快速降解,而对长链的DCP、DHP和DEHP等的降解效果较差,其降解同样符合一级动力学模型,这可能是由于单个菌种只能将PAEs转化成单酯或邻苯二甲酸,而在不同菌株的协同作用下才有可能实现PAEs的完全矿化。进化分析显示,在具备PAEs分解能力的细菌中,多数能把PAEs做为唯一碳源和能源物质进行生命活动,且近一半细菌能降解多种PAEs[90]。

4 PAEs的毒理效应(The toxicological effects of PAEs)

4.1 环境激素效应

环境激素的作用机理主要是由于该类物质的结构性质与生物体的内源性激素有一定的相似性,进入生物体内的环境激素能调控相应的激素受体,从而影响了人体的正常激素分泌,过多的PAEs摄入将引起人格及生物属性混乱,使人体趋向于暴力和非理性状态。

马萍等[91]提出的“三阶段四通路”解释了“氧化应激—TSLP/TRPV1—I型超敏反应分子通路”假说,一定程度上揭示了PAEs作为Allergic March环境诱导剂的免疫毒理特性。纪红蕊等[92]发现较高染毒剂量的DBP能穿透小鼠血-睾屏障,使精子数量显著减少且活动率下降,而使孕期小鼠暴露于PAEs环境,同样会导致老鼠精子减少且发生精子DNA甲基化,进而影响基因的相关表达。Power等[93]用PAEs化合物喂养大鼠,发现脑部的杏仁基地外侧核上的胆碱能被抑制,鼠体的可逆记忆功能受损。部分PAEs神经干扰文献指出,DEHP能改变神经元内的钙离子浓度,并通过抑制钙通道振幅的峰值进而影响钙通道行为,使投射前神经元突触前传递发生改变[94]。在对鲦鱼、斑马鱼胚胎的酞酸酯染毒研究中也观察到受试生物的内分泌系统和生殖力出现紊乱下降的现象[95-96]。

4.2 三致毒性效应

PAEs被认为是对动物体具有致癌、致畸、致突变效应的干扰素[97]。目前,国内外对PAEs“三致”效应的研究多以动物实验为认识途径。Voss等[98]分别以不同剂量的DEHP喂食鼠体,发现300 mg·kg-1的DEHP暴露剂量可明显增加老鼠肝脏肿瘤生长率,进一步研究认为这是由于DEHP作为一种过氧化酶体增殖剂(PP)能有效激活肝脏受体α(PPA-Rα)而导致病变。有学者对咽、鼻的乳膜细胞和外周淋巴细胞进行体外DBP染毒,并用单细胞碱性凝胶电泳方法检测细胞DNA单链断裂情况,发现3种细胞的DNA均受到损伤[99]。在一项小鼠DEHP灌胃染毒实验中,同样发现DEHP能导致细胞蛋白质—DNA过度交联,影响DNA的构象及功能(转录、翻译等),使某些重要基因(如抑癌基因)缺失。秦洁芳[100]观察了紫红笛鲷及翡翠贻贝在DBP长期胁迫下的生长表现,发现紫红笛鲷肝脏细胞质出现空泡,少数细胞核变形且大量脂肪粒在细胞内沉积,鱼鳃片出现明显的卷曲肿胀和坏死脱落;翡翠贻贝的SOD及CAT活性受到显著抑制,内脏团和外套膜中的MDA升高明显,部分残留氧自由基对贝体产生不可逆损害。Oehlmann等[101]国外学者也观察到PAEs对斑马鱼、纺锤水蚤、非洲爪蛙等水生生物的毒性作用主要表现为机体死亡、尾曲、水肿等,并造成内分泌系统的功能性紊乱。

4.3 对酶与激素的影响

PAEs主要是影响体内甲状腺素、类固醇激素及雄性激素的正常机能。一项流行病研究显示,血清中游离甲状腺素(T4)、碘甲腺氨酸(T3)浓度水平与DEHP代谢产物MEHP浓度存在关联[102]。Huang等[103]研究了孕妇甲状腺激素与PAEs暴露环境的相关性,统计学分析表明,FT4和MBP,T4和MBP存在负相关影响(r=-0.248,P<0.05;r=-0.368,P<0.05),这可能会使孕妇妊娠期间甲状腺机能衰退。体外试验表明,DEHP代谢物可抑制FSH刺激的cAMP积累,改变类固醇合成通路中芳香化酶的数量和活力表现,进而阻碍睾酮对雌二醇(E2)的转化。吴红松[104]将鲤鱼放入梯度浓度的DEHP溶液中,暴露时间为20 d,与水和土温-80对照组相比发现,染毒组鱼体的肾脏中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性和抗羟自由基、抗超氧阴离子的活力均显著降低(P< 0.05 或P< 0.01)。有学者以赤子爱胜蚓为受试生物,运用自然土壤法探究DMP、DEP、DBP对蚯蚓SOD、CAT和AChE的活性影响,结果表明,3种PAEs对3种酶的影响呈现一定的时间-效应关系,PAEs对CAT的 活性影响最大,SOD 和 AChE 次之,整体来看,DBP对蚯蚓表现出的毒性小于 DMP 和 DEP[105]。盆栽试验表明,PAEs能有效减低设施土壤生物含炭量,低量PAEs浸渍下,设施土壤和大田土壤的脱氢酶活性均有提高,这主要是由于土壤微生物对PAEs的应激表达是通过分泌脱氢酶中和毒素抑或是PAEs浓度并未达到酶活性的浓度,而作为碳源被微生物吸收,刺激了土壤微生物分泌脱氢酶[106]。

5 建议与展望 (Suggestions and prospects)

综上所述,PAEs作为一种高脂溶性和环境稳定性的新型内分泌干扰物越来越受到大众关注,虽然PAEs对气体、水体、土壤等环境要素造成确定性的污染,其对生态和健康的危害性也得到多方面的研究实证,但由于PAEs在生产和改性上的难以替代性,现阶段只对部分PAEs做了限制使用的处理。从维护环境安全与人类健康的角度出发,PAEs研究的以下方面仍待完善:

(1)目前,对PAEs的毒害作用多集中在单一酞酸酯种类对小鼠、斑马鱼等模型动物的染毒以及在二级食物链中的传递研究,对人体影响的实测调查及复杂食物网中的积累放大检测仍然较少。可对不同职业人群开展PAEs联合毒性试验研究,考察多级食物链中PAEs在高低营养级间的传递行为,统计分析剂量-效应及时间-效应关系,系统研究PAEs的人体代谢途径,关键酶及DNA的表达与调控,确定人群的健康基准值。

(2)生物降解技术是处理PAEs的主要途径,由于目前关于PAEs生物降解的文献多集中在微生物降解条件、降解效率等前期研究上,在对具有协同降解PAEs作用的混合菌群进行基因和酶的筛选及分子生物学机制研究方面仍有待加强,以构建特异高效基因工程菌群与高级氧化法等处理工艺组合的工程应用体系,实现集成系统对PAEs的高效专性降解。

(3)我国各区域PAEs暴露情况的检测与统计仍不全面,导致现行的地表水及大气环境质量标准缺乏对部分PAEs(如DEHP)的环境标准限值。因此,需系统全面地调查不同环境介质中的PAEs暴露水平、分布特征及相关毒理学参数并制定科学的PAEs环境标准限值;另一方面,虽然对内分泌干扰效应的评价是环境法规的重要依据,但起步研究仍然较晚,且世界上各国家或联合体对于内分泌干扰物的监管数据要求和管理决策思路仍存在显著差异。因此,建立科学可行,符合国情的内分泌干扰效应评估机制和环境标准具有现实意义。

通讯作者简介:张朝升(1953-),男,教授,博士生导师,研究方向为污水处理理论与技术研究。

参考文献(References):

[1] Net S, Sempere R, Delmont A, et al. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices[J]. Environmental Science and Technology, 2015, 49(7): 4019-4035

[2] Talsness C E, Andrade A J M, Kuriyama S N, et al. Components of plastic: Experimental studies in animals and relevance for human health [J]. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2009, 364(1526): 2079-2096

[3] Jia P, Ma Y, Lu C, et al. The effects of disturbance on hypothalamus-pituitary-thyroid (HPT) axis in zebrafish larvae after exposure to DEHP [J]. PLoS One, 2016, 11(5): e0155762

[4] Min A, Liu F, Yang X, et al. Benzyl butyl phthalate exposure impairs learning and memory and attenuates neurotransmission and CREB phosphorylation in mice [J]. Food and Chemical Toxicology, 2014, 71: 81-89

[5] Wood R K, Crowley E, Martyniuk C J. Developmental profiles and expression of the DNA methyltransferase genes in the fathead minnow (Pimephalespromelas) following exposure to di-2-ethylhexyl phthalate [J]. Fish Physiology and Biochemistry, 2016, 42: 7-18

[6] Pei X Q, Song M, Guo M, et al. Concentration and risk assessment of phthalates present in indoor air from newly decorated apartments [J]. Atmospheric Environment, 2013, 68(1): 17-23

[7] Wang J, Luo Y, Teng Y, et al. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film [J]. Environmental Pollution, 2013, 180(3): 265

[8] Gao D W, Wen Z D. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes[J]. Science of the Total Environment, 2016, 541: 986-1001

[9] Liu H, Cui K, Zeng F, et al. Occurrence and distribution of phthalate esters in riverine sediments from the Pearl River Delta region, South China [J]. Marine Pollution Bulletin, 2014, 83(1): 358-365

[10] Amrit K, Inger T, Stefan V, et al. Concentrations of phthalates and bisphenol A in Norwegian foods and beverages and estimated dietary exposure in adults [J]. Environment International, 2014, 73: 259-269

[11] 刘庆, 杨红军, 史衍玺, 等. 环境中邻苯二甲酸酯类(PAEs)污染物研究进展[J]. 中国生态农业学报, 2012, 20(8): 968-975

Liu Q, Yang H J, Shi Y X, et al. Research progress on phthalate esters (PAEs) organic pollutants in the environment [J]. Chinese Journal of Eco-Agriculture, 2012, 20(8):968-975 (in Chinese)

[12] Fang C R, Yao J, Zheng Y G, et al. Dibutyl phthalate degradation byEnterobacter, sp. T5 isolated from municipal solid waste in landfill bioreactor [J]. International Biodeterioration and Biodegradation, 2010, 64(6): 442-446

[13] Li L, Sun Q J, Xin S G, et al. Detection of phthalate esters from plastic packaging materials into edible oil by gas chromatography-mass [J]. Applied Mechanics and Materials, 2013, 395-396: 355-358

[14] Blair J D, Ikonomou M G, Kelly B C, et al. Ultra-trace determination of phthalate ester metabolites in seawater, sediments, and biota from an urbanized marine inlet by LC/ESI-MS/MS [J]. Environmental Science & Technology, 2009, 43(16): 6262-6268

[15] Zhang M, Yu X, Wang Y, et al. A highly sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) by antigen coating for diethyl phthalate analysis in foods [J]. Food Analytical Methods, 2013, 6(4): 1223-1228

[16] Bomehag C G, Lundgren B, Weschler C J, et al. Phthalates in indoor dust and their association with building characteristics [J]. Environmental Health Perspectives, 2005, 113: 1399-1404

[17] Teil M J, Blanchard M, Chevreuil M. Atmospheric fate of phthalate esters in an urban area (Paris -France) [J]. Science of the Total Environment, 2006, 354(354): 212-223

[18] Thuren A, Larsson P. Phthalate esters in the Swedish atmosphere [J]. Environmental Science Technology, 1990, 24(4): 554-559

[19] RIC. Overview of phthalate measurements in air [R]. Kortrijk, Belgium: Research Institute of Chromatography, 2000

[20] 朱媛媛, 田靖, 吴国平, 等. 鞍山市空气颗粒物中酞酸酯的季节变化与功能区差异[J]. 中国环境监测, 2010, 26(4): 9-12

Zhu Y Y, Tian J, Wu G P, et al. Differences of phthalate in different season and functional areas in Liaoning Anshan [J]. Environmental Monitoring in China, 2010, 26(4): 9-12 (in Chinese)

[21] 陈鏐璐. 大气中氯代及其母体多环芳烃和PM2.5& PM10中邻苯二甲酸酯的研究[D]. 上海: 上海大学, 2014: 8-13

Chen L L. Atmospheric chlorinated and their parent polycyclic aromatic hydrocarbons, and PM2.5and PM10associated phthalate in a suburban area of Shanghai, China [D]. Shanghai: Shanghai University, 2014: 8-13 (in Chinese)

[22] 朱振宇, 姬亚芹, 赵静波, 等. 天津市大气PM10与降尘中邻苯二甲酸酯的污染特征及相关性分析[J]. 环境污染与防治, 2015, 37(12): 24-28

Zhu Z Y, Ji Y Q,Zhao J B, et al. Pollution characteristic and correlation analysis of PAEs in atmospheric PM10and dust in Tianjin [J]. Environmental Pollution and Control, 2015, 37(12): 24-28 (in Chinese)

[23] 米立杰, 唐建辉. 黄海海洋大气中邻苯二甲酸酯类塑化剂的测定与分析[J]. 华北科技学院学报, 2016, 13(5):106-110

Mi L J, Tang J H. Determination of phthalate ester plasticizers in the atmosphere of the Yellow Sea [J]. Journal of North China Institute of Science and Technology, 2016, 13(5): 106-110 (in Chinese)

[24] 李婷. 珠江河口水体和沉积物中6种邻苯二甲酸酯污染及初步风险评价[D]. 广州: 暨南大学, 2014: 47-48

Li T. Pollution levels and risk assessment of 6 priority phthalate esters in water and sediments from estuaries of the Pearl River Delta [D]. Guangzhou: Ji'nan University, 2014: 47-48 (in Chinese)

[25] 张英, 孙继朝, 陈玺, 等. 东莞地下水PAEs分布特征及来源探讨[J]. 环境污染与防治, 2011, 8: 57-61

Zhang Y, Sun J C, Chen X, et al. The distribution characteristics and source of phthalic acid esters in grounderwater of Dongguang [J]. Environmental Pollution and Control, 2011, 8: 57-61 (in Chinese)

[26] Zhang L, Liang D, Ren L, et al. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China [J]. Journal of Environmental Sciences, 2012, 24(2): 335-342

[27] 张泽明, 张洪海, 李建龙, 等. 固相微萃取-气相色谱-质谱联用测定海水与沉积物中PAEs类污染物[J]. 分析化学, 2017, 3: 348-356

Zhang Z M, Zhang H H, Li J L, et al. Determination of phthalic acid esters in seawater and sediment by solid-phase microextraction and gas chromatography-mass spectrometry [J]. Chinese Journal of Analytica Chemistry, 2017, 3: 348-356 (in Chinese)

[28] Loraine G A, Pettigrove M E. Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California [J]. Environmental Science and Technology, 2006, 40(3): 687-695

[29] Vethaak A D, Lahr J, Schrap S M, et al. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands [J]. Chemosphere, 2005, 59(4): 511-524

[30] Sanchez-avila J, Fernandez-sanjuan M, Vicente J, et al. Development of a multi-residue method for the determination of organic 12 micropollutants in water, sediment and mussels using gas chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2011, 1218(38): 6799-6811

[31] Mackintosh C E, Maldonado J A, Ikonomou M G, et al. Sorption of phthalate esters and PCBs in a marine ecosystem [J]. Environmental Science and Technology, 2006, 40(11): 3481-3488

[32] 高晨晨. 海水中PAEs类增塑剂的检测方法及应用研究[D]. 青岛: 中国海洋大学, 2015: 48-49

Gao C C. Study and application of the method for detecting phthalic acid esters in seawater by stir bar sorptive extraction gas chromatograph-mass spectrometry[D]. Qingdao: Ocean University of China, 2015: 48-49 (in Chinese)

[33] Hu X Y, Wen B, Shan X Q. Survey of phthalate pollution in arable soils in China [J]. Journal of Environmental Monitoring, 2003, 5(4): 649-653

[34] Zhu Y Y, Tian J, Yang H, et al. Phthalate pollution in atmospheric particles and soils of Tianjin and their correlation [J]. Environmental Pollution and Control, 2010, 32(2): 41-45

[35] 杨彦, 于云江, 李定龙, 等. 太湖流域(苏南地区)农业活动区人群邻苯二甲酸酯健康风险评估[J]. 中国环境科学, 2013, 33(6): 1097-1105

Yang Y, Yu Y J, Li D L, et al. PAEs health risk assessment of agriculture area in Taihu Lake Basin (Southern Jiangsu Province) [J]. China Environmental Science, 2013, 33(6): 1097-1105 (in Chinese)

[36] Ying C Q, Hui M C, Hui L Y, et al. The study of PAE sin soils from typical vegetable fields in areas of Guangzhou and Shenzhen, South China[J]. Acta Ecologica Sinica, 2005, 25(2): 283-288

[37] Xiong P, Gong X, Deng L. Analysis of PAE pollutants in farm soil and water samples in Nanchang City [J]. Chemistry, 2008, 71(8): 636-640

[38] Wu W, Hu J, Wang J, et al. Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge microsyringe extraction and gas chromatography [J]. Science of The Total Environment, 2015, 508: 445-451

[39] Ma T T, Wu L H, Chen L, et al. Phthalate esters contamination in soils and vegetables of plastic film greenhouses of suburb Nanjing, China and the potential human health risk [J]. Environmental Science and Pollution Research, 2015, 22(16): 12018-12028

[40] Peijnenburg W J, Struijs J. Occurrence of phthalate esters in the environment of The Netherlands [J]. Ecotoxicology and Environmental Safety, 2006, 63(2): 204-215

[41] Rhind S M, Kyle C E, Kerr C, et al. Concentrations and geographic distribution of selected organic pollutants in Scottish surface soils[J]. Environmental Pollution, 2013, 182(6): 15-27

[42] Li B, Liu R X, Gao H J, et al. Spatial distribution and ecological risk assessment of phthalic acid esters and phenols in surface sediment from urban rivers in Northeast China [J]. Environmental Pollution, 2016, 219: 409-415

[43] 徐怀洲, 宋宁慧, 张圣虎, 等. 骆马湖PAE是PAEs分布特征及健康风险评价[J]. 生态与农村环境学报, 2017, 10: 928-934

Xu H Z,Song N H,Zhang S H, et al. Distribution characteristics and healthy risk assement of phthalate esters in Lake Luoma [J]. Journal of Ecology and Rural Environment, 2017, 10: 928-934 (in Chinese)

[44] 韩文辉, 赵颖, 党晋华, 等. 汾河流域PAEs的分布特征及生态风险评价[J]. 环境化学, 2017, 36(6): 1377-1387

Han W H, Zhao Y, Dang J H, et al. Distribution and ecological risk evaluation of phthalate esters in Fenhe River Basin [J]. Environmental Chemistry, 2017, 36(6): 1377-1387 (in Chinese)

[45] Hassanzadeh N, Sari A E, Khodabandeh S, et al. Occurrence and distribution of two phthalate esters in the sediments of the Anzali wetlands on the coast of the Caspian Sea (Iran)[J]. Marine Pollution Bulletin, 2014, 89(1-2):128-135

[46] Selvaraj K K, Sundaramoorthy G, Ravichandran P K, et al. Phthalate esters in water and sediments of the Kaveri River, India: Environmental levels and ecotoxicological evaluations [J]. Environmental Geochemistry and Health, 2015, 37(1): 83-96

[47] Adeniyi A A, Okedeyi O O, Yusuf K A. Flame ionization gas chromatographic determination of phthalate esters in water, surface sediments and fish species in the Ogun River catchments, Ketu, Lagos, Nigeria [J]. Environmental Monitoring and Assessment, 2011, 172(1-4): 561-569

[48] 李玉双, 陈琳, 郭倩, 等. 沈阳市新民设施农业土壤中邻苯二甲酸酯的污染特征[J]. 农业环境科学学报, 2017, 36(6): 1118-1123

Li Y S, Chen L, Guo Q, et al. Pollution characteristics of phthalate esters in greenhouse agricultural soil in Xinmin, Shenyang City [J]. Journal of Agro-Environment Science, 2017, 36(6): 1118-1123 (in Chinese)

[49] Gibson R, Wang M J, Padgett E, et al. Analysis of 4-nonylphenols, phthalates, and polychlorinated biphenyls in soils and biosolids [J]. Chemosphere, 2005, 61(9): 1336-1344

[50] Peijnenburg W J, Struijs J. Occurrence of phthalate esters in the environment of The Netherlands [J]. Ecotoxicology and Environmental Safety, 2006, 63(2): 204-215

[51] Rhind S M, Kyle C E, Kerr C, et al. Concentrations and geographic distribution of selected organic pollutants in Scottish surface soils [J]. Environmental Pollution, 2013, 182(6): 15-27

[52] Johns L E, Cooper G S, Galizia A, et al. Exposure assessment issues in epidemiology studies of phthalates [J]. Environment International, 2015, 85: 27-39

[53] 鲍佳沁. 食品化妆品中PAEs类累积风险评估研究[D]. 上海: 上海海洋大学, 2015: 8-9

Bao J Q. Phthalate concentrations in foods and personal care products and the cumulative exposure [D]. Shanghai: Shanghai Ocean University, 2015: 8-9 (in Chinese)

[54] Koniecki D, Wang R, Moody R P, et al. Phthalates in cosmetic and personal care products: Concentrations and possible dermal exposure [J]. Environmental Research, 2011, 111(3): 329-336

[55] Guo Y, Kannan K. A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure [J]. Environmental Science and Technology, 2013, 47(24): 14442-14449

[56] Buckley J P, Palmieri R T, Matuszewski J M, et al. Consumer product exposures associated with urinary phthalate levels in pregnant women [J]. Journal of Exposure Science and Environmental Epidemiology, 2012, 22(5): 468-475

[57] Park C, Choi W, Hwang M, et al. Associations between urinary phthalate metabolites and bisphenol A levels, and serum thyroid hormones among the Korean adult population-Korean National Environmental Health Survey (KoNEHS) 2012~2014 [J]. Science of the Total Environment, 2017, 17: 30154-30157

[58] Kransler K M, Bachman A N, Mckee R H. A comprehensive review of intake estimates of di-isononyl phthalate (DINP) based on indirect exposure models and urinary biomonitoring data [J]. Regulatory Toxicology and Pharmacology, 2012, 62(2): 248-256

[59] Silva M J, Barr D B, Reidy J A, et al. Glucuronidation patterns of commonurinary and serum monoester phthalate metabolites [J]. Archives of Toxicology, 2003, 77: 561-567

[60] Mose T, Mortensen G K, Hedegaard M, et al. Phthalate monoesters in perfusate from a dual placenta perfusion system, the placenta tissue and umbilical cord blood [J]. Reproductive Toxicology, 2007, 23(1): 83

[61] Albro P W, Thomas R O. Enzymatic hydrolysis of di-(2-ethylhexyl) phthalate by lipases [J].Biochimica et Biophysica Acta, 1973, 360: 380-390

[62] Daniel J W, Bratt H. The absorption, metabolism and tissue distribution of di-(2-ethylhexyl) phthalate in rats [J]. Toxicology, 1974, 2: 51-65

[63] 郭佳林, 高曦, 陈婧司, 等. 新生儿胎粪中PAEs代谢物与脐带血激素水平的关联[J]. 环境与职业医学, 2017(4): 291-296

Guo J L, Gao X, Chen J S, et al. Phthalate metabolites in meconium and their associations with hormones in cord blood [J]. Journal of Occupational and Environmental Medicine, 2017(4): 291-296 (in Chinese)

[64] 冯艳红, 张亚, 郑丽萍, 等. 江苏省不同地区设施菜地土壤-蔬菜中PAEs分布特征[J]. 生态与农村环境学报,2017(4): 308-316

Feng Y H, Zhang Y, Zheng L P, et al. Distribution characteristics of phthalic acid esters in soil and vegetables under greenhouse in different areas of Jiangsu Province [J]. Journal of Ecology and Rural Environment, 2017(4): 308-316 (in Chinese)

[65] 吴山, 李彬, 梁金明, 等. 汕头市蔬菜产区土壤-蔬菜中邻苯二甲酸( PAEs) 污染分布特征研究[J]. 农业环境科学学报, 2015, 34(10): 1889-1896

Wu S, Li B, Liang J M, et al. Distribution characteristics of phthalic acid esters in soils and vegetables in vegetables producing area of Shantou City, China [J]. Journal of Agro-Environmental Science, 2015, 34(10): 1889-1896 (in Chinese)

[66] Cheng Z, Nie X P, Wang H S, et al. Risk assessments of human exposure to bioaccessible phthalate esters through market fish consumption[J]. Environmental International, 2013, 54: 75-80

[67] Güven K C, Coban B. Phthalate pollution in fishSardasarda,Engraulisencrasicolus,Mullussurmuletus,Merlangiusmerlangusand shrimpParapenaeuslongirostris[J]. Journal of the Black Sea/Mediterranean Environment, 2013, 19: 185-189

[68] 姜琳琳. PAEs类在普通小球藻-真鲷鱼苗食物链中积累效应研究[J]. 渔业现代化, 2014(4): 5-10, 16

Jiang L L. Study on the cumulative effect of phthalate esters in the food chain composed ofChlorellavulgaristoPagrosomusmajor[J]. Fishery Modernazation, 2014(4): 5-10, 16 (in Chinese)

[69] Fernández M A, Gómara B, González M J. Occurrence of Phthalates and Their Metabolites in the Environment and Human Health Implications [M]// Emerging Organic Contaminants and Human Health. Berlin: Springer Berlin Heidelberg, 2012: 307-336

[70] 葛建, 李明揆, 林芳, 等. PAEs类环境激素在草鱼(Ctenopharyngodonidellus)脏器中代谢研究[J]. 海洋与湖沼, 2011, 42(4): 549-553

Ge J, Li M G, Lin F, et al. PAEs environmental hormone in grass carp (Ctenopharyngodonidellus) metabolism of organs [J]. Oceanologia et Limnologia Sinica, 2011, 42(4): 549-553 (in Chinese)

[71] 李明揆, 葛建, 林芳, 等. 邻苯二甲酸二乙酯(DEP)在罗非鱼(Oreochromisniloticus×O.aureus)体内代谢动力学和残留研究[J]. 海洋与湖沼, 2011(1): 137-141

Li M G, Ge J, Lin F, et al. Study on pharmacokinetics and residue of two ethylphthalate (DEP) in tilapia (Oreochromisniloticus×O.aureus) [J]. Oceanologia et Limnologia Sinica, 2011(1): 137-141 (in Chinese)

[72] 李文兰, 季宇彬, 张大雷, 等. HPLC/MSn法鉴定环境激素邻苯二甲酸丁基苄酯在小鼠尿中的代谢产物[J]. 环境科学, 2007(3): 627-632

Li W L, Ji Y B, Zhang D L, et al. Identification of metabolites of environmental hormone butylbenzyl phthalate in mice urine by liquid chromatography ion trap mass spectrometry [J]. Environment Science, 2007(3): 627-632 (in Chinese)

[73] Meylan W M , Howard P H . Computer estimation of the atmospheric gas phase reaction rate of organic compounds with hydroxyl radicals and ozone [J]. Chemosphere, 1993, 26: 2693-2699

[74] Balabanovich A I, Schnabel W. On the photolysis of phthalic acid dimethyl and diethyl ester: A product analysis study [J]. Journal of Photochemistry and Photobiology A Chemistry, 1998, 113(2): 145-153

[75] Kawaguchi H. Photodecomposition of bis-2-ethylhexyl phthalate [J]. Chemosphere, 1994, 28(8): 1489-1493

[76] 刘宁. 邻苯二甲酸酯类环境内分泌干扰物的辐解特性及作用机理研究[D]. 上海: 上海大学, 2011: 123-125

Liu N. Radiolytic degradation characteristics and mechanisms studies on phthalate esters environmental endocrine disrupting chemicals[D]. Shanghai: Shanghai University, 2011: 123-125 (in Chinese)

[77] Xu B, Gao N Y, Sun X F, et al. Photochemical degradation of diethyl phthalate with UV/H2O2[J]. Journal of Hazardous Materials, 2007, 139(1): 132-139

[78] 赵磊. 芬顿及紫外光助芬顿深度降解垃圾渗滤液中难降解有机物的研究[D]. 北京: 北京交通大学, 2016: 56-58

Zhao L. Degradation of refractory organics in landfill leachate by Fenton and ultraviolet photo-Fenton processes[D]. Beijing: Beijing Jiaotong University, 2016: 56-58 (in Chinese)

[79] Matteo V. Phthalate esters in freshwaters as markers of contamination sources—A site study in Italy [J]. Environment International, 1997, 23: 337-347

[80] 高旭, 吴振国, 郭劲松, 等. 长江万州段悬浮泥沙颗粒物对PAEs的吸附特性[J]. 长江流域资源与环境, 2010(S1): 178-182

Gao X, Wu Z G, Guo J S, et al. Absorption of phthalic acid esters on suspended particulates from the Wanzhou Reach of the Yangtze River [J]. Resource and Environment in the Yangtze Basin, 2010(S1): 178-182 (in Chinese)

[81] Turner A. The behavior of di-(2-ethylhexyl) phthalate in estuaries [J]. Marine Chemistry, 2000, 68: 203-217

[82] Fang C R, Yao J, Zheng Y G, et al. Dibutyl phthalate degradation byEnterobacter, sp. T5 isolated from municipal solid waste in landfill bioreactor [J]. International Biodeterioration and Biodegradation, 2010, 64(6): 442-446

[83] Jin D, Bai Z, Chang D, et al. Biodegradation of di-n-butyl phthalate by an isolatedGordonia, sp. strain QH-11: Genetic identification and degradation kinetics [J]. Journal of Hazardous Materials, 2012, 221-222(2): 80-85

[84] Wu X, Wang Y, Liang R, et al. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolatedAgrobacterium, sp. and the biochemical pathway [J]. Process Biochemistry, 2011, 46(5): 1090-1094

[85] Prasad B, Suresh S. Biodegradation of phthalate esters byVariovorax, sp [J]. APCBEE Procedia, 2012, 1(3): 16-21

[86] Yuan S Y, Huang I, Chang B V. Biodegradation of dibutyl phthalate and di-(2-ethylhexyl) phthalate and microbial community changes in mangrove sediment [J]. Journal of Hazardous Materials, 2010, 184(1): 826-831

[87] 高静静, 陈丽玮, 王宜青, 等. 一株邻苯二甲酸二(2-乙基己基)酯(DEHP)高效降解菌的筛选及其降解特性[J]. 环境化学, 2016, 35(11): 2362-2369

Gao J J, Chen L W, Wan Y Q, et al. Isolation, identification of a DEHP-degrading bacterium and its high effective biodegradation characteristics[J]. Environmental Chemistry, 2016, 35(11): 2362-2369 (in Chinese)

[88] Zeng F,Cui K Y,Li X D,et al. Biodegradation kinetics of phthalate esters byPseudomonasfluoresencesFS1 [J]. Process Biochemistry, 2004, 39(9): 1125-1129

[89] Chang B V, Yang C M, Cheng C H, et al. Biodegradation of phthalate esters by two bacteria strains [J]. Chemosphere, 2004, 55(4): 533-538

[90] 韩永和, 何睿文, 李超, 等. PAEs降解细菌的多样性、降解机理及环境应用[J]. 生态毒理学报, 2016, 11(2): 37-49

Hang Y H, He R W, Li C, et al. Phthalic acid esters-degrading bacteria: Biodiversity, degradation mechanisms and environmental applications [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 37-49 (in Chinese)

[91] 马萍, 杨旭. TSLP和TRPV1通路对PAEs诱发Allergic March的介导作用[J]. 公共卫生与预防医学, 2017(2): 1-5

Ma P, Yang X. The mediating effect of TSLP and TRPV1 pathway on Allergic two induced by phthalates March [J].Journal of Preventive Medicine and Public Health, 2017(2): 1-5 (in Chinese)

[92] 纪红蕊, 杜霞, 宋永彬, 等. 邻苯二甲酸二丁酯的毒性作用及机制[J]. 沈阳工业大学学报, 2017(2): 230-235

Ji H R, Du X, Song Y B, et al. Toxic effect and mechanisms of dibutyl phthalate [J]. Journal of Shenyang University of Technology, 2017(2): 230-235 (in Chinese)

[93] Power A E,McGaugh J L. Phthalic acid amygdalopetal lesion of the nucleus basalis magnocellularis induces reversible memory deficits in rats [J]. Neurobiology of Learning Memory, 2002, 77(3): 372-388

[94] Ran D, Cai S, Wu H, et al. Di (2-ethylhexyl) phthalate modulates cholinergic mini-presynaptic transmission of projection neurons inDrosophilaantennal lobe [J]. Food and Chemical Toxicology, 2012, 50(9): 3291-3297

[95] Guo Y Y, Yang Y J, Gao Y, et al. The impact of long term exposure tophthalic acid esters on reproduction in Chinese rare minnow (Gobiocyprisrarus) [J]. Environmental Pollution, 2015, 203: 130-136

[96] Chen X, Xu S, Tan T, et al. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures [J]. International Journal of Environmental Research and Public Health, 2014, 11: 3156-3168

[97] Qu R J, Feng M B, Sun P, et al. A comparative study onantioxidant status combined with integrated biomarker response inCarassiusauratusfish exposed to nine phthalates [J]. Environmental Toxicology, 2015, 30(10):1125-1134

[98] Voss C, Zerban H, Bannasch P, et al. Lifelong exposure to di-(2-ethylhexyl)-phthalate induces tumors in liver and testes of Sprague-Dawley rats [J]. Toxicology, 2004, 206(3): 359-371

[99] 杨光涛. DEHP的遗传毒性和诱导哮喘发病机理的初步研究[D]. 武汉: 华中师范大学, 2008: 26-28

Yang G T. A primary study on genotoxicity and pathogenesis of asthma induced by DEHP [D]. Wuhan: Central China Normal University, 2008: 26-28 (in Chinese)

[100] 秦洁芳. PAEs类化合物对翡翠贻贝、红鳍笛鲷和紫红笛鲷的毒性效应[D]. 上海: 上海海洋大学, 2011: 48-51

Qin J F. Phthalic acid esters of two toxic effects of mussel, red snapper and red snapper [D]. Shanghai: Shanghai Ocean University, 2011: 48-51 (in Chinese)

[101] Oehlmann J, Schulte-Oehlmann U, Kloas W, et al. A critical analysis of the biological impacts of plasticizers on wildlife [J]. Philosophical Transactions-Royal Society. Biological Sciences, 2009, 364: 2047-2062

[102] Meeker J D, Calafat A M, Hauser R. Di(2-ethylhexyl)phthalate metabolites may alter thyroid hormone levels in men [J]. Environmental Health Perspectives, 2007, 115(7): 1029

[103] Huang P C, Kuo P L, Guo Y L, et al. Associations between urinary phthalate monoesters and thyroid hormones in pregnant women[J]. Human Reproduction, 2007, 22(10): 2715-2722

[104] 吴红松. DEHP暴露对鲤鱼肾脑生物标志物的影响[J]. 生态毒理学报,2016, 11(2): 732-741

Wu H S. Effect of diethyl phthalate on the biochemical markers of kidney and brain inCyprinuscarpioLinnaeus [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 732-741 (in Chinese)

[105] 王艳, 马泽民, 吴石金. 3种PAEs对蚯蚓的毒性作用和组织酶活性影响的研究[J]. 环境科学, 2014, 35(2): 770-779

Wang Y, Ma Z M, Wu S J. Study on the effect of enzymatic activity and acute toxicity of three PAEs on Eisenia foetida[J]. Environment Science, 2014, 35(2): 770-779 (in Chinese)

[106] 赵辉, 王琳琳, 宋宁宁, 等. 设施土壤中微生物生物量碳和脱氢酶活性对镉与PAEs复合污染的响应[J]. 华北农学报, 2017(2): 232-238

Zhao H, Wang L L, Song N N, et al. Effects of soil microbial biomass carbon and dehydrogenase activity in greenhouse soil to Cd-PAEs [J]. Acta Agriculturae Boreali-sinica, 2017(2): 232-238 (in Chinese)

猜你喜欢
邻苯二甲酸浓度环境
神医的烦恼——浓度与配比
QuEChERS-气相色谱-质谱法测定植物油中16种邻苯二甲酸酯
长期锻炼创造体内抑癌环境
一种用于自主学习的虚拟仿真环境
离子浓度大小的比较方法
孕期远离容易致畸的环境
环境
青菜对邻苯二甲酸酯类物质的积累和代谢初探
对改良的三种最小抑菌浓度测试方法的探讨
邻苯二甲酸二丁酯的收缩血管作用及其机制