袁阳,张泓,陈玲
结核病是由结核分枝杆菌(MTB)感染引起的慢性传染性疾病。异质性耐药是一种特殊的耐药现象,迄今为止,异质性耐药在利福平、异烟肼、链霉素、乙胺丁醇及氟喹诺酮中均有报道[1-2];此外,耐多药结核病(MDR)及敏感、多耐药或单耐药菌株亦存在异质性耐药[1,3-7],该现象可能是菌株对利福平、异烟肼、链霉素、乙胺丁醇及氟喹诺酮敏感性发生变化的原因之一[8],分析其发生机制主要为混合感染或单一菌株分化成耐药和敏感菌株[2,9-10]。自1975年首次发现结核菌异质性耐药至今[11],异质性耐药一直是药物敏感试验(DST)和GeneXpert法诊断菌株耐药假阴性率不断增加的原因之一[12-13],而早期诊断异质性耐药对制定最佳抗结核方案及抑制全耐药菌株出现具有重要意义[14],但如何提高异质性耐药检出率是目前临床研究难题。笔者通过检索相关文献,综述了MTB异质性耐药的诊断方法,以期为临床早期诊断耐药结核病提供参考。
结核杆菌生长缓慢且具有生物危害,故表型DST存在成本较高、费时及可比性较差等缺点[15];此外,表型DST诊断异质性耐药的灵敏度较低[16]。VAN DEUN等[17]研究结果显示,表型DST很难检测出低水平利福平耐药,分析其原因可能与耐利福平菌株数量少及生长缓慢有关[18]。既往研究结果显示,MTB异质性耐药是导致表型DST结果不同的主要原因之一[19]。与表型DST相比,微量肉汤稀释法对乙胺丁醇和异烟肼耐药的检出率较高[20-21],但不能检测出低水平利福平耐药[18]。近年来,临床出现很多新的、快速的表型DST方法,虽然在不同实验室行表型DST或培养基前处理对检测结果无明显影响[4,22],但传统比例法仍是目前公认的诊断耐药菌株(耐药菌株占总菌株比例>1%时)较可靠、敏感的实验室方法[23]。
MTB是单倍体菌株,其基因组的每个位点均有单一核苷酸代表DNA[24]。因此,异质性耐药可理解为菌群在特定耐药位点上核苷酸的不均匀[1]。既往研究结果显示,在抗生素诱导下抗性菌株比例不断增加,直到突变的等位基因频率>95%才停止[25]。目前,诊断异质性耐药的技术主要为传统DST培养出多个亚克隆[9]及基于聚合酶链反应(PCR)原理的技术〔如DNA直接测序[26]、限制性片段长度多态性(RFLP)技术[1]、线性探针(LPA)[27]、高通量测序[28]及全基因组测序等〕检测出突变体和野生型共存。
2.1 DNA直接测序 在单一基因分型存在前提下,DNA直接测序是鉴定特定位点突变导致异质性耐药的主要方法[24]。DNA直接测序是指采用光学方法对gyrA、gyrB、rpoB基因突变体进行序列分析,目前被认为是诊断利福平、氟诺酮类药物异质性耐药的金标准[16,29]。ZHANG等[21]研究发现,与表型DST和微量肉汤稀释法相比,DNA直接测序不受利福平耐药菌株数量限制,但其仅能发现10%的利福平异质性耐药菌株。目前,采用现有的分子生物学方法(特别是DNA直接测序)检测MTB异质性耐药仍存在困难[30-31],其原因是检测基因突变的灵敏度较低或无法检测其他突变位点。
2.2 测序图谱分析 测序图谱分析结果显示,图谱中同时出现同一位点低频耐药突变(非测序错误)和野生型测序曲线则提示菌株是由野生型和少量突变亚组组成[32]。因此,使用分子克隆和测序图谱分析可将表型DST和基因型DST结果不一致降到最低[6,32]。
2.3 分子分型 MARTÍN等[33]研究结果显示,RFLP技术、DR区寡核苷酸序列分型方法、MIRU-VNTR技术是检测混合感染的最佳方法。此外,ClassTR、LPA、高通量测序及全基因组测序等也用于检测混合感染。
2.3.1 RFLP技术 RFLP技术是基于插入序列IS 6110的一种方法。序列IS 6110仅存在于MTB复合体中,通常为多个拷贝,拷贝数取决于换位频率,拷贝数差异是导致序列IS 6110多态性的主要原因[34],故序列IS 6110是MTB基因分型的特异性分子标志物[35]。RFLP技术的主要优势是稳定性良好、重现性较高及鉴别能力较强,故有研究将其作为MTB基因分型的金标准[36]。RFLP技术的主要缺点是在菌量较少或<5个序列IS 6110拷贝的菌株中检测能力较低[37]。
2.3.2 DR区寡核苷酸序列分型方法 DR区寡核苷酸序列分型方法是以PCR为基础的一种快速分型方法[38],其利用杂交法来检测MTB中43个间隔区序列,从而对MTB进行分型。DR区寡核苷酸序列分型方法的优点是简单、高通量、高性价比,缺点主要包括以下两个方面:(1)因一种分型可能由所有菌株累积的间隔区序列或混合感染中的主要菌株决定[39],故DR区寡核苷酸序列分型结果易受影响,但有学者认为找到DR区寡核苷酸序列分型和混合感染之间的联系就能减少混合感染的影响[40];(2)DR区寡核苷酸序列分型方法无法鉴别相同家族的不同菌株感染及未明确家族(如Manu)菌株的混合感染[41]。
2.3.3 MIRU-VNTR技术 MIRU-VNTR技术是检测混合感染的主要方法之一,近年来应用较为广泛[42]。MIRU是结核病基因组中40~100 bp的重复序列,VNTR是所有真核生物的基因组串联重复序列[43-44]。SHAMPUTA等[45]研究结果显示,MIRU-VNTR技术可用于检测亚克隆群体和混合感染,其作用原理如下:首先利用与侧翼区互补的特殊引物对12个可变串联重复序列位点进行自动PCR分析,然后使用凝胶电泳及计算机进行自动化基因分型,在同一样本中具有不同基因座的不同MIRU-VNTR模式的生物体及在单一基因座中具有不同MIRU-VNTR模式的亚克隆株均被定义为混合感染[39,46]。
2.3.4 ClassTR ClassTR主要利用来自菌株的多位点可变数目串联重复序列分析(MLVA)信息的分型系统,该系统会显示几个预先选取的基因座的重复区域拷贝数[47-48],而拷贝数变异体(CNV)可区分混合感染和突变菌株。CHINDELEVITCH等[49]研究结果显示,ClassTR的分类能力较标准方法更强。
2.3.5 LPA GenoType MTBDRplus和MTBDRsl是两种不同用途的LPA,分别用于检测一线、二线抗结核药物耐药性,两者作用原理均为先扩增MTB复合物中DNA片段,然后将扩增后的DNA片段与固定在硝化纤维素条上的特异性探针进行杂交。GenoType MTBDRplus试剂盒是指应用核酸反向线性探针杂交技术检测利福平与异烟肼耐药的相关基因[50]。既往研究结果显示,采用LPA、直接对gyrA突变基因体测序及DR区寡核苷酸序列分型方法直接对gyrA和gyrB突变基因体测序等检测菌株对氟喹诺酮异质性耐药的最低耐药菌株比例分别为20%、23%、21%[2,5-6]。不同文献报道LPA检测最低耐药菌株比例各不相同[2,25,51-52],分析其原因可能与当地结核病和MDR流行状况、分型方法及分离菌来源(培养或直接标本)不同有关[51]。
2.3.6 高通量测序 高通量测序包括454焦磷酸测序和Illumina(Solexa)测序,其精度较高、产量较高、灵敏度较高、运行成本较低。Illumina(Solexa)测序将微阵列技术与可逆终止子技术相结合,在测序同时行大规模平行合成,然后将基因组DNA或cDNA的随机片段以连接序列方式附着于光学透明狭缝(流动细胞)表面流动;之后使用桥扩展方法产生数以亿计的DNA(也称为簇),每个簇中有1 000~6 000个拷贝相同的DNA模板;最后,将DNA中4种末端封闭的碱基采用不同荧光标记并合成、测序。Illumina(Solexa)可扩增个体DNA簇,且能在菌群中扩增低至1%的突变[53]。对于MTB中的低频变体,高通量测序比Sanger测序更为敏感,而后者可检测到>10%~15%的次要等位基因频率[2,54]。因此,使用高通量测序可发现更多对氟喹诺酮异质性耐药的MTB[27]。
2.3.7 全基因组测序 全基因组测序过程较为复杂,首先是从样本中提取基因组DNA,然后随机打断DNA,在电泳中回收所需长度的DNA片段(0.2~5.0 kB),之后加入用于基因簇制备或电子放大的连接,最后应用配对末端(Solexa)或配对(SOLiD)方法对插入片段进行测序。目前,全基因组测序已能分辨出12%耐药菌株比例的MTB混合感染[55],但其存在成本较高、数据分析较复杂、重复区域测序读数较短等不足[42]。
既往研究表明,表型DST较基因型DST检测MTB异质性耐药更为敏感[25,30],但表型DST结果需要4~6周,基因型DST结果则需要几个小时。大多数遗传学检测方法存在的问题均是突变菌株必须在菌群中占相当比例时才能被检测出,其中耐药菌株比例为5%~50%时基因型DST检测异质性耐药的灵敏度较低。鉴于目前基因型DST诊断氟喹诺酮异质性耐药的灵敏度较低,因此世界卫生组织建议基因型DST只能用于检测“纳入”的突变,故存在阳性突变结果[56]。
低耐药比例的突变不能扩增到检测水平是测序的缺陷之一,为了克服这一缺陷,科学家们开发了可以从突变体和野生型序列混合物中优先扩增少数等位基因的新技术[31]。
4.1 低变性温度下的复合PCR(COLD-PCR) COLD-PCR是结合高分辨率熔融和较低变性温度下共扩增的PCR技术,其使MTB中可检测到利福平异质性耐药的耐药菌株比例从20.0%降至2.5%,较分子线性探针杂交方法(MTBDRplus)的5%更低[30-31]。由于每个扩增子在PCR反应中具有特定的临界变性温度(Tc)[57],故COLD-PCR是一种有效的分析方法,其可以选择性地扩增来自野生型和含突变序列混合物的低等位基因[58]。PANG等[31]研究结果显示,使用COLDPCR检测rpoB耐药基因突变较普通PCR更为敏感,其可发现87.0%~95.2%的耐药基因突变。
4.2 MeltPro TB/INH分析 近期,中国食品和药物管理局批准了MeltPro TB/INH分析的临床应用,其是一种基于双色闭合试管、熔解曲线分析的实时PCR,并采用特殊双重标记的自淬灭探针[59-60]。MeltPro TB/INH分析用于MTB的inhA启动子(位置-17至-8)、inhA94、katG315中共检测到30个异烟肼耐药突变位点,其优点是可以通过减慢PCR反应中温度上升速率而检测到样本中低突变比例的异质性耐药,且与各种主流实时PCR仪器兼容[61]。
4.3 双标记探针熔解温度检测(DLP) DLP探针是具有检测突变能力的线性探针。有研究表明,SMB检测结果较DLP更好,尤其是检测低突变菌株比例和氟喹诺酮异质性耐药[62]。
4.4 数字化PCR 数字化PCR是基于单分子PCR的最新的定量技术,通过使用计数的方法对DNA进行量化,故是一个绝对的量化工具[63]。为了提高PCR检测的灵敏度和定量异质性耐药,该方法将混合的MTB DNA稀释为单拷贝,因此,即使亚群菌株仅占总菌群的0.1%,使用数字化PCR也能检测到异质性耐药[63]。
4.5 Sloppy Molecular Beacon Sloppy Molecular Beacon是指扩大杂交范围、多融解温度(Tm)及使用多探针鉴定细菌种类的方法[64],其测试的目标区域是细菌的16S-23S rRNA基因间隔区或16S rRNA基因[65],因为这些DNA区域含有可以鉴定细菌种类的高变序列[64]。
当结核病患者依从性较差或药物剂量较低、用药间隔时间较长时,由于间接暴露低于最低药物抑菌浓度,故可能出现菌群对耐药菌株进行选择,进而逐渐出现异质性耐药甚至耐多药菌株、全耐药菌株。因此,从某种意义上讲,异质性耐药菌株是全耐药菌株的前体。此外,慢性感染时患者可能同时感染具有不同药物敏感性的几个亚群,故异质性耐药菌株也可能在慢性感染期间出现[66]。
目前,DST结果尚不能检测出感染患者的全部MTB及结核病患者体内单克隆菌株的耐药位点突变,且其结果还受到MTB菌株混合感染、培养物污染等影响。近年来,随着遗传分析方法发展,新的检测方法检测异质性耐药的灵敏度升高。因此,临床医生应选择合适的检测方法并制定有效的抗结核方案以降低耐药结核病发病率及改善患者预后。
[1]RINDER H,MIESKES K T,LOSCHER T.Heteroresistance in Mycobacterium tuberculosis[J].Int J Tuberc Lung Dis,5(4):339-345.
[2]HOFMANN-THIEL S,VAN INGEN J,FELDMANN K,et al.Mechanisms of heteroresistance to isoniazid and rifampin of Mycobacterium tuberculosis in Tashkent,Uzbekistan[J].E u r R e s p i r J,2 0 0 9,3 3(2):3 6 8-3 7 4.D O I:10.1183/09031936.00089808.
[3]SOMOSKOVI A,DEGGIM V,CIARDO D,et al.Diagnostic implications of inconsistent results obtained with the Xpert MTB/Rif assay in detection of Mycobacterium tuberculosis isolates with an rpoB mutation associated with low-level rifampin resistance[J].J Clin Microbiol,2013,51(9):3127-3129.DOI:10.1128/JCM.01377-13.
[4]ZETOLA N M,MODONGO C,MOONAN P K,et al.Clinical outcomes among persons with pulmonary tuberculosis caused by Mycobacterium tuberculosis isolates with phenotypic heterogeneity in results of drug-susceptibility tests[J].J Infect Dis,2014,209(11):1754-1763.DOI:10.1093/infdis/jiu040.
[5]STREICHER E M,BERGVAL I,DHEDA K,et al.Mycobacterium tuberculosis population structure determines the outcome of geneticsbased second-line drug resistance testing[J].Antimicrob Agents Chemother,2012,56(5):2420-2427.DOI:10.1128/AAC.05905-11.
[6]ZHANG X,ZHAO B,LIU L,et al.Subpopulation analysis of heteroresistance to fluoroquinolone in Mycobacterium tuberculosis isolates from Beijing,China[J].J Clin Microbiol,2012,50(4):1471-1474.DOI:10.1128/JCM.05793-11.
[7]COHEN T,CHINDELEVITCH L,MISRA R,et al.Within-Host Heterogeneity of Mycobacterium tuberculosis Infection Is Associated With Poor Early Treatment Response: A Prospective Cohort Study[J].J Infect Dis,2016,213(11):1796-1799.DOI:10.1093/infdis/jiw014.
[8]ADJERS-KOSKELA K,KATILA M L.Susceptibility Testing with the Manual Mycobacteria Growth Indicator Tube (MGIT) and the MGIT 960 System Provides Rapid and Reliable Verification of Multidrug-Resistant Tuberculosis[J].J Clin Microbiol,2003,41(3):1235-1239.
[9]ZHENG C,LI S,LUO Z,et al.Mixed Infections and Rifampin Heteroresistance among Mycobacterium tuberculosis Clinical Isolates[J].J Clin Microbiol,2015,53(7):2138-2147.DOI:10.1128/JCM.03507-14.
[10]FORD C,YUSIM K,IOERGER T,et al.Mycobacterium tuberculosis—heterogeneity revealed through whole genome sequencing[J].Tuberculosis(Edinb),2012,92(3):194-201.DOI:10.1016/j.tube.2011.11.003.
[11]MANKIEWICZ E,LIIVAK M.Phage types of mycobacterium tuberculosis in cultures isolated from Eskimo patients[J].Am Rev Respir Dis,1975,111(3):307-312.
[12]VAN RIE A,VICTOR T C,RICHARDSON M,et al.Reinfection and mixed infection cause changing Mycobacterium tuberculosis drug-resistance patterns[J].Am J Respir Crit Care Med,2005,172(5):636-642.
[13]ZETOLA N M,SHIN S S,TUMEDI K A,et al.Mixed Mycobacterium tuberculosis complex infections and false-negative results for rifampin resistance by GeneXpert MTB/RIF are associated with poor clinical outcomes[J].J Clin Microbiol,2014,52(7):2422-2429.DOI:10.1128/JCM.02489-13.
[14]ZHANG X,ZHAO B,HUANG H,et al.Co-occurrence of amikacin-resistant and -susceptible Mycobacterium tuberculosis isolates in clinical samples from Beijing,China[J].J Antimicrob Chemother,2013,68(7):1537-1542.DOI:10.1093/jac/dkt082.
[15]刘永安,李学瑞,刘永生.结核分枝杆菌耐药机制与检测技术研究进展[J].中国畜牧兽医,2017,44(6):1884-1889.DOI:10.16431/j.cnki.1671-7236.2017.06.043
[16]KUMAR P,BALOONI V,SHARMA B K,et al.High degree of multi-drug resistance and hetero-resistance in pulmonary TB patients from Punjab state of India[J].Tuberculosis(Edinb),2014,94(1):73-80.DOI:10.1016/j.tube.2013.10.001.
[17]VAN DEUN A,AUNG K J,BOLA V,et al.Rifampin drug resistance tests for tuberculosis: challenging the gold standard[J].J Clin Microbiol,2013,51(8):2633-2640.DOI:10.1128/JCM.00553-13.
[18]ZHANG Z,WANG Y,PANG Y,et al.Comparison of different drug susceptibility test methods to detect rifampin heteroresistance in Mycobacterium tuberculosis[J].Antimicrob Agents Chemother,2014,58(9):5632-5635.DOI:10.1128/AAC.02778-14.
[19]VAN DEUN A,BARRERA L,BASTIAN I,et al.Mycobacterium tuberculosis strains with highly discordant rifampin susceptibility test results[J].J Clin Microbiol,2009,47(11):3501-3506.DOI:10.1128/JCM.01209-09.
[20]CHAN R C,HUI M,CHAN E W,et al.Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong[J].J Antimicrob Chemother,2007,59(5):866-873.
[21]ZHANG Z,WANG Y,PANG Y,et al.Ethambutol resistance as determined by broth dilution method correlates better than sequencing results with embB mutations in multidrug-resistant Mycobacterium tuberculosis isolates[J].J Clin Microbiol,2014,52(2):638-641.DOI:10.1128/JCM.02713-13.
[22]FOLKVARDSEN D B,SVENSSON E,THOMSEN V Ø,et al.Can molecular methods detect 1% isoniazid resistance in Mycobacterium tuberculosis?[J].J Clin Microbiol,2013,51(5):1596-1599.DOI:10.1128/JCM.00472-13.
[23]MAYER C,TAKIFF H.The Molecular Genetics of Fluoroquinolone Resistance in Mycobacterium tuberculosis[J].Microbiol Spectr,2014,2(4):MGM2-0009-2013.DOI:10.1128/microbiolspec.MGM2-0009-2013.
[24]EILERTSON B,MARURI F,BLACKMAN A,et al.High proportion of heteroresistance in gyrA and gyrB in fluoroquinoloneresistant Mycobacterium tuberculosis clinical isolates[J].Antimicrob Agents Chemother,2014,58(6):3270-3275.DOI:10.1128/AAC.02066-13.
[25]SUN G,LUO T,YANG C,et al.Dynamic population changes in Mycobacterium tuberculosis during acquisition and fixation of drug resistance in patients[J].J Infect Dis,2012,206(11):1724-1733.DOI:10.1093/infdis/jis601.
[26]KARAHAN Z C,AKAR N.Restriction endonuclease analysis as a solution for determining rifampin resistance mutations by automated DNA sequencing in heteroresistant Mycobacterium tuberculosis strains[J].Microb Drug Resist,2005,11(2):137-140.
[27]DE OLIVEIRA M M,DA SILVA ROCHA A,CARDOSO OELEMANN M,et al.Rapid detection of resistance against rifampicin in isolates of from Brazilian patients using a reversephase hybridization assay[J].J Microbiol Methods,2003,53(3):335-342.
[28]ENGSTRÖM A,HOFFNER S,JURÉEN P.Detection of heteroresistant Mycobacterium tuberculosis by pyrosequencing[J].J Clin Microbiol,2013,51(12):4210-4212.DOI:10.1128/JCM.01761-13.
[29]KÖSER C U,FEUERRIEGEL S,SUMMERS D K,et al.Importance of the genetic diversity within the Mycobacterium tuberculosis complex for the development of novel antibiotics and diagnostic tests of drug resistance[J].Antimicrob Agents Chemother,2012,56(12):6080-6087.DOI:10.1128/AAC.01641-12.
[30]FOLKVARDSEN D B,THOMSEN V Ø,RIGOUTS L,et al.Rifampin heteroresistance in Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug susceptibility test methods[J].J Clin Microbiol,2013,51(12):4220-4222.DOI:10.1128/JCM.01602-13.
[31]PANG Y,LIU G,WANG Y,et al.Combining COLD-PCR and high-resolution melt analysis for rapid detection of low-level,rifampin-resistant mutations in Mycobacterium tuberculosis[J].J Microbiol Methods,2013,93(1):32-36.DOI:10.1016/j.mimet.2013.01.008.
[32]GAO X,LI J,LIU Q,et al.Heteroresistance in Mycobacteria tuberculosis is an important factor for the inconsistency between the results of phenotype and genotype drug susceptibility tests[J].Chin J Tuberc Respir Dis,2014,37(4):260-265.
[33]MARTÍN A,HERRANZ M,NAVARRO Y,et al.Evaluation of the inaccurate assignment of mixed infections by Mycobacterium tuberculosis as exogenous reinfection and analysis of the potential role of bacterial factors in reinfection[J].J Clin Microbiol,2011,49(4):1331-1338.DOI:10.1128/JCM.02519-10.
[34]WALL S,GHANEKAR K,MCFADDEN J,et al.Contextsensitive transposition of IS6110 in mycobacteria[J].Microbiology,1999,145(Pt 11):3169-3176.
[35]CAVE M D,EISENACH K D,MCDERMOTT P F,et al.IS6110:conservation of sequence in the Mycobacterium tuberculosis complex and its utilization in DNA fingerprinting[J].Mol Cell Probes,1991,5(1):73-80.
[36]ASGHARZADEH M,SHAHBABIAN K,MAJIDI J,et al.IS6110 restriction fragment length polymorphism typing of Mycobacterium tuberculosis isolates from East Azerbaijan Province of Iran[J].Mem Inst Oswaldo Cruz,2006,101(5):517-521.
[37]EI P W,AUNG W W,LEE J S,et al.Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods[J].J Korean Med Sci,2016,31(11):1673-1683.DOI:10.3346/jkms.2016.31.11.1673.
[38]王兆芬,李斌,蒋明霞,等.青海省251株结核分枝杆菌Spoligotyping基因型与4种一线药物耐药表型的研究[J].中国人兽共患病学报,2017,33(4):332-336.DOI:10.3969/j.issn.1002-2694.2017.04.008.
[39]COHEN T,WILSON D,WALLENGREN K,et al.Mixed-strain Mycobacterium tuberculosis infections among patients dying in a hospital in KwaZulu-Natal,South Africa[J].J Clin Microbiol,2011,49(1):385-388.DOI:10.1128/JCM.01378-10.
[40]LAZZARINI L C,ROSENFELD J,HUARD R C,et al.Mycobacterium tuberculosis spoligotypes that may derive from mixed strain infections are revealed by a novel computational approach[J].Infect Genet Evol,2012,12(4):798-806.DOI:10.1016/j.meegid.2011.08.028.
[41]HANEKOM M,STREICHER E M,VAN DE BERG D,et al.Population structure of mixed Mycobacterium tuberculosis infection is strain genotype and culture medium dependent[J].PLoS One,2013,8(7):e70178.DOI:10.1371/journal.pone.0070178.
[42]COHEN T,VAN HELDEN P D,WILSON D,et al.Mixedstrain mycobacterium tuberculosis infections and the implications for tuberculosis treatment and control[J].Clin Microbiol Rev,2012,25(4):708-719.DOI:10.1128/CMR.00021-12.
[43]COX R,MIRKIN S M.Characteristic enrichment of DNA repeats in different genomes[J].Proc Natl Acad Sci U S A,1997,94(10):5237-5242.
[44]NAKAMURA Y,CARLSON M,KRAPCHO K,et al.New approach for isolation of VNTR markers[J].Am J Hum Genet,1988,43(6):854-859.
[45]SHAMPUTA I C,JUGHELI L,SADRADZE N,et al.Mixed infection and clonal representativeness of a single sputum sample in tuberculosis patients from a penitentiary hospital in Georgia[J].Respir Res,2006,7:99.
[46]DICKMAN K R,NABYONGA L,KATEETE D P,et al.Detection of multiple strains of Mycobacterium tuberculosis using MIRUVNTR in patients with pulmonary tuberculosis in Kampala,Uganda[J].BMC Infect Dis,2010,10:349.DOI:10.1186/1471-2334-10-349.
[47]ABLORDEY A,SWINGS J,HUBANS C,et al.Multilocus variable-number tandem repeat typing of Mycobacterium ulcerans[J].J Clin Microbiol,2005,43(4):1546-1551.
[48]SUPPLY P,ALLIX C,LESJEAN S,et al.Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis[J].J Clin Microbiol,2006,44(12):4498-4510.
[49]CHINDELEVITCH L,COLIJN C,MOODLEY P,et al.ClassTR:Classifying Within-Host Heterogeneity Based on Tandem Repeats with Application to Mycobacterium tuberculosis Infections[J].PLoS Comput Biol,2016,12(2):e1004475.DOI:10.1371/journal.pcbi.1004475.
[50]张海燕,缪家文,潘洪秋,等.应用线性探针杂交技术快速检测结核分枝杆菌的多药耐药性[J].江苏大学学报(医学版),2017,6(27):539-541.
[51]MEKONNEN D,ADMASSU A,MULU W,et al.Multidrugresistant and heteroresistant Mycobacterium tuberculosis and associated gene mutations in Ethiopia[J].Int J Infect Dis,2015,39:34-38.DOI:10.1016/j.ijid.2015.06.013.
[52]TOLANI M P,D'SOUZA D T,MISTRY N F.Drug resistance mutations and heteroresistance detected using the GenoType MTBDRplus assay and their implication for treatment outcomes in patients from Mumbai,India[J].BMC Infect Dis,2012,12:9.DOI:10.1186/1471-2334-12-9.
[53]BLACK P A,DE VOS M,LOUW G E,et al.Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates[J].BMC Genomics,2015,16:857.DOI:10.1186/s12864-015-2067-2.
[54]ROHLIN A,WERNERSSON J,ENGWALL Y,et al.Parallel sequencing used in detection of mosaic mutations: comparison with four diagnostic DNA screening techniques[J].Hum Mutat,2009,30(6):1012-1020.DOI:10.1002/humu.20980.
[55]BRYANT J M,HARRIS S R,PARKHILL J,et al.Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study[J].Lancet Respir Med,2013,1(10):786-792.DOI:10.1016/S2213-2600(13)70231-5.
[56]GILPIN C.Summary of outcomes from the WHO Expert Group Meeting on Drug Susceptibility Testing[C].Geneva:WHO,2012.
[57]LI J,WANG L,MAMON H,et al.Replacing PCR with COLDPCR enriches variant DNA sequences and redefines the sensitivity of genetic testing[J].Nat Med,2008,14(5):579-584.DOI:10.1038/nm1708.
[58]PAGANINI I,MANCINI I,BARONCELLI M,et al.Application of COLD-PCR for improved detection of NF2 mosaic mutations[J].J Mol Diagn,2014,16(4):393-399.DOI:10.1016/j.jmoldx.2014.02.007.
[59]LIAO Y,WANG X,SHA C,et al.Combination of fluorescence color and melting temperature as a two-dimensional label for homogeneous multiplex PCR detection[J].Nucleic Acids Res,2013,41(7):e76.DOI:10.1093/nar/gkt004.
[60]LIAO Y,ZHOU Y,GUO Q,et al.Simultaneous detection,genotyping,and quantification of human papillomaviruses by multicolor real-time PCR and melting curve analysis[J].J Clin Microbiol,2013,51(2):429-435.DOI:10.1128/JCM.02115-12.
[61]HU S,LI G,LI H,et al.Rapid Detection of Isoniazid Resistance in Mycobacterium tuberculosis Isolates by Use of Real-Time-PCRBased Melting Curve Analysis[J].J Clin Microbiol,2014,52(5):1644-1652.DOI:10.1128/JCM.03395-13.
[62]ROH S S,SMITH L E,LEE J S,et al.Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin,Fluoroquinolone and Aminoglycoside Resistance[J].PLoS One,2015,10(5):e0126257.DOI:10.1371/journal.pone.0126257.
[63]PHOLWAT S,STROUP S,FOONGLADDA S,et al.Digital PCR to Detect and Quantify Heteroresistance in Drug Resistant Mycobacterium tuberculosis[J].PLoS One,2013,8(2):e57238.DOI:10.1371/journal.pone.0057238.
[64]CHAKRAVORTY S,ALADEGBAMI B,BURDAY M,et al.Rapid universal identification of bacterial pathogens from clinical cultures by using a novel sloppy molecular beacon melting temperature signature technique[J].J Clin Microbiol,2010,48(1):258-267.DOI:10.1128/JCM.01725-09.
[65]RAFI W,CHANDRAMUKI A,MANI R,et al.Rapid diagnosis of acute bacterial meningitis: role of a broad range 16S rRNA polymerase chain reaction[J].J Emerg Med,2010,38(2):225-230.DOI:10.1016/j.jemermed.2008.02.053.
[66]SOMOSKOVI A,PARSONS L M,SALFINGER M.The molecular basis of resistance to isoniazid,rifampin,and pyrazinamide in Mycobacterium tuberculosis[J].Respir Res,2001,2(3):164-168.