薛军,王克如,谢瑞芝,勾玲,张旺锋,明博,侯鹏,李少昆
玉米生长后期倒伏研究进展
薛军1,王克如1,谢瑞芝1,勾玲2,张旺锋2,明博1,侯鹏1,李少昆1
(1中国农业科学院作物科学研究所/农业部作物生理生态重点实验室,北京 100081;2石河子大学农学院/新疆生产建设兵团绿洲生态农业重点实验室,新疆石河子 832003)
倒伏是玉米生产中普遍存在的问题。传统生产中玉米一般在生理成熟期收获,前人关于倒伏研究也多集中在生育前期茎秆发育过程或者是生理成熟前的某一阶段,而对生理成熟后倒伏研究较少。玉米机械粒收一般在生理成熟后2—4周进行,倒伏将会增加机械粒收过程中的产量损失,降低籽粒品质,使收获难度加大,收获效率以及玉米种植效益明显降低,成为制约玉米种植密度进一步提高和机械粒收技术发展的重要因素。对此,本文从玉米生育后期植株的衰老生理及其影响因素角度进行综述,提出增强玉米后期抗倒伏能力的措施与建议。分析表明,玉米生育后期植株自然衰老将导致叶片、茎秆和根系活力下降,使茎秆含水量、可溶性糖、半纤维素及总结构性碳水化合物含量均降低,细胞壁变薄、细胞间缝隙变大;同时,茎秆和根系PAL、POD和PPO酶活性下降,抗病能力减弱;茎腐病病原菌产生的细胞壁降解酶分解细胞壁中的纤维素,降解寄主细胞,孢子迅速萌发形成菌丝并进入表皮细胞、皮层和维管束组织,加速茎秆组织失水干缩过程,植株空心变软甚至腐烂,茎秆质量下降。而基于密植高产机械粒收技术需求的增密种植、田间站秆籽粒脱水会加速并延长玉米衰老进程,使茎秆质量和抗病能力进一步下降,导致生理成熟后的倒伏风险加大。为有效控制倒伏、加速我国玉米密植高产机械粒收技术的推广,建议:(1)增强玉米生育后期茎秆衰老和倒伏的理论研究;(2)加强玉米抗倒种质创制,选育早熟、耐密植、籽粒脱水快、抗逆性强、适宜机械粒收的品种;(3)通过构建优质土壤耕层,集成宜机收品种、合理密植、肥水科学运筹、化学调控和病虫害综合防控等关键技术,创制高质量健康群体,提高生育后期茎秆的抗倒伏能力;(4)根据各地气候、生态条件,因地制宜制定降低玉米生育后期倒伏风险的应对措施。
玉米;茎秆衰老;倒伏;机械粒收;茎腐病
倒伏是玉米生产中常见的现象。玉米倒伏可分为茎折和根倒,其中,茎秆在穗位节或穗位节以下的折断称为茎折,茎秆与垂直线大于一定角度(30°或45°)而茎秆不发生折断称为根倒[1-2]。玉米根倒多发生在吐丝期之前的暴雨加大风天气,吐丝期之后玉米以茎折为主,且多发生在穗下基部节间[3]。生理成熟前玉米发生倒伏后影响了籽粒灌浆速率,对产量影响较大[4];生理成熟后倒伏对玉米产量形成影响较小,但是增加了机械粒收过程中的落穗量,降低了籽粒品质,收获难度加大,收获效率以及玉米种植效益明显降低[5-7]。玉米大面积倒伏后,农户人工捡拾果穗的成本往往高于果穗自身的价值[8-9]。国家标准“玉米收获机械技术条件”(GB/T-21962-2008)中规定机械粒收的条件为田间植株倒伏率应低于5%[10]。在我国玉米全程机械化发展的重要时期,分析玉米倒伏研究现状及其对机械粒收的影响,探讨影响玉米生育后期倒伏发生的关键因素及提高玉米抗倒能力的途径与方法,对实施玉米密植高产机械化生产过程中抗倒品种的选育和栽培具有重要意义。
前人从植株形态学、茎秆力学特性、茎秆解剖结构与物质积累分配、根系生长特性、病虫害发生与危害、区域气候生态特点、品种遗传特性、种植密度、水肥管理及化学调控等方面对玉米倒伏问题进行了较为全面的研究。植株形态学的研究认为,玉米基部节间较长的植株具有较高的穗位和重心高度,倒伏风险大;相反,基部节间较短且粗壮的植株具有较强的抗倒伏能力[2, 5]。玉米茎秆力学特性、解剖结构及物质积累与分配的研究表明,茎秆力学强度,如茎秆外皮穿刺强度、压碎强度和弯曲强度均与田间倒伏率呈显著负相关[11-12];而茎秆外皮机械细胞、机械组织和维管束是提供力学强度的结构基础[13];茎秆中纤维素、木质素和半纤维素等结构性碳水化合物是形成机械细胞和机械组织的物质基础,其含量多少决定了玉米茎秆强度的高低[13-15]。根系研究表明,根系数量、总根体积、根与竖直方向夹角、根系直径及根系垂直拉力(vertical root pulling resistance,VRPR)与倒伏密切相关[16-18]。在病虫危害方面,玉米螟和茎腐病是造成玉米倒伏的主要病虫害,其中,玉米螟通过钻到茎秆内部,蛀空茎秆,使玉米茎折率大幅增加[19-20];玉米茎腐病病原菌产生细胞壁降解酶,分解细胞壁中的纤维素,降解寄主细胞(图1)[21];同时孢子迅速萌发成菌丝并从茎秆表面进入表皮细胞、皮层和维管束组织,使茎秆组织失水干缩,空心变软甚至腐烂,造成茎折[22-24]。玉米种植区生态环境条件对倒伏发生具有重要影响[25]。前人研究表明,降雨是我国黄淮海地区倒伏发生的主要胁迫因子[26],抽雄前后的降雨加大风可造成86%—99%的植株倒伏[27]。遗传因素作为控制玉米倒伏的核心因素,也已表明,控制玉米倒伏性状是由多个基因位点共同作用的结果;利用数量性状位点(QTL)分析方法发现一些与节间伸长、株高及茎秆穿刺强度相关的基因位于玉米的第3号染色体[28-30]。在栽培管理方面,增加种植密度后玉米茎秆会变的纤细,茎秆中纤维素、木质素和半纤维素含量下降,穿刺强度降低,根系较小,倒伏风险增大[3, 15, 31];合理的水肥及化学调控可以降低玉米茎秆基部节间伸长速率,降低节间长粗比、穗位高及株高,促进节间干物质积累及结构形成,增强茎秆机械强度及抗倒伏能力[32-36]。
a:未感病的正常植株,b:中度感病组织;c:重度感病组织;CW:细胞壁
关于倒伏问题的研究以往多集中在玉米茎秆前期发育过程或生理成熟之前的某一个阶段[2, 5, 11-36],对生育后期和生理成熟后茎秆衰老及倒伏研究较少。而玉米生育后期植株衰老过程中茎秆会发生一系列变化,如茎秆失水、活性下降、碳水化合物分解、细胞壁降解、病虫害发生加重等,这些变化会影响玉米后期茎秆质量,从而导致倒伏发生。
可溶性碳水化合物是茎秆结构性碳水化合物合成的物质基础。玉米生育后期植株自然衰老,根系活性迅速下降,对水分和营养物质吸收能力降低;叶片衰老,光合能力显著下降,产生的碳水化合物总量减少,分配到茎秆中的碳水化合物量下降[37]。同时,籽粒库对茎秆中可溶性碳水化合物的拉力和茎秆自身的呼吸消耗,使生育后期茎秆可溶性碳水化合物含量逐渐下降。此外,与纤维素和木质素相比,半纤维素稳定性较差,生育后期半纤维素含量的下降也会导致茎秆中总结构性碳水化合物含量降低[13]。在生育后期,茎秆中水分含量也是影响其机械强度的重要因素[15, 38],Anderson等[23]认为,玉米抽雄后茎秆含水量逐渐降低,并且茎秆髓部含水量与茎秆强度呈显著正相关。Djorjevic等[39]认为成熟期玉米茎秆含水量与倒伏率呈显著负相关。因此,生育后期玉米茎秆衰老过程中的碳水化合物和水分含量降低使茎秆质量下降。玉米生理成熟期至收获阶段,由于叶片蒸腾作用降低,加之根系迅速衰老,水分吸收能力会显著降低,使茎秆含水量逐渐下降。Chen等[15]研究表明,在我国吉林地区,从8月30日至9月30日,玉米茎秆总碳水化合物降低31%—42%,含水率由77%—79%降低至52%—56%。
玉米生育后期茎秆衰老使植株抗病能力下降,病虫害易于发生。生育后期茎腐病是导致玉米倒伏发生的重要因素,植株抗茎腐病能力与茎秆含水率、生理活性及可溶性糖含量有关。Anderson等[23]认为玉米生育后期茎秆髓部含水量高的植株茎腐病发生率较低;苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)、多酚氧化酶(PPO)等抵抗病原微生物侵染的关键酶活性高的植株抗茎腐病能力强[40-42];另外,茎腐病属于低糖害病,茎秆总糖含量降低可引起茎秆髓组织衰退,增加玉米对茎腐病的敏感性[42-43],而糖含量越高,对茎腐病的抗性越强[44]。玉米生育后期,自然衰老过程中茎秆和根系PAL、POD、PPO酶活性下降,同时茎秆水分散失和可溶性糖分解,均会导致植株抗茎腐病能力下降,茎腐病发生程度加重。此外,茎腐病病原菌产生的孢子又会堵塞维管束等疏导组织[21],使植株的运输系统遭到破坏,进一步加速植株衰老,在玉米茎秆衰老和茎腐病发生之间形成恶性循环。
生育后期,玉米茎秆质量和抗病能力的变化影响倒伏发生。玉米生育后期茎秆碳水化合物分解和水分含量下降导致细胞萎缩,细胞壁降解变薄,细胞之间缝隙加大,韧性降低,脆性增加,机械强度降低,倒伏风险加大[23, 39, 45]。Nolte[46]等研究表明,在美国俄亥俄州10月15日之后,每推迟一周,玉米倒伏率增加5%。同时,玉米生理成熟后,由于茎腐病引发的倒伏会逐渐上升,且上升幅度远高于生理成熟前。Thomison[47]等研究认为在59 000株/hm2条件下,收获期由10月中上旬推迟至11月中上旬时,田间茎腐病发生率由33%提高至85%,倒伏率由4%提高至23%;收获期推迟至12月中上旬时,茎腐病高达100%,倒伏率达51%。
综上,在玉米生育后期自然衰老过程中,茎秆碳水化合物含量和水分丧失使茎秆强度下降,田间倒伏风险上升;同时,生育后期根系和茎秆活性降低,茎秆中可溶性糖含量下降,导致茎秆抗病能力下降,茎腐病发生严重,而茎腐病发生又进一步加快植株衰老。玉米茎秆衰老和茎腐病发生形成恶性循环,衰老加速,茎腐病发生率和发病程度加重,植株抗倒能力迅速下降,倒伏率显著上升(图2)。
图2 生育后期玉米衰老和茎腐病对茎秆机械强度及倒伏的影响
全程机械化是现代玉米生产的发展方向,当前,机械粒收是我国玉米全程机械化生产中急需解决的关键环节[48]。增密种植与田间站秆籽粒脱水是机械粒收技术发展和推广的重要措施[49]。以往我国玉米收获以人工收获和机械穗收为主,对倒伏问题的研究多集中在生理成熟之前,生理成熟后田间站秆脱水至收获阶段的研究较少,而此阶段发生的倒伏与增密种植和田间站秆时间密切相关,需要引起高度关注。
过去几十年,世界范围内玉米单产水平的提高与种植密度的增加关系密切。与美国玉米种植密度及产量相比,我国玉米种植密度仍有很大的提升空间,增密种植仍将是未来玉米单产水平提升的重要途径[49]。同时,机械粒收玉米品种要求成熟期略提早,而早熟品种生物量通常较小,通过增密种植,可以弥补单株产量较低带来的产量损失[50]。但是增密种植在不同程度上增加了玉米植株间的竞争压力,造成冠层内部光照不良,改变了个体和群体的结构与功能,影响了玉米茎秆形态建成、碳水化合物积累与分配、茎秆解剖结构、力学强度、根系形态与结构等,增大倒伏风险[2-3, 16, 51]。增密种植也会影响玉米植株衰老进程,使生育后期玉米茎秆质量发生改变。卢霖等[52]研究表明,提高种植密度,植株叶片、根系和茎秆的活性降低,根系对水分和养分的竞争加大,并且冠层内部光照减弱,这些变化促使叶片和根系功能期缩短,衰老进程加快。因此,高密度种植的玉米收获期茎秆质量变差和更容易发生倒伏。Thomison等[47]认为,生理成熟后一定时间段内,种植密度越高,茎秆质量下降幅度越大,群体倒伏率增加趋势也越明显。此外,与低密度种植相比,密植条件下玉米植株个体之间距离变近,冠层内部通风透光条件变差,也有利于茎腐病病原菌和孢子传播;加之玉米根系和茎秆中可溶性糖含量、生理活性均下降,抗茎腐病能力下降,不论是抗病品种还是易感病品种,茎腐病发病率均随植株密度的增加而提高[53-54]。种植密度越高,推迟收获后的茎腐病发病率和倒伏率也越高[47]。因此,玉米生育后期倒伏是限制种植密度进一步提升的重要因素。
机械粒收要求玉米籽粒含水量控制在27%以下[55-56],一般生理成熟后田间站秆自然脱水2—4周才能达到机械粒收的要求,推迟收获后提高了茎秆倒伏风险。在田间站秆脱水阶段,玉米雌穗重达到最大,茎秆受种植区大风、降雨、茎秆碳水化合物变化等影响,茎秆衰老进程加快,茎腐病发生率和发生程度显著提高,导致茎秆强度降低,田间倒伏加重[47, 57]。Allen[58]等观测到,在田间站秆脱水过程中,当玉米籽粒含水量从25%降至15%时,倒伏率增加了42%。因此,玉米生理成熟至收获期的倒伏问题将会影响田间站秆籽粒脱水的时间,从而降低机械粒收玉米的籽粒品质,增大高水分收获籽粒的烘干成本。
总之,基于玉米密植高产机械化生产技术需求的增密种植和田间站秆籽粒脱水均会加速玉米生育后期茎秆衰老进程,降低茎秆抗病能力,使茎秆质量下降,倒伏风险加大。因此,玉米密植高产机械粒收生产技术的推广和应用对生育后期茎秆的抗倒伏能力提出了更高的要求。
与发达国家相比,我国玉米机械粒收起步晚,对生育后期和生理成熟后倒伏问题关注不够,制约了玉米密植高产机械粒收技术的推广和发展。今后,需要加强倒伏问题相关理论基础研究,通过品种创制、栽培调控及因地种植改善生育后期玉米的抗倒伏能力,适期收获,推进玉米机械粒收和增密种植技术的发展。
玉米生育后期和生理成熟后的倒伏问题受基因型、环境和措施的共同作用,是一个复杂的过程,以往相关研究较为薄弱,今后需要组织开展系统攻关,为品种创制、栽培调控提供依据。玉米茎秆后期活性是影响倒伏的重要因素,前人研究认为保持玉米生育后期的持绿性有助于将茎秆活性和质量维持在较高水平、降低倒伏风险[59-60],然而后期持绿性高的植株往往不利于籽粒脱水,因此,需要进一步研究玉米植株持绿性和籽粒脱水速率之间的关系,解决籽粒脱水和茎秆持绿抗倒之间的矛盾,为玉米站秆脱水过程保持高抗倒能力提供物质基础。
国内外经验证明,选育耐密植、适宜机械粒收品种是推广机械籽粒收获技术的关键。不同玉米品种籽粒脱水速率不同,生理成熟后茎秆水分下降和干物质分解速率不同,抗茎腐病能力不同[47, 57]。因此,田间站秆持续时间和抗倒伏能力有明显的差异。20世纪60—90年代,美国开始大面积推广机械粒收技术,同期开展了大量玉米抗茎腐病、抗倒伏和适合机械粒收关键技术方面的研究。通过田间观察、化学分析、解剖观测、物理机械、病虫害诱导、高密度育种等手段选育出了一系列适合机械粒收的耐密、抗病、抗倒品种[61]。60多年来,我国玉米品种演替过程中抗倒伏能力逐渐提高,自20世纪80年代起重视紧凑型耐密品种的选育[62]。同时,我国也引进了国外BSSS群体,选育出一些配合力高、抗倒性好的优良自交系[63]。但是在玉米品种选育过程中,并没有特意关注玉米生育后期,尤其是生理成熟后的倒伏问题,品种抗倒伏能力的提高是单纯追求产量目标的附带结果。今后应以籽粒生产效益为导向,通过高密度育种、田间站秆观察、分子设计等手段选择后期青秆成熟、生理成熟期籽粒含水率低且耐密植的玉米品种,降低潜在倒伏风险。
玉米生育前期高质量茎秆是生育后期维持高抗倒伏能力的基础。在选用适合机械粒收抗倒品种的基础上,应用构建优质土壤耕层,头水适当晚浇与蹲苗、喷洒生长调节剂、科学施肥和防治病虫害为核心技术的综合调控栽培措施;构建高质量健康群体,延缓玉米后期茎秆衰老速率,防止后期茎秆干物质分解及水分下降过快;提高茎秆抗茎腐病能力,改善生育后期茎秆抗倒伏能力。
4.3.1 构建优质土壤耕层 深厚的耕层有利于玉米根系下扎,提高根系生物量和固着力;还可以提高根系活力,有利于水分养分吸收,促进地上部茎秆干物质积累和机械强度形成,能够有效地容纳更大的群体[64]。我国玉米田耕层普遍较浅,全国平均仅为18.5 cm,远低于美国35 cm左右的耕层,植株易发生根倒[65]。高密度条件下采用深耕和耕层构建技术,可促进玉米根系纵向生长,提高植株根系生物量和根系活力,增强根系固着能力和养分吸收,防止后期茎秆衰老过快以及抗病、抗倒能力的过快下降。
4.3.2 精准水肥调控 有灌溉条件的地区,头水适当晚浇,通过蹲苗,可以促进根系下扎、缩短基部茎节,增强玉米抗倒性能。生育前期氮肥施用过多会促进玉米基部节间快速生长,导致基部节间长度增加[33, 66];同时不利于玉米茎秆中纤维素的合成和积累[67]。钾肥可以促进茎秆中结构性碳水化合物积累,单位面积维管束增加,提高茎秆穿刺强度[32, 68-69];另外,追施钾肥可以稳定细胞结构,防止细胞间隙的扩大,加固细胞壁,降低病原菌侵入的机率[70]。水钾互作的抗倒伏效果更好[71],尤其是在滴灌条件下更为明显[72]。因此,在拔节期追施钾肥,大喇叭口期追施氮肥,可以通过精准施肥来控制穗下节间伸长,提高茎秆中结构性化学组分合成和外皮组织形成。
4.3.3 适时化学调控 植物生长调节剂可以缓解由于施用氮肥而引起的茎秆快速生长现象, 6—8展叶时喷施乙烯利可以显著降低株高,提高玉米抗倒伏能力和产量[34-35]。Xu等[36]认为在夏玉米7展叶时喷施EDAH可以提高茎秆的维管束数目,增强茎秆机械强度。近年来,我国农资市场上涌现出“吨田宝”、“羟基乙烯利”、“玉黄金”等一批玉米化控制剂,在密植栽培条件下能有效控制下部节间伸长,降低穗位高和重心高度,促进节间干物质积累和力学强度形成,具有较好的抗倒效果。
玉米种植区生态环境会影响茎秆发育阶段的质量形成[6, 25],对生育后期茎秆活性变化、物质分解和病虫害发生也会造成一定影响[73],是影响后期倒伏发生的重要因素之一。基于近年气候特点,可以分析我国不同区域玉米倒伏发生的时期、程度和频率,制作倒伏风险分布图,为适合粒收抗倒品种的鉴选确定联合测试网点。在不同玉米产区,以生态区气候条件为基础,建立环境条件(风、雨、光照等)、玉米种植密度和抗倒伏指标(形态和生理指标)之间的定量化关系,筛选推荐适合机械粒收的品种,确立合理的种植密度及适宜的收获时期,以降低生育后期倒伏风险。
综上,玉米生育后期植株衰老使茎秆质量下降和茎腐病发生,提高了倒伏风险。基于机械粒收技术需求的增密种植和田间站秆籽粒脱水加剧和延长了茎秆衰老进程,使茎秆质量大幅下降,倒伏问题更为突出。今后,应从理论基础、品种选育和栽培措施的应用方面研究玉米生育后期的倒伏问题,推进玉米密植高产和机械粒收技术的健康发展。
[1] BECK D L, DARRAH L L, ZUBER M S. Effect of sink level on root and stalk quality in maize., 1988, 28(1): 11-18.
[2] NOVACEK M J, MASON S C, GALUSHA T D, YASEEN M. Twin rows minimally impact irrigated maize yield, morphology, and lodging., 2013, 105: 268-276.
[3] XUE J, GOU L, ZHAO Y, YAO M, YAO H, TIAN J, ZHANG W F. Effects of light intensity within the canopy on maize lodging., 2016, 188: 133-141.
[4] 李树岩, 马玮, 彭记永, 陈忠民. 大喇叭口及灌浆期倒伏对夏玉米产量损失的研究. 中国农业科学, 2015, 48 (19): 3952-3964.
LI S Y, MA W, PENG J Y, CHEN Z M. Study on yield loss of summer maize due to lodging at the big flare stage and grain filling stage., 2015, 48(19): 3952-3964. (in Chinese)
[5] PELLERIN S, TRENDEL R, DUPARQUE A. Relationship between morphological characteristics and lodging susceptibility of maize (L.)., 1990, 10(6): 439-446.
[6] ELMORE R W, FERGUSON R B. Mid-season stalk breakage in corn: Hybrid and environmental factors., 1999, 12(2): 293-299.
[7] 黄璐, 乔江方, 刘京宝, 夏来坤, 朱卫红, 李川, 周庆伟. 夏玉米不同密植群体抗倒性及机收指标探讨. 华北农学报, 2015, 30(2): 198-201.
HUANG L, QIAO J F, LIU J B, XIA L K, ZHU W H, LI C, ZHOU Q W. Research on the relationship between maize lodging resistance and grain mechanically harvesting qualities in different planting density.2015, 30(2): 198-201. (in Chinese)
[8] 高巍, 陈志, 黄玉祥, 杨敏丽. 吉林省农户采用玉米机械化收获的影响因素分析. 农业机械学报, 2012, 43(s1): 175-179.
GAO W, CHEN Z, HUANG Y X, YANG M L. Analysis of influencing factors on farmers' adoption of maize mechanized harvesting in Jilin province., 2012, 43(s1): 175-179. (in Chinese)
[9] 潘伟光, 巩志磊, 卢海阳. 农户玉米收获环节采用机械化的影响因素分析—基于山东省的实证研究. 中国农学通报, 2014, 30(14): 165-172.
PAN W G, GONG Z L, LU H Y. Factors analysis on producers’ application of mechanized maize harvesting—based on empirical research of Shandong province., 2014, 30(14): 165-172. (in Chinese)
[10] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 玉米收获机械技术条件: GB/T 201962-2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Management Committee.. (in Chinese)
[11] JAMPATONG S, DARRAH L L, KRAUSE G F, BARRY B D. Effect of one-and two-eared selection on stalk strength and other characters in maize., 2000, 40(3): 605-611.
[12] ROBERTSON D, SMITH S, GARDUNIA B, COOK D. An improved method for accurate phenotyping of corn stalk strength.2014, 54: 2038-2044.
[13] XUE J, ZHAO Y, GOU L, SHI Z, YAO M, ZHANG W. How high plant density of maize affects basal internode development and strength formation., 2016, 56(6): 3295-3306.
[14] APPENZELLER L, DOBLIN M, BARREIRO R, WANG H, NIU X, KOLLIPARA K, CARRIGAN L, TOMES D, CHAPMAN M, DHUGGA K S. Cellulose synthesis in maize: Isolation and expression analysis of the cellulose synthase () gene family., 2004, 11(3/4): 287-299.
[15] CHEN Y, CHEN J, ZHANG Y, ZHOU D. Effect of harvest date on shearing force of maize stems., 2007, 111(1/2): 33-44.
[16] LIU S, SONG F, LIU F, ZHU X. Effect of planting density on root lodging resistance and its relationship to nodal root growth characteristics in maize (L.)., 2012, 4(12): 182-189.
[17] FINCHER R R, DARRAH L L, ZUBER M S. Root development in maize as measured by vertical root-pulling resistance., 1985, 30: 383-394.
[18] KAMARA A Y, KLING J G, MENKIR A, IBIKUNLE O. Association of vertical root-pulling resistance with root lodging and grain yield in selected S1 maize lines derived from a tropical low nitrogen population.2003, 189(3): 129-135.
[19] MARTIN S A, DARRAH L L, HIBBARD B E. Divergent selection for rind penetrometer resistance and its effects on European corn borer damage and stalk traits in corn., 2004, 44(3): 711-717.
[20] SANTIAGO R, BUTRON A, REVILLA P, MALVAR R A. Is the basal area of maize internodes involved in borer resistance?, 2011, 11(1): 1-12.
[21] YU C, SARAVANAKUMAR K, XIA H, GAO J, FU K, SUN J, DOU K, JIE C. Occurrence and virulence ofspp. associated with stalk rot of maize in North-East China., 2017, 98: 1-8.
[22] QUESADAOCAMPO L M, ALHADDAD J, SCRUGGS A C, BUELL CR, TRAIL F. Susceptibility of maize to stalk rot caused bydeoxynivalenol and zearalenone mutants., 2016, 106(8): 920-927.
[23] ANDERSON B, WHITE D. Evaluation of methods for identification of corn genotypes with stalk rot and lodging resistance., 1994, 78(6): 590-593.
[24] 王亮, 丰光, 李妍妍, 景希强, 黄长玲. 玉米倒伏与植株农艺性状和病虫害发生关系的研究. 作物杂志, 2016(2): 83-88.
WANG L, FENG G, LI Y Y, JING X Q, HUANG C L. Relationship between maize lodging resistance and agronomic traits, plant diseases, and insect pests., 2016(2): 83-88. (in Chinese)
[25] ZUBER M S, LOESCH P J. Effects of years and locations stalk strength in corn (L.)., 1966, 58(2): 173-175.
[26] 杨扬, 杨建宇, 李绍明, 张晓东, 朱德海, 刘哲, 米春桥, 肖开能. 玉米倒伏胁迫影响因子的空间回归分析. 农业工程学报, 2011, 27(6): 244-249.
YANG Y, YANG J Y, Li S M, ZHANG X D, ZHU D H, LIU Z, MI C Q, XIAO K N. Spatial regression analysis on influence factors of maize lodging stress., 2011, 27(6): 244-249. (in Chinese)
[27] 李树岩, 王宇翔, 胡程达, 闫瑛. 抽雄期前后大风倒伏对夏玉米生长及产量的影响. 应用生态学报, 2015, 26(8): 2405-2413.
LI S Y, WANG Y X, HU C D, YAN Y. Effect of strong wind lodging at pre- and post-tasseling stages on growth and yield of summer maize., 2015, 26(8): 2405-2413. (in Chinese)
[28] BAI W, ZHANG H, ZHANG Z, TENG F, WANG L, TAO Y. The evidence for non-additive effect as the main genetic component of plant height and ear height in maize using introgression line populations., 2010, 129(4): 376-384.
[29] TENG F, ZHAI L, LIU R, BAI W, WANG L, HUO D, TAO Y, ZHENG Y, ZHANG Z., a candidate gene for a major QTL, qPH3.1, for plant height in maize., 2013, 73(3): 405-416.
[30] LI K, YAN J, LI J, YANG X. Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations., 2014, 14(1): 1471-2229.
[31] HéBERT Y, GUINGO E, LOUDET O. The response of root/shoot partitioning and root morphology to light reduction in maize genotypes., 2001, 41(2): 363-371.
[32] 李波, 张吉旺, 崔海岩, 靳立斌, 董树亭, 刘鹏, 赵斌. 施钾量对高产夏玉米抗倒伏能力的影响. 作物学报, 2012, 38(11): 2093-2099.
LI B, ZHANG J W, CUI H Y, JIN L B, DONG S T, LIU P, ZHAO B. Effects of potassium application rate on stem lodging resistance of summer maize under high yield conditions., 2012, 38(11): 2093-2099. (in Chinese)
[33] 边大红, 刘梦星, 牛海峰, 魏钟博, 杜雄, 崔彦宏. 施氮时期对黄淮海平原夏玉米茎秆发育及倒伏的影响. 中国农业科学, 2017, 50(12): 2294-2304.
Bian D H, Liu M X, Niu H F, Wei Z B, Du X, Cui Y H. Effects of nitrogen application times on stem traits and lodging of summer maize (L.) in the Huang-Huai-Hai Plain.2017, 50(12): 2294-2304. (in Chinese)
[34] YE D L, ZHANG Y S, AL-KAISI M M, DUAN L S, ZHANG M C, LI Z H. Ethephon improved stalk strength associated with summer maize adaptations to environments differing in nitrogen availability in the North China Plain.2015, 154(6): 1-18.
[35] NORBERG O S, MASON S C, LOWRY S R. Ethephon influence on harvestable yield, grain quality, and lodging of corn., 1988, 80(5): 768-772.
[36] XU C, GAO Y, TIAN B, REN J, MENG Q, WANG P. Effects of EDAH, a novel plant growth regulator, on mechanical strength, stalk vascular bundles and grain yield of summer maize at high densities., 2017, 200: 71-79.
[37] FLACHOWSKY G, PEYKER W, SCHNEIDER A, HENKEL K. Fibre analyses and in sacco degradability of plant fractions of two varieties harvested at various times., 1993, 43(1): 41-50.
[38] PRINCE R P, WOLF D D, BARTOK J W J.. Agricultura Experiment Station, University of Connecticut, Storrs, 1965.
[39] DJORDJEVIC J S, IVANOVIC M R. Genetic analysis for stalk lodging resistance in narrow-base maize synthetic population ZPS14., 1996, 36(4): 909-913.
[40] 李亚玲, 龙书生, 郭军战, 张宇宏, 李强, 王炜. 玉米感染禾谷镰刀菌后PAL、POD活性和同工酶谱的变化. 西北植物学报, 2003, 23(11): 1927-1931.
LI Y L, LONG S S, GUO J Z, ZHANG Y H, LI Q, WANG W. Changes of activities of PAL and POD and bands of POD isozyme of Susceptible and resistant corn infected with., 2003, 23(11): 1927-1931. (in Chinese)
[41] MOHAMMADI M, KAZEMI H. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated withand induced resistance., 2002, 162(4): 491-498.
[42] CRAIG J, HOOKER A L. Relation of sugar trends and pith density to diplodia stalk rot in dent corn. Diplodia root and stalk rot of dent corn., 1961, 51(6): 376-382.
[43] DODD J L. Grain sink size and predisposition ofto stalk rot., 1980, 70(6): 534-535.
[44] ALBRECHT K, MARTIN M, RUSSEL W, WEDIN W, BUXTON D. Chemical and in vitro digestible dry matter composition of maize stalks after selection for stalk strength and stalk-rot resistance., 1986, 26(5): 1051-1055.
[45] 崔秀梅, 杨在宾, 杨维仁, 张桂国, 姜淑贞, 刘丽, 王兆凤. 作物秸秆剪切力与其饲料营养特性的关系. 中国农业科学, 2012, 45(15): 3137-3146.
CUI X M, YANG Z B, YANG W R, ZHANG G G, JIANG S Z, LIU L, WANG Z F. Correlations of shearing force and feed nutritional characteristics of crop straws., 2012, 45(15): 3137-3146. (in Chinese)
[46] NOLTE B H, BYG D M, GILL W E. Timely field operations for corn and soybeans in Ohio. The Ohio State University Cooperative Extension Service Bulletin 605, 1976.
[47] THOMISON P R, MULLEN R W, LIPPS P E, DOERGE T, GEYER A B. Corn response to harvest date as affected by plant population and hybrid., 2011, 103(6): 1765-1772.
[48] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学. 2017, 50(11): 1941-1959.
LI S K, ZHAO J R, DONG S T, ZHAO M, LI C H, CUI Y H, LIU Y H, GAO J L, XUE J Q, WANG L C, WANG P, LU W P, WANG J H, YANG Q F, WANG Z M. Advances and prospects of maize cultivation in China., 2017, 50(11): 1941-1959. (in Chinese)
[49] 李少昆, 王克如, 谢瑞芝, 侯鹏, 明博, 杨小霞, 韩冬升, 王玉华. 实施密植高产机械化生产实现玉米高产高效协同. 作物杂志. 2016(4): 1-6.
LI S K, WANG K R, XIE R Z, HOU P, MING B, YANG X X, HAN D S, WANG Y H. Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production., 2016(4): 1-6. (in Chinese)
[50] 李少昆. 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报(自科版). 2017, 35(3): 265-272.
LI S K. Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology., 2017, 35(3): 265-272. (in Chinese)
[51] 勾玲, 黄建军, 张宾, 李涛, 孙锐, 赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响. 作物学报, 2007, 33(10): 1688-1695.
GOU L, HUANG J J, ZHANG B, LI T, SUN R, ZHAO M. Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize., 2007, 33(10): 1688-1695. (in Chinese)
[52] 卢霖,董志强, 董学瑞, 李光彦. 乙矮合剂对不同密度夏玉米花粒期不同部位叶片衰老特性的影响. 作物学报. 2016, 42(4): 561-573.
LU L, DONG Z Q, DONG X R, LI G Y. Effects of ethylene- chlormequat-potassium on characteristics of leaf senescence at different plant positions after anthesis under different planting densities., 2016, 42(4): 561-573. (in Chinese)
[53] 高增贵, 陈捷, 邹庆道, 鄢洪海, 蔺瑞明. 玉米穗、茎腐病病原学相互关系及发病条件的研究. 沈阳农业大学学报, 1999, 30(3): 215-218.
GAO Z G, CHEN J, ZOU Q D, YAN H H, LIN R M. Study on relationship pathogen types with condition for disease occurrence maize ear rot and stalk rot., 1999, 30(3): 215-218. (in Chinese)
[54] 叶坤浩, 龚国淑, 祁小波, 袁继超, 蒋春先, 孙小芳, 王一羽, 杨继芝. 几种栽培措施对玉米纹枯病和小斑病的影响. 植物保护, 2015, 41(4): 154-159.
YE K H, GONG G S, QI X B, YUAN J C, JIANG C X, SUN X F, WANG Y F, YANG J Z. Effect of cultivation measures on sheath blight and southern leaf blight of corn., 2015, 41(4): 154-159. (in Chinese)
[55] 谢瑞芝, 雷晓鹏, 王克如, 郭银巧, 柴宗文, 侯鹏, 李少昆. 黄淮海夏玉米子粒机械收获研究初报. 作物杂志. 2014(2): 76-79.
XIE R Z, LEI X P, WANG K R, GUO Y Q, CHAI Z W, HOU P, LI S K. Research on corn mechanically harvesting grain quality in huanghuaihai plain., 2014(2): 76-79. (in Chinese)
[56] 李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆. 黄淮海夏玉米生理成熟期子粒含水率研究. 作物杂志. 2017(2): 88-92.
Li L L, Xie R Z, Wang K R, Ming B, Hou P, Li S K. Kernel moisture content of summer maize at physiological maturity stage in Huanghuaihai region., 2017(2): 88-92. (in Chinese)
[57] BRUNS H A, ABBAS H K. Effects of harvest date on maize in the humid sub-tropical Mid-South USA., 2004, 49(1): 1-7.
[58] ALLEN R R, MUSICK J T, HOLLINGSWORTH L D. Topping corn and delaying harvest for field drying., 1982, 5:1529–1532.
[59] BERZONSKY W A, HAWK J A. Agronomic features of two maize synthetics selected for high and low stalk-crushing strengh., 1986, 26(5): 871-875.
[60] DUVICK D N. Genetic progress in yield of United States maize (L.)., 2005, 50(3): 193-202.
[61] DUVICK D N, CASSMAN K G. Post-green revolution trends in yield potential of temperate maize in the north-central United States., 1999, 39(6): 1622-1630.
[62] CI X, LI M, XU J, LU Z, BAI P, RU G, LIANG X, ZHANG D, LI X, BAI L, XIE C, HAO Z, ZHANG S, DONG S. Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000s., 2012, 185(3): 395-406.
[63] 汪黎明, 姚国旗, 穆春华, 李建生, 戴景瑞. 玉米抗倒性的遗传研究进展. 玉米科学, 2011, 19(4): 1-4.
WANG L M, YAO G Q, MU C H, LI J S, DAI J R. Advances in genetic research of maize lodging resistance., 2011, 19(4): 1-4. (in Chinese)
[64] 刘明, 齐华, 张卫建, 张振平, 李雪霏, 宋振伟, 于吉琳, 吴亚男. 深松方式与施氮量对玉米茎秆解剖结构及倒伏的影响. 玉米科学, 2013, 21(1): 57-63.
LIU M, QI H, ZHANG W J, ZHANG Z P, LI X F, SONG Z W, YU J L, WU Y N. Effects of deep loosening and nitrogen application on anatomical structures of stalk and lodging in maize., 201, 21(1): 57-63. (in Chinese)
[65] 李少昆, 王崇桃. 玉米生产技术创新·扩散. 北京: 科学出版社, 2010.
LI S K, WANG C T.. Beijing: Science Press, 2010. (in Chinese)
[66] RAJKUMARA S. Lodging in cereals-A review., 2008, 29: 55-60.
[67] LI H, LI L, WEGENAST T, LONGIN C F, XU X, MELCHINGER A E, CHEN S. Effect of N supply on stalk quality in maize hybrids., 2010, 118(3): 208-214.
[68] LIEBHARDT W C, MURDOCK J T. Effect of potassium on morphology and lodging of corn., 1965, 57(4): 325-328.
[69] 孙世贤, 戴俊英, 顾慰连. 氮、磷、钾肥对玉米倒伏及其产量的影响. 中国农业科学, 1989, 22(3): 28-33.
SUN S X, DAI J Y, GU W L. Effect of nitrogen, phosphate and potash fertilizers on lodging and yield in maize., 1989, 22(3): 28-33. (in Chinese)
[70] 李文娟, 何萍, 金继运. 钾素对玉米茎髓和幼根超微结构的影响及其与茎腐病抗性的关系. 中国农业科学, 2010, 43(4): 729-736.
LI W J, HE P, JIN J Y. Effect of potassium on ultrastructure of maize stalk pith and young root and their relation to resistance to stalk rot., 2010, 43(4): 729-736. ( in Chinese)
[71] 郭艳青, 朱玉玲, 刘凯, 裴书君, 赵斌, 张吉旺. 水钾互作对高产夏玉米茎秆结构和功能的影响. 应用生态学报, 2016, 27(1): 143-149.
GUO Y Q, ZHU Y L, LIU K, PEI S J, ZHAO B, ZHANG J W. Effects of water-potassium interaction on stalk structure and function of high-yield summer maize., 2016, 27(1): 143-149. ( in Chinese)
[72] 张经廷, 陈青云, 吕丽华, 李谦, 梁双波, 贾秀领. 夏玉米产量及茎秆抗倒伏性状对不同肥料滴灌配施的响应. 华北农学报, 2015, 30(6): 209-215.
ZHANG J T, CHEN Q Y, LÜ L H, LI Q, LIANG S B, JIA X L. Yield and stem lodging resistance characteristics response of summer maize to combined application of different fertilizers through drip irrigation.2015, 30(6): 209-215. ( in Chinese)
[73] 宋佐衡, 陈捷, 咸洪泉, 白金铠. 土壤因子对玉米茎腐病菌侵染的影响. 植物病理学报, 1995, 25(4): 321-324.
SONG Z H, CHEN J, XIAN H Q, BAI J K. On the soil factors influencing infection of corn stalk rot pathogens., 1995, 25(4): 321-324. (in Chinese)
(责任编辑 杨鑫浩)
Research Progress of Maize Lodging During Late Stage
Xue Jun1, Wang KeRu1, Xie RuiZhi1, Gou Ling2, Zhang WangFeng2, Ming Bo1, Hou Peng1, Li ShaoKun2
(1Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081;2College of Agronomy, Shihezi University/Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi 832000, Xinjiang)
Lodging is a common problem during maize production. Maize harvested at physiological maturity stage in traditional maize production. Previous researches about maize lodging also focused on stalk development process and some stage before the physiological maturation. There was less lodging research after physiological maturity. Mechanical grain harvest usually was carried out two to four weeks after the physiological maturity. Lodging made mechanical grain harvest become difficulty and increased harvest costs, and it also increased grain losses and decreased the grain quality. Maize lodging was a limiting factor in application of mechanical grain harvest technology. This paper reviewed the physiological changes in the maize senescence process and the influences factors on maize lodging, and proposed the measures and suggestions about improving maize lodging resistance during mid and late stage. Analysis showed that, naturalsenescence of maize from physiological maturity to harvest decreased activity of leaves, stalk and root, and made all of stalk moisture, water-soluble carbohydrate content, hemicellulose content and total structural carbohydrate content decline. These resulted in cell wall thinning, cell gap widening, and stalk strength and disease resistance decrease. The enzymatic activity of PAL, POD and PPO was low, which made the disease resistance decline. The stalk rot pathogen produced cell wall degrading enzymes to decompose cellulose and collapse the cells in stalk. The fungal hyphae flew through the plasma membrane and entered into epidermis cell, cortex and vascular bundle tissue. The stalk rot then increased the speed of stalk dehydration and drying shrinkage, and degraded the pith tissue. Maize stalk became hollow, softening and rot. This decreased stalk quality. Higher grain and full mechanization technologies required high population and delayed harvest to grain dehydration in the field. These accelerated and extension the aging process of maize, further decreased the stalk quality and disease resistance, and increased the lodging risk of maize after physiological maturity. In order to resolve the lodging problem and to accelerate development and promotion of maize mechanical grain harvest technology in China, we suggested that: (1) theoretical research of maize lodging during late stage should be strengthened; (2) germplasm creation should be strengthened to breed new maize cultivars with early-maturity, density-tolerant, high rate of grain dehydration, and strong stress resistance; (3) common methods should be developed to obtain high-quality maize populations and reduce lodging during late stage including constructing a high-quality plow layer, suitable cultivars for grain mechanical harvest, rational close planting, scientific irrigation and fertilization, application of plant growth regulators, and insect-disease prevention; (4) integration countermeasures should also be established according to ecological conditions in different maize regions.
maize; stalk senescence; lodging; mechanical grain harvest; stalk rot
10.3864/j.issn.0578-1752.2018.10.004
2017-11-07;
2018-01-17
国家重点研发计划(2016YFD0300110)、国家自然科学基金(31371575)、中国农业科学院农业科技创新工程、国家玉米产业技术体系项目(CARS-02-25)
薛军,E-mail:xuejun5519@126.com。通信作者李少昆,Tel:010-82108891;E-mail:lishaokun@caas.cn