受胆固醇调节的变异剪接体及其意义

2018-05-23 11:13庞亚娜赵晋枫董元坤
中国医学创新 2018年8期
关键词:胆固醇

庞亚娜 赵晋枫 董元坤

【摘要】 目的:检测人肝癌细胞中LDLR的变异剪接体LDLR-?Exon4、LDLR-?Exon12,HMGCS1的变异剪接体HMGCS1-?Exon2和HMGCR的变异剪接体HMGCR-Exon?13是否受胆固醇的调节。方法:建立高胆固醇模型组、低胆固醇模型组及正常组,提取不同模型组的RNA并进行反转录,采用Real-time PCR(RT-PCR)技術检测LDLR-?Exon4,LDLR-?Exon12,HMGCS1-?Exon2和HMGCR-Exon?13的mRNA的表达。结果:在高胆固醇模型组中,与正常组相比,LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2及HMGCR-Exon?13的mRNA的表达量与各基因全长相比均明显升高(P<0.05);而在低胆固醇模型组中,与正常组相比,上述的变异剪接体mRNA的表达量与各基因全长相比均明显下降(P<0.05)。结论:LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2及HMGCR-Exon?13等变异剪接体受胆固醇的调节,并可能参与并调控胆固醇的代谢。

【关键词】 选择性剪接; 胆固醇; 变异剪接体

Cholesterol-regulated Variant Spliceosomes and Their Significance/PANG Yana,ZHAO Jinfeng,DONG Yuankun,et al.//Medical Innovation of China,2018,15(08):018-022

【Abstract】 Objective:To detect whether LDLR,HMGCS1 and HMGCR alternatively spliced variants LDLR-?Exon4,LDLR-?Exon12,HMGCS1-?Exon2 and HMGCR-?Exon13 regulated by cholesterol in human hepatocellular carcinoma cells.Method:The high cholesterol model group and the low cholesterol model group were established,and compared with the normal group.RNA extraction of different model cells was reverse transcribed,and Real-time PCR(RT-PCR) technology was used to detect mRNA expression of LDLR-?Exon4,

LDLR-?Exon12,HMGCS1-?Exon2 and HMGCR-?Exon13.Result:Compared with the normal group,mRNA expression of LDLR-?Exon4,LDLR-?Exon12,HMGCS1-?Exon2 and HMGCR-?Exon13 were increased in the high cholesterol model group(P<0.05).However,mRNA expression of LDLR-?Exon4,LDLR-?Exon12,HMGCS1-?Exon2 and HMGCR-?Exon13 were decreased in the low cholesterol model group compared with the normal group(P<0.05).Conclusion:LDLR-?Exon4,LDLR-?Exon12,HMGCS1-?Exon2 and HMGCR-?Exon13 spliced variants are regulated by cholesterol and may participate in regulating the metabolism of cholesterol.

【Key words】 Alternative splicing; Cholesterol; Spliced variants

First-authors address:Shanxi Medical University,Taiyuan 030001,China

doi:10.3969/j.issn.1674-4985.2018.08.005

低密度脂蛋白受体(Low density lipoprotein receptor,LDLR)是一种表达丰富的膜糖蛋白,尤其在肝细胞中含量最高。LDLR与脂代谢关系密切,血浆中大部分胆固醇被肝细胞表面的LDLR清除。因此,该基因的异常可导致血浆胆固醇水平显著上升。而高胆固醇血症又是动脉粥样硬化的首要危险因素,与冠心病、脑血管病的发病率直接相关[1-3]。

人类的羟甲基戊二酰辅酶A(HMGCoA)还原酶(HMGCR)是合成胆固醇的限速酶,胆固醇是糖皮质激素类固醇激素的前体,在血压稳态和高血压中发挥着深远的作用[4-5]。HMGCR催化HMG-CoA转化为甲羟戊酸,一种合成胆固醇的中间产物,饥饿、激素等因素主要通过对HMGCR的活性及合成的影响而实现对胆固醇合成的调节[6-8]。羟甲基戊二酰辅酶A(HMGCoA)合成酶(HMGCS)催化乙酰乙酰CoA生成HMGCoA,这两种酶都对胆固醇的调节有重要的作用[9-10]。

选择性剪接(Alternative Splicing,AS)是基因的一个mRNA前体通过不同的剪接方式选择,不同的剪接位点产生不同的mRNA剪接异构体过程,选择性剪接是高等真核细胞在转录后水平调控基因表达以及产生蛋白质组多样性的重要机制[11]。Tveten等[12]在人的8种不同组织和4种不同细胞系中提取总RNA,使用不同引物(RT-PCR分析)证实LDLR pre-mRNA存在很多变异剪接体。通过对外显子1~8及外显子3~10的分析发现了外显子4的缺失,对外显子7~14和外显子11~17的分析发现了外显子12的不表达。研究发现HMGCR经历外显子13的选择性剪接,HMG-CoA合酶(HMGCS1),拥有高度复杂的59 UTR,经历外显子2跳跃[13-14]。与全长相比,选择性剪接体结构的变化也会引起蛋白功能的变化,推测LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2、HMGCR-Exon?13等变异剪接体可能与高胆固醇血症密切相关。因此,本实验选取HepG2细胞,应用PCR技术检测,与正常组比较,LDLR-?Exon4,LDLR-?Exon12,HMGCS1-?Exon2,HMGCR-Exon?13等变异剪接体在高胆固醇模型以及低胆固醇模型中,与其基因全长相比较mRNA的表达差异,初步明确了LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2、HMGCR-Exon?13与高胆固醇血症的密切关系。现报道如下。

1 材料与方法

1.1 实验细胞 HepG2细胞系购于中科院昆明细胞库。

1.2 主要试剂和器材 MEM培养基,无菌PBS购自武汉博士德生物有限公司,胎牛血清(FBS)购自依科赛生物科技(太仓)有限公司,0.25%胰蛋白酶购自美国Gibco公司,脂蛋白缺乏人血清(LPDS),人低密度脂蛋白(Human LDL)购自上海昂羽生物技术有限公司,25-Hydroxycholesterol(25-HC)购自美国Sigma-Aldrich公司。4 ℃离心机购自德国Thermo公司,PCR仪和荧光定量PCR仪购自杭州博日科技有限公司。除GAPDH为引用文献外,其余引物根据Pubmed Gene提供的LDLR基因的RNA序列,用Primer Premier软件设计,由华大基因合成,引物序列见表1。

1.3 方法

1.3.1 细胞分组 将细胞置于37 ℃ 5%CO2,95%湿度的细胞培养箱中培养1 d,待细胞生长至对数生长期且融合面积大于70%时,正常组用10%MEM培养,低胆固醇模型组用不同浓度的LPDS血清培养24 h,高胆固醇模型组加入不同浓度含25-Hydroxycholesterol的10%MEM培养和含不同浓度的LDL的10%MEM血清培養24 h。

1.3.2 普通PCR 提取正常组细胞的RNA,反转录成cDNA后,之后使用特异性引物进行普通PCR扩增。2%琼脂糖凝胶,用荧光染料4S Green Plus预染,取10 μL PCR扩增产物电泳,紫外凝胶成像分析仪观察并拍照,检测正常细胞LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2、HMGCR-?Exon13是否存在。

1.3.3 RT-PCR 提取不同分组细胞的RNA,反转录成cDNA后,以cDNA为模板,使用SYBR Premix Ex TaqⅡ试剂盒,设定程序:95 ℃预变性30 s,

40个循环(95 ℃ 5 s,60 ℃ 30 s),熔解曲线(95 ℃ 15 s,60 ℃ 1 min,95 ℃ 15 s)。分别检测不同分组LDLR-?Exon4、LDLR-?Exon12、HMGCR1-?Exon2、HMGCR-?Exon13 mRNA表达。

1.4 统计学方法 采用SPSS 13.0软件进行统计分析,用(Mean±SEM)表示所有数据,高、低胆固醇模型组与正常组比较采用配对t检验。P<0.05为差异有统计学意义。

2 结果

2.1 HepG2细胞中LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2、HMGCR-?Exon13等变异剪接体mRNA表达检测 普通PCR检测结果HepG2显示中均有LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2、HMGCR-Exon?13及其全长的mRNA表达,见图1。

3 讨论

新近的研究表明,表观遗传机制尤其是组蛋白修饰与选择性剪接有密切的关系[15-16],组蛋白修饰对于选择性剪接调节的直接证据来自分析一系列基因的组蛋白修饰与选择性剪接的关系[17],研究发现一些基因的选择性剪接依赖于多聚嘧啶束结合蛋白(PTB)剪接因子[18-20]。PTB可以与剪接因子U2AF竞争结合3剪接位点,从而对pre-mRNA的剪接起到负性调控作用[21]。有研究显示,HepG2 细胞系转染PTB的干扰RNA后,PTB mRNA 表达下降到68%,蛋白表达下调到66%[22]。此时,检测到选择性变异剪接体LDLR-?Exon4和LDLR-?Exon12表达均下调,说明LDLR是PTB作用的靶基因。文献[23-34]报道,H3K36me3在基因外显子上富集与选择性剪接外显子的跳跃有关。在依赖于PTB的选择性剪接的外显子中,高浓度的H3K36me3能招募染色质键合蛋白MRG15,通过蛋白质间的相互作用,MRG15招募剪接因子多聚嘧啶序列结合蛋(Polypyrimidine tract-binding protein,PTB),使PTB结合到相对较弱的选择性外显子上,从而抑制PTB依赖性选择性外显子的纳入,诱导外显子跳跃。因此,推测LDLR pre-mRNA的第4、12外显子缺失,HMGCR pre-mRNA第13外显子的缺失及HMGCS1 pre-mRNA第2外显子是由PTB进行调节的,在高胆固醇血症时,组蛋白H3K36的三甲基化水平在缺失外显子周围水平升高,可与染色质结合蛋白(MRG15)结合,MRG15又可与PTB相连,通过PTB与剪接因子U2AF竞争结合3剪接位点,从而影响外显子使其被切除,LDLR-?Exon4,LDLR-?Exon12,HMGCS1-?Exon2和HMGCR-Exon?13产物的比例将明显上升,各基因全长表达下降,从而不能有效地降低血胆固醇。简言之,组蛋白修饰可能在LDLR pre-mRNA的选择性剪接中发挥了重要作用。

本文通过RT-PCR检测高、低胆固醇模型组与正常组相比,LDLR-?Exon4、LDLR-?Exon12、HMGCS1-?Exon2和HMGCR-Exon?13等变异剪接体表达确实受胆固醇的影响,与高胆固醇血症有着密切关系,但是这些变化是否由于表观遗传修饰引起的,还需要进一步的研究。

参考文献

[1] Lu N,Li Y,Qin H,et al.Gossypin Up-Regulates LDL Receptor through Activation of ERK Pathway:A Signaling Mechanism for the Hypocholesterolemic Effect[J].Journal of Agricultural & Food Chemistry,2008,56(23):11526-11532.

[2] Paulina B,Billadeau D D,Robert F,et al.CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL[J].Nature Communications,2016,7:10961.

[3] Matsui M,Sakurai F,Elbashir S,et al.Activation of LDL receptor expression by small RNAs complementary to a noncoding transcript that overlaps the LDLR promoter[J].Chemistry & Biology,2010,17(12):1344-1355.

[4] Sonawane P J,Sahu B S,Sasi B K,et al.Functional promoter polymorphisms govern differential expression of HMG-CoA reductase gene in mouse models of essential hypertension[J].PLoS One,2011,6(1):e16661.

[5] Hwang S,Hartman I Z,Calhoun L N,et al.Contribution of Accelerated Degradation to Feedback Regulation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase and Cholesterol Metabolism in the Liver[J].Journal of Biological Chemistry,2016,291(26):13479.

[6] Medina M W,Gao F,Ruan W,et al.Alternative Splicing of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Is Associated With Plasma Low-Density Lipoprotein Cholesterol Response to Simvastatin[J].Circulation,2008,118(4):355.

[7] DeBose-Boyd R A.Feedback regulation of cholesterol synthesis:sterol-accelerated ubiquitination and degradation of HMG CoA reductase[J].Cell Res,2008,18(6):609-621.

[8] Loregger A,Raaben M,Tan J,et al.Haploid Mammalian Genetic Screen Identifies UBXD8 as a Key Determinant of HMGCR Degradation and Cholesterol Biosynthesis[J].Arterioscler Thromb Vasc Biol,2017,37(11):2064-2074.

[9] Vannice J C,Skaff D A,Wyckoff G J,et al.Expression in Haloferax volcanii of 3-hydroxy-3-methylglutaryl coenzyme A synthase facilitates isolation and characterization of the active form of a key enzyme required for polyisoprenoid cell membrane biosynthesis in halophilic archaea[J].Journal of Bacteriology,2013,195(17):3854-3862.

[10] Mathews E S,Mawdsley D J,Walker M,et al.Mutation of 3-Hydroxy-3-Methylglutaryl CoA Synthase I Reveals Requirements for Isoprenoid and Cholesterol Synthesis in Oligodendrocyte Migration Arrest, Axon Wrapping, and Myelin Gene Expression[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2014,34(9):3402.

[11] Lee Y,Rio D C.Mechanisms and Regulation of Alternative Pre-mRNA Splicing[J].Annual Review of Biochemistry,2015,84(84):291.

[12] Tveten K,Ranheim T,Berge K E,et al. Analysis of alternatively spliced isoforms of human LDL receptor mRNA[J].Clin Chim Acta,2006,373(1-2):151-157.

[13] Gil G,Smith J R,Goldstein J L,et al.Optional exon in the 5-untranslated region of 3-hydroxy-3-methylglutaryl coenzyme A synthase gene:conserved sequence and splicing pattern in humans and hamsters[J].Proceedings of the National Academy of Sciences of the United States of America,1987,84(7):1863.

[14] Yu C Y,Theusch E,Lo K,et al.HNRNPA1 regulates HMGCR alternative splicing and modulates cellular cholesterol metabolism[J].Human Molecular Genetics,2014,23(2):319.

[15] Podlaha O,De S,Gonen M,et al.Histone Modifications Are Associated with Transcript Isoform Diversity in Normal and Cancer Cells[J].PLoS Computational Biology,2014,10(6):e1003611.

[16] Sharma A,Nguyen H,Geng C,et al.Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(46):4920-4928.

[17] Llorian M,Schwartz S,Clark T A,et al.Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB[J].Nature Structural & Molecular Biology,2010,17(9):1114.

[18] Luco R F,Allo M,Schor I E,et al.Epigenetics in alternative pre-mRNA splicing[J].Cell,2011,144(1):16-26.

[19] Gooding C,Edge C,Lorenz M,et al.MBNL1 and PTB cooperate to repress splicing of Tpm1 exon 3[J].Nucleic Acids Research,2013,41(9):4765-4782.

[20] Mickleburgh I,Kafasla P,Cherny D,et al.The organization of RNA contacts by PTB for regulation of FAS splicing[J].Nucleic Acids Research,2014,42(13):8605-8620.

[21] Wagner E J,Garcia-Blanco M A.Polypyrimidine tract binding protein antagonizes exon definition[J].Molecular & Cellular Biology,2001,21(10):3281.

[22] Medina M W,Gao F,Naidoo D,et al.Coordinately Regulated Alternative Splicing of Genes Involved in Cholesterol Biosynthesis and Uptake[J].PLoS One,2011,6(4):e19420.

[23]趙金璇,王芳,徐峥嵘,等,表观遗传调控pre-mRNA的选择性剪接[J].遗传,2014,36(3):248-255.

[24] Luco R F,Pan Q,Tominaga K,et al.Regulation of Alternative Splicing by Histone Modifications[J].Science,2010,327(5968):996-1000.

(收稿日期:2017-12-22) (本文编辑:程旭然)

猜你喜欢
胆固醇
别再跟胆固醇较劲了
胆固醇:“好坏”比“高低”更重要
控制饮食后,胆固醇为何还降不下来?
“坏胆固醇”并非越低越好
胆固醇与花盆
单靠节食难降脂
胆固醇风波
胆固醇指标高需要吃药治疗吗
阅读理解Ⅳ
不要拒绝好胆固醇