摘要:
血管生成抑制剂已被证明是一类有效的肿瘤治疗药物.概述了从单靶点、多靶点,到广谱血管生成抑制剂在临床上的应用;介绍了单克隆抗体、小分子和内源性的血管生成抑制剂及其相应靶点,讨论了新的靶点及有前景的新型血管生成抑制剂,希望为未来临床治疗提供切实的帮助.
关键词:
肿瘤; 血管生成; 血管生成抑制剂
中图分类号: R 730.53文献标志码: A文章编号: 1000-5137(2018)01-0132-07
Current clinical application progress in angiogenesis inhibitors
Lu Yu
(Nanjing Tianyi Bioscience Co.Ltd.,Nanjing 210061,China)
Abstract:
Inhibition of angiogenesis is an established modality of cancer treatment.We summarized angiogenesis inhibitors of three modalities:single-target,multi-target and broad-spectrum agents.We discussed the clinical efficacy of monoclonal antibodies,small molecules,endogenous angiogenesis inhibitors and their molecular targets.The promising targets and antiangiogenic treatments were discussed as well.This reviewing article may offer practical help for cancer therapy in the future.
Key words:
tumor; angiogenesis; angiogenesis inhibitors
收稿日期: 2016-06-03
基金項目: 江苏省自然科学基金(BK20130106)
作者简介: 陆宇(1979-),女,博士,主要从事癌症靶向治疗方面的研究.E-mail:lu_yu@PharmaBlock.com
引用格式: 陆宇.肿瘤血管生成抑制剂临床应用进展 [J].上海师范大学学报(自然科学版),2018,47(1):132-138.
Citation format: Lu Y.Current clinical application progress in angiogenesis inhibitors [J].Journal of Shanghai Normal University(Natural Sciences),2018,47(1):132-138.
0引言
血管生成(Angiogenesis)是一个涉及多种细胞、多种分子的复杂过程.在这一过程中,多种促血管生成因子和抗血管生成因子失衡,已有的毛细血管或毛细血管后静脉逐渐发展,形成新的血管,血管中携带的营养和氧气是肿瘤生存、扩增以及迁移到身体其他部位的必需条件,因此血管生成对于肿瘤的生长和转移,起着至关重要的作用[1].
肿瘤新生血管是异常增生的血管.与正常血管相比,无论在结构还是功能方面都有很多差异.肿瘤新生血管分布不规则,血管扩张,管壁薄且有较少周细胞覆盖.新生血管内皮不连续,有肿瘤细胞嵌入血管内皮形成马赛克结构.
研发有效截断肿瘤血供、抑制新生血管的血管生成抑制剂,已经成为当今肿瘤治疗及防止肿瘤扩散的研究热点之一[2].与传统化疗药物相比,肿瘤血管生成抑制剂有以下主要特点:
1)专一针对肿瘤血管,副作用较小;
2)用药量小,疗效高.由于药物直接作用于血管内皮,无需进入实体瘤内部,因此少量药物即可破坏血管内皮细胞,引起血管堵塞.阻断一根毛细血管,就可以“饿死”成千上万个肿瘤细胞;
3)耐药性小.这是一个显著而且重要的特点.临床上化疗药物治疗失败的主要原因是机体产生耐药性.从理论上讲,这是由于血管内皮细胞不像肿瘤细胞那样容易突变.
目前已上市或处于研发阶段的血管生成抑制剂主要靶点集中在促血管生成因子.其中:血管内皮生长因子(Vascular Endothelial Growth Factor,VEGF)、血管内皮生长因子受体(VEGF Receptor,VEGFR)、成纤维细胞生长因子(Fibroblast Growth Factor,FGF)、成纤维细胞生长因子受体(FGF Receptor,FGFR)和血小板衍生生长因子受体(Platelet-derived Growth Factor Receptor,PDGFR)最受关注.
本文作者将概述这些血管生成抑制剂在临床上的应用,希望能为未来临床治疗提供切实的帮助.
1单靶点血管生成抑制剂
常规化疗影响细胞周期,从而产生显著的毒副作用,如脱发、口腔粘膜炎和免疫抑制.为了减少这种整体的脱靶毒性,肿瘤治疗的策略是设计小分子抑制剂和单克隆抗体(单抗),特异性地抑制细胞内被过度激活的通路.
特异性抑制VEGF的单克隆抗体,原则上可以抑制病理性血管生成,因此开发这类抗体成为治疗一系列恶性肿瘤的一个策略[3].
1.1贝伐单抗(Bevacizumab,Avastin)
贝伐单抗(Bevacizumab,Avastin)是重组人源化单克隆抗体,体内、体外实验证实它能与人VEGF结合,并阻断VEGF生物活性.在III期临床试验中,贝伐单抗与化疗相结合,治疗转移性结直肠癌,表现出显著优势[4].2004年,美国食品药品监督管理局(Food and Drug Administration,FDA)批准贝伐单抗与5-FU为基础的组合方案,用于治疗转移性结直肠癌.
单独使用贝伐单抗,在很多情况下,仅有10%或更低的应答率;而贝伐单抗与细胞毒类药物联用时,有效性(包括持续增加的应答率,无进展生存期(Progression Free Survival,PFS))却有极显著的提高.对这一现象的科学解释目前还在研究中[5].
1.2有抗血管生成作用的其他单克隆抗体
除贝伐单抗以外,具有抗血管生成功能的单抗还包括:抑制上皮生长因子受体(Epidermal Growth Factor Receptor,EGFR/HER)的西妥昔单抗(Cetuximab,爱必妥),曲妥珠单抗(Trastuzumab,赫赛汀)和帕尼单抗(Panitumumab,维克替比).
抑制EGFR的单抗,能够抗血管生成,是因为VEGF和EGF/HER两条信号通路相互有交叉.在人类大肠癌细胞系和异种移植模型中,西妥昔单抗下调VEGF的表达[6],这表明EGF信号通路介导VEGF通路的激活与肿瘤血管生成.另一方面,EGFR与VEGF的表达,以及淋巴结阳性乳腺癌中淋巴管的生成相关[7].
2多靶点血管生成抑制剂:VEGFR和相关靶点
单靶点血管生成抑制剂常常导致耐药的发生.临床上,发生肿瘤转移的病人,若单一使用贝伐单抗,耐药会迅速发生[8].现在认为,特异性地抑制VEGF通路,在治疗初期,肿瘤内皮细胞的增殖和存活会减少,这是有益的;但随着治疗的持续进行,药效降低、耐药性等多个问题会逐渐产生.肿瘤的生长和存活由多种受体和信号通路组成的复杂网络调控,在这一网络系统中,信号通路之间存在相互作用,同一条通路中的上下游信号之间存在多种联系,因此,单一针对某一特定靶点的抑制剂不能完全达到抑制肿瘤的效果,且易引起耐药的发生.开发能够作用在复杂信号通路系统中的多靶点抑制剂在临床治疗中已成为越来越迫切的需求.
2.1酪氨酸激酶抑制剂(Tyrosine Kinase Inhibitors,TKIs)
多靶点抑制剂可同时作用于多个分子靶点,产生多种药理活性,可以最大限度地抑制肿瘤形成过程中被激活的多条信号通路;可避免药物相互作用的产生;作用全面,毒副反应减少,患者的依从性更佳,从而达到最佳的治疗效果.临床前证据表明,多靶点抑制是一个健全的抗肿瘤治疗策略[9].
TKIs是多靶点抑制剂,作用机制与抗体不同.它们是小分子且疏水,因此可以穿过细胞膜,直接与受体和/或在细胞内的结合域产生相互作用.一些TKIs在III期临床试验中单独使用,可产生30%~40%的应答率[10],有时它们也可以提高生存率[11].在一些临床实验中,TKIs与化疗联合使用,在晚期非小细胞肺癌的治疗上,显示出优越性,虽然在一些实验中,TKI不能延长总生存期(Overall Survival,OS)[12-13].
临床上有一些抑制VEGFR的TKIs,除了能够抑制VEGFR外,还能抑制其他受体靶点,这些抑制剂包括:苏尼替尼(Sunitinib),阿西替尼(Axitinib),帕佐帕尼(Pazopanib),范得他尼(Vandetanib),索拉非尼(Sorafenib)和尼达尼布(Nintedanib).
2.1.1苏尼替尼(Sunitinib,Sutent,SU11248)
苏尼替尼是由辉瑞公司开发的一种新型吲哚酮类口服多靶点酪氨酸激酶抑制剂,它可对VEGFR-1、VEGFR-2、VEGFR-3、PDGFR-α、PDGFR-β、FLT-3和CSF-1R产生特异性抑制作用[14].苏尼替尼可用于治疗甲磺酸伊马替尼治疗失败或不能耐受的胃肠道间质瘤患者,也可用于晚期肾细胞癌患者.
2.1.2阿西替尼(AG013736)
阿西替尼是由辉瑞公司开发的选择性VEGFR-1、VEGFR-2和VEGFR-3的抑制剂[15].2012年1月批准上市,用于其他系统治疗无效的晚期肾癌.
2.1.3帕佐帕尼(GW 786034)
帕佐帕尼是由葛兰素史克公司开发的多靶点酪氨酸激酶抑制剂,于2009年批准上市.它可以抑制VEGFR-1、VEGFR-2、VEGFR-3、PDGFR-α、PDGFR-β、FGFR-1、FGFR-3和c-KIT等多种酪氨酸激酶[16],用于治疗晚期肾细胞癌患者.
2.1.4范得他尼(ZD6474)
范得他尼是一种口服、小分子VEGFR-2、EGFR和RET酪氨酸激酶多靶点抑制剂.属于合成的苯胺喹唑啉化合物,还可选择性抑制其他酪氨酸激酶(如Flt-1、PDGFR、Tie-2、FGFR-1、erbB-2、IGF-1R等)及丝氨酸苏氨酸激酶等[17].2006年2月FDA批准范得他尼用于治疗甲状腺癌.
2.1.5索拉非尼(Nexevar,BAY43-9006)
索拉非尼是由拜尔和 Onyx pharmaceuticals公司开发的双芳基脲类化合物,2005年上市.它是目前世界上第一个被批准应用于临床的多靶点药物,用于治疗无法手术或远处转移的肝细胞癌及不能手术的晚期肾细胞癌.它靶向抑制VEGFR-1、VEGFR-2和VEGFR-3,产生抗血管生成作用.研究发现,索拉非尼还可以作用于PDGFR-β、FGFR、c-KIT、FLT-3和RET等多种酪氨酸激酶以及RAF-1、B-RAF丝氨酸/苏氨酸激酶[18].
2.1.6尼达尼布(BIBF1120)
尼达尼布是一种有效的三重血管激酶抑制剂,对VEGFR1/2/3,FGFR1/2/3和PDGFRα/β均有抑制作用.尼达尼布在2014年被FDA批准治疗非小细胞肺癌[19-20].同时,一些临床实验正在评估尼达尼布与化疗联合使用的疗效[21-22].对于晚期非小细胞肺癌,联合使用尼达尼布和多西紫杉醇(Docetaxel)作為二线治疗方案,可延长PFS,并且在若干亚型中提高了OS[23].在一线化疗失败后,合用尼达尼布和培美曲塞(Pemetrexed),有报道PFS被延长[24].
2.2TKI +单抗:组合治疗
传统的肿瘤治疗方案强调外科手术、放疗、化疗及生物治疗等多种方法综合运用,这对TKI治疗也有借鉴之处.对VEGF通路中的不同靶点,按照一定的组合方式进行治疗,从而获得最大效果[25-26].
同时抑制VEGF及其受体的方法曾被检验过.贝伐单抗与索拉非尼或苏尼替尼的联合治疗对于晚期实体瘤的治疗是有效的,但是苏尼替尼的使用剂量需要减少[27].而在晚期肾细胞癌患者中,若联合使用贝伐单抗,则毒性会过大[28].类似地,治疗晚期乳腺癌和非小细胞肺癌时,若同时使用苏尼替尼,则需降低贝伐单抗和化疗的剂量[29].使用靶向VEGF通路的抗血管生成治疗,相关的常见毒性包括:疲劳、高血压、腹泻、恶心、呕吐、严重出血、胃腸道穿孔、蛋白尿和骨髓抑制[30].这可能是由于血管中的生长因子信号通路被干扰,影响生理平衡,从而降低内皮细胞的存活,损害血管的完整性,最终引发毒性反应.
3广谱血管生成抑制剂:内源性和多肽抗血管生成剂
多靶点TKIs可能会产生较大副作用,因为他们的全身用药会影响到多种细胞类型.因此,应避免TKIs与化疗的联合使用,因为这样会加重副作用.
对于某些广谱血管生成抑制剂,如血管抑素和内皮抑素,抗血管生成活性似乎与毒性并不相关.
3.1血管抑素
血管抑素是分子量为38 kDa的纤溶酶原的N端片段.在临床研究中,它阻断血管生成,抑制肿瘤转移.血管抑素的细胞表面结合分子包括:ATP合成酶、硫酸软骨素蛋白聚糖NG2、Angiomotin、整合素Avb3、C-met和Annexin II.这些配体在体外有广泛的抗血管生成活性,其中包括诱导内皮细胞凋亡,抑制丝状伪足延伸,迁移和微管形成,并在体内抑制肿瘤生长和转移[31-32].
此外,血管抑素的抗肿瘤活性并不仅限于其抗血管生成的作用.它可直接作用于肿瘤细胞,增加细胞凋亡,减少细胞增殖速率,并具有抗炎作用.一项I期临床试验表明,血管抑素皮下给药是安全的,可长期使用[33].一项II期临床研究显示,在晚期非小细胞肺癌治疗中,与对照组相比,血管抑素与紫杉醇和卡铂联用,可提高疾病控制率[34].
3.2内皮抑素
内皮抑素是分子量为20 kDa的胶原蛋白XVIII的C端片段[35],是主要存在于血管周围基底膜的蛋白多糖,它可抑制生长因子,如VEGF和FGF,影响内皮细胞存活、增殖和迁移,影响细胞骨架,血管周围细胞募集以及细胞外基质重塑[36-39].
可溶性重组内皮抑素可以抑制小鼠模型中的内皮细胞迁移和肿瘤生长;而不溶性的重组内皮抑素无法引起肿瘤的消退[35].
使用内皮抑素联合贝伐单抗,可防止患者在使用单抗过程中高血压的发生,因为血管内皮抑制素被证明能通过内皮细胞和平滑肌细胞增加一氧化氮的产生,从而舒张血管,降低血压.事实上,Meta[40]分析内皮抑素的临床试验结果显示患者的血压有一个虽然小但却是显著性的降低.过去十年在这方面积累的知识为开展内皮抑素的临床试验奠定了基础.
4有前景的新靶点及新型选择性抑制剂
人们不断寻求新的靶点和治疗药物,目的是开发更多的选择性抑制剂,以克服特异性的VEGF/VEGFR抑制剂所产生的获得性耐药,并且减少负面的脱靶效应.
肿瘤内皮标记物8 (Tumor Endothelial Marker 8,TEM8)的抑制剂可以选择性抑制肿瘤细胞表面分子的过表达,它有可能成为有前景的抗血管生成药物.体外和体内研究表明,抑制TEM8显示出抗肿瘤活性,抑制肿瘤诱导的血管生成,并且能够增加其他治疗药物的活性,但不显著提高毒性[41].
同样的情况,还有MNRP1685A,一个针对神经毡蛋白1(Neuropilin-1,NRP1)的单克隆抗体.NRP1在血管生成中起重要作用,涉及调控血管内皮细胞的迁移和出芽.目前,这一单抗正在晚期实体瘤患者中开展I期临床试验.单一使用这种单抗,或是与贝伐单抗联合使用,均显示出良好的耐受性[42-43].
人源化单克隆抗体TB-403(RO5323441)靶向胎盘生长因子(Placenta Growth Factor,PIGF),并且与VEGFR-1结合,也被认为是一种新的治疗策略.一些临床前研究表明,它显著性抑制肿瘤生长和转移[44].然而,关于这种细胞因子对血管生成和肿瘤生长影响的争议仍然存在[45].在治疗晚期实体瘤的I期临床试验中,TB-403被证明有很好的耐受性,但表现出与抑制VEGF通路不同的安全性数据.在给药后第8周,23例患者中有6例病情稳定[46].
参与肿瘤细胞与微环境相互作用的分子逐渐成为新的靶标.临床前研究表明,CXCR4和CXCL12在肿瘤生长和转移过程中起关键作用.一种CXCR4的抑制剂普乐沙福(Mozobil,AMD3100),被FDA批准作为促进造血CD34+细胞从骨髓到血液循环的驱动剂.它在I期临床试验中,与化疗联合使用,评价其对AML患者的疗效.鉴于普乐沙福良好的化学增敏性和耐受性,一项II期临床研究评价了它在接受化疗方案之前的急性骨髓性白血病复发患者中的疗效,结果良好.对于实体瘤,单独使用一种CXCL12的类似物 CTCE-9908,患者显示出良好的耐受性,20%的患者病情稳定[47-50].
同样,由骨髓细胞产生的因子 Prokinecticin2 (PROK2/PK2/Bv8),已成为治疗靶点.在最近的研究中,一个PK2的小分子拮抗剂 PKRA7,能够抑制胶质母细胞瘤和胰腺癌在小鼠异种移植模型中的肿瘤生长[51-52].
5总结与展望
肿瘤的血管生成是一个复杂的过程,通过治疗逆转这一过程同样复杂或者更甚.过去十年里,抗血管生成药物作为化疗辅助手段治疗多种癌症,其研究成果已取得了相当大的进展,并逐步用于临床.事实上,VEGFR抑制剂在治疗晚期肾癌、肝癌、胃肠道间质肿瘤和甲状腺髓样癌已被证明是有效的.然而这些用于单药治疗的制剂,如果与化疗联合使用时,却产生了负结果.另一方面,贝伐单抗通常与细胞毒类药物联用,以提高疗效,但是在肿瘤发生转移的患者中,这一方案会产生快速耐药.人们期待新型的抗血管生成药物可以面世,它们与化疗联合使用,以达到长期的持续应答.
隨着基础研究和临床诊疗技术的不断发展,抗血管生成药物的开发和使用会不断成熟,从而更好地在肿瘤治疗中发挥作用.
参考文献:
[1]Bentink S,Haibe-Kains B,Risch T,et al.Angiogenic mRNA and microRNA gene expression signature predicts a novel subtype of serous ovarian cancer [J].PloS One,2012,7(2):30269.
[2]Van Beurden-Tan C H Y,Franken M G,Blommestein H M,et al.Systematic literature review and network meta-analysis of treatment outcomes in relapsed and/or refractory multiple myeloma [J].Journal of Clinical Oncology,2017,35(12):1312-1319.
[3]Dey N,De P,Brian L J.Evading anti-angiogenic therapy:resistance to anti-angiogenic therapy in solid tumors [J].American Journal of Translational Research,2015,7(10):1675-1698.
[4]Zhou M,Yu P,Qu J,et al.Efficacy of bevacizumab in the first-line treatment of patients with RAS mutations metastatic colorectal cancer:a systematic review and network meta-analysis [J].Cellular Physiology and Biochemistry,2016,40(1-2):361-369.
[5]Behera M,Pillai R N,Owonikoko T K,et al.Bevacizumab in combination with taxane versus non-taxane containing regimens for advanced/metastatic nonsquamous non-small-cell lung cancer:a systematic review [J].2015,10(8):1142-1147.
[6]Arjaans M,Schroder C P,Oosting S F,et al.VEGF pathway targeting agents,vessel normalization and tumor drug uptake:from bench to bedside [J].Oncotarget,2016,7(16):21247-21258.
[7]Schoppmann S F,Tamandl D,Roberts L,et al.HER2/neu expression correlates with vascular endothelial growth factor-C and lymphangiogenesis in lymph node-positive breast cancer [J].Annals of Oncology,2010,21(5):955-960.
[8]Backen A,Renehan A G,Clamp A R,et al.The combination of circulating Ang1 and Tie2 levels predicts progression-free survival advantage in bevacizumab-treated patients with ovarian cancer [J].Clinical Cancer Research,2014,20(17):4549-4558.
[9]Taeger J,Moser C,Hellerbrand C,et al.Targeting FGFR/PDGFR/VEGFR impairs tumor growth,angiogenesis,and metastasis by effects on tumor cells,endothelial cells,and pericytes in pancreatic cancer [J].Molecular Cancer Therapeutics,2011,10(11):2157-2167.
[10]Minuti G,D′Incecco A,Landi L,et al.Protein kinase inhibitors to treat non-small-cell lung cancer [J].Expert Opinion on Pharmacotherapy,2014,15(9):1203-1213.
[11]Abdel-Rahman O,Fouad M.Efficacy and toxicity of sunitinib for non clear cell renal cell carcinoma (RCC):a systematic review of the literature [J].Critical Reviews in Oncology/Hematology,2015,94(2):238-250.
[12]Paz-Ares L G,Biesma B,Heigener D,et al.Phase III,randomized,double-blind,placebo-controlled trial of gemcitabine/cisplatin alone or with sorafenib for the first-line treatment of advanced,nonsquamous non-small-cell lung cancer [J].Journal of Clinical Oncology,2012,30(25):3084-3092.
[13]Kopetz S,Hoff P M,Morris J S,et al.Phase II trial of infusional fluorouracil,irinotecan,and bevacizumab for metastatic colorectal cancer:efficacy and circulating angiogenic biomarkers associated with therapeutic resistance [J].Journal of Clinical Oncology,2010,28(3):453-459.
[14]Afriansyah A,Hamid A R,Mochtar C A,et al.Targeted therapy for metastatic renal cell carcinoma [J].Acta Medica Indonesiana,2016,48(4):335-347.
[15]Wang H,Man L,Li G,et al.Comparative efficacy and safety of axitinib versus sorafenib in metastatic renal cell carcinoma:a systematic review and meta-analysis [J].OncoTargets and Therapy,2016,9:3423-3432.
[16]Cella D,Beaumont J L.Pazopanib in the treatment of advanced renal cell carcinoma [J].Therapeutic Advances in Urology,2016,8(1):61-69.
[17]Fallahi P,Ferrari S M,Baldini E,et al.The safety and efficacy of vandetanib in the treatment of progressive medullary thyroid cancer [J].Expert Review of Anticancer Therapy,2016,16(11):1109-1118.
[18]Tang Z,Kang M,Zhang B,et al.Advantage of sorafenib combined with radiofrequency ablation for treatment of hepatocellular carcinoma [J].Tumori,2017,103(3):286-291.
[19]Reck M,Kaiser R,Eschbach C,et al.A phase II double-blind study to investigate efficacy and safety of two doses of the triple angiokinase inhibitor BIBF 1120 in patients with relapsed advanced non-small-cell lung cancer [J].Annals of Oncology,2011,22(6):1374-1381.
[20]Ledermann J A,Hackshaw A,Kaye S,et al.Randomized phase II placebo-controlled trial of maintenance therapy using the oral triple angiokinase inhibitor BIBF 1120 after chemotherapy for relapsed ovarian cancer [J].Journal of Clinical Oncology,2011,29(28):3798-3804.
[21]Manzo A,Carillio G,Montanino A,et al.Focus on nintedanib in NSCLC and other tumors [J].Front Med (Lausanne),2016,3:68.
[22]Awasthi N,Schwarz R E.Profile of nintedanib in the treatment of solid tumors:the evidence to date [J].OncoTargets and Therapy,2015,8:3691-3701.
[23]Espinosa B M,Asensi D R,Garcia A S,et al.Nintedanib in combination with docetaxel for second-line treatment of advanced non-small-cell lung cancer;GENESIS-SEFH drug evaluation report [J].Farm Hosp,2016,40(4):316-327.
[24]Popat S,Mellemgaard A,Fahrbach K,et al.Nintedanib plus docetaxel as second-line therapy in patients with non-small-cell lung cancer:a network meta-analysis [J].Future Oncology (London,England),2015,11(3):409-420.
[25]El Guerrab A,Bamdad M,Kwiatkowski F,et al.Anti-EGFR monoclonal antibodies and EGFR tyrosine kinase inhibitors as combination therapy for triple-negative breast cancer [J].Oncotarget,2016,7(45):73618-73637.
[26]Pirazzoli V,Ayeni D,Meador C B,et al.Afatinib plus cetuximab delays resistance compared to single-agent erlotinib or afatinib in mouse models of TKI-naive EGFR L858R-induced lung adenocarcinoma [J].Clinical Cancer Research,2016,22(2):426-435.
[27]Hecht J R,Mitchell E P,Yoshino T,et al.5-Fluorouracil,leucovorin,and oxaliplatin (mFOLFOX6) plus sunitinib or bevacizumab as first-line treatment for metastatic colorectal cancer:a randomized Phase IIb study [J].Cancer Management and Research,2015,7:165-173.
[28]Feldman D R,Baum M S,Ginsberg M S,et al.Phase I trial of bevacizumab plus escalated doses of sunitinib in patients with metastatic renal cell carcinoma [J].Journal of Clinical Oncology,2009,27(9):1432-1439.
[29]Mayer E L,Dhakil S,Patel T,et al.SABRE-B:an evaluation of paclitaxel and bevacizumab with or without sunitinib as first-line treatment of metastatic breast cancer [J].Annals of Oncology,2010,21(12):2370-2376.
[30]Xu W,Kuang M,Chen J.Survival benefit and safety of the combinations of FOLFOXIRI±bevacizumab versus the combinations of FOLFIRI±bevacizumab as first-line treatment for unresectable metastatic colorectal cancer:a meta-analysis [J].OncoTargets and Therapy,2016,9:4833-4842.
[31]Lee T Y,Muschal S,Pravda E A,et al.Angiostatin regulates the expression of antiangiogenic and proapoptotic pathways via targeted inhibition of mitochondrial proteins [J].Blood,2009,114(9):1987-1998.
[32]Goretzki L,Lombardo C R,Stallcup W B.Binding of the NG2 proteoglycan to kringle domains modulates the functional properties of angiostatin and plasmin(ogen) [J].Journal of Biological Chemistry,2000,275(37):28625-28633.
[33]Almeida I,Oliveira GA,Lima M,et al.Different contributions of angiostatin and endostatin in angiogenesis impairment in systemic sclerosis:a cohort study [J].Clinical and Experimental Rheumatology,2016,34 Suppl 100(5):37-42.
[34]Kurup A,Lin C,Murry D J,et al.Recombinant human angiostatin (rhAngiostatin) in combination with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer:a phase II study from Indiana University [J].Annals of Oncology,2006,17(1):97-103.
[35]Walia A,Yang J F,Huang Y H,et al.Endostatin′s emerging roles in angiogenesis,lymphangiogenesis,disease,and clinical applications [J].Biochimica et Biophysica Acta (BBA)-Bioenergetics,2015,1850(12):2422-2438.
[36]Poluzzi C,Iozzo R V,Schaefer L.Endostatin and endorepellin:A common route of action for similar angiostatic cancer avengers [J].Advanced Drug Delivery Reviews,2016,97:156-173.
[37]Myren M,Kirby D J,Noonan M L,et al.Biglycan potentially regulates angiogenesis during fracture repair by altering expression and function of endostatin [J].Matrix Biology,2016,52:141-150.
[38]Poon R T P,Ho J W Y,Tong C S W,et al.Prognostic significance of serum vascular endothelial growth factor and endostatin in patients with hepatocellular carcinoma [J].British Journal of Surgery,2004,91(10):1354-1360.
[39]Zhang Y,Wang H,Qian Z,et al.Low-voltage-activated T-type Ca2+ channel inhibitors as new tools in the treatment of glioblastoma:the role of endostatin [J].Pflügers Archiv.European Journal of Physiology,2014,466(4):811-818.
[40]Sunshine S B,Dallabrida S M,Durand E,et al.Endostatin lowers blood pressure via nitric oxide and prevents hypertension associated with VEGF inhibition [J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(28):11306-11311.
[41]Chaudhary A,Croix B S.Selective blockade of tumor angiogenesis [J].Cell Cycle,2012,11(12):2253-2259.
[42]Patnaik A,LoRusso P M,Messersmith W A,et al.A Phase Ib study evaluating MNRP1685A,a fully human anti-NRP1 monoclonal antibody,in combination with bevacizumab and paclitaxel in patients with advanced solid tumors [J].Cancer Chemotherapy and Pharmacology,2014,73(5):951-960.
[43]Weekes C D,Beeram M,Tolcher A W,et al.A phase I study of the human monoclonal anti-NRP1 antibody MNRP1685A in patients with advanced solid tumors [J].Investigational New Drugs,2014,32(4):653-660.
[44]Fischer C,Jonckx B,Mazzone M,et al.Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels [J].Cell,2007,131(3):463-475.
[45]Hedlund E M,Yang X,Zhang Y,et al.Tumor cell-derived placental growth factor sensitizes antiangiogenic and antitumor effects of anti-VEGF drugs [J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(2):654-659.
[46]Lassen U,Nielsen D L,Sorensen M,et al.A phase I,dose-escalation study of TB-403,a monoclonal antibody directed against PlGF,in patients with advanced solid tumours [J].British Journal of Cancer,2012,106(4):678-684.
[47]Jantunen E,Varmavuo V,Valtola J.Plerixafor injection:a hematopoietic stem cell mobilizer in non-Hodgkin lymphoma and multiple myeloma [J].Expert Review of Hematology,2016,9(8):723-732.
[48]Bilgin Y M,De Greef G E.Plerixafor for stem cell mobilization:the current status [J].Current Opinion in Hematology,2016,23(1):67-71.
[49]Wong D,Kandagatla P,Korz W,et al.Targeting CXCR4 with CTCE-9908 inhibits prostate tumor metastasis [J].BMC Urology,2014,14:12.
[50]Drenckhan A,Kurschat N,Dohrmann T,et al.Effective inhibition of metastases and primary tumor growth with CTCE-9908 in esophageal cancer [J].Journal of Surgical Research,2013,182(2):250-256.
[51]Curtis V F,Wang H,Yang P,et al.A PK2/Bv8/PROK2 antagonist suppresses tumorigenic processes by inhibiting angiogenesis in glioma and blocking myeloid cell infiltration in pancreatic cancer [J].PloS One,2013,8(1):54916.
[52]Ito H,Noda K,Yoshida K,et al.Prokineticin 2 antagonist,PKRA7 suppresses arthritis in mice with collagen-induced arthritis [J].BMC Musculoskeletal Disorders,2016,17:387.