孟献青
(山西大同大学数学与计算机科学学院,山西大同 037009)
一题多解教学是启发和引导学生从不同的角度,用不同的方法解决同一数学问题的教学形式。一题多解可以帮助学生提高对高等数学的学习兴趣,帮助学生深刻理解定理内在的意义,增强学生对各个方法之间的联系,培养学生从不同角度,不同方面学以致用,使乏味的高等数学活灵活现。下面以求解不定积分为例,充分体现一题多解在高等数学中的作用。
不定积分的计算必须具有扎实且丰富的基础知识。常用的计算不定积分的方法有基本积分公式,不定积分的第一类换元法和第二类换元法,分部积分法,有理函数的积分。第一类换元法主要是凑微分法和代数换元法,第二类换元法主要是三角换元法。另外在做题过程中,也可以结合加项减项法,三角函数的恒等变形等简化计算。对于不定积分的计算,方法比较多,而且也比较灵活,只有通过较多的练习,才能将各种方法熟练地结合起来,才能更快更好的计算不定积分。
例1计算不定积分
首先,考虑用第一类换元法求解,于是有
解1(凑微分法)
解4(代数换元法)
解5(三角换元法)
另外,也可以考虑把第一类换元法和分部积分法结合起来进行计算。由解2知,于是
解6(分部积分法)
解7(综合法)
解1(凑微分法)
解2(分部积分法)
解3(换元积分法)
解1(凑微分法)
解3(换元法)令x=t,则x=t2,dx=2tdt
解 4(换元法)令 4-x=t,则x=4-t2,dx=-2tdt,
解5(换元法)令x=2+t,则dx=dt,
解3到解5都是先用换元法,然后再凑微分,但是解5的方法比较巧妙。
解6(三角换元法)
通过一题多解的训练,不仅可以激发学生的学习兴趣,而且还可以开拓他们的解题思路,把学过的知识和方法融会贯通起来。在一题多解的教学过程中,学生的解题思路、方法有机会在其他同学面前展现,这不仅能获得教师的认可,而且还可以增加学生的成就感,这样学生就能更加积极主动地参与到课程的学习中,而不是被动地接受,于是这种积极的心态就能极大地增强学生学好数学的信心,所以一题多解是培养学生发散思维,提高数学兴趣的一种有效教学手段。
[1]同济大学数学系.高等数学(第七版)[M].北京:高等教育出版社,2014.
[2]孟献青,高晓燕.关于曲线积分计算的探讨[J].山西大同大学学报(自然科学版),2017,33(6):12-13.
[3]龚友运.从不定积分的一题多解浅析高等数学的发散思维[J].教育教学论坛,2011(6):73-75.
[4]周后卿.积分中的一题多解与思维训练[J].广西教育学院学报,2014(2):158-160.