, ,,,
生长分化因子-15(GDF-15)是转化生长因子β家族一种特殊的分子类型,首次从单核细胞系U937的cDNA文库中分离表达获得[1],之后研究发现病理状态下其广泛存在各类细胞,导致专业命名的多样性,又称前列腺衍生长因子(PDF)、胎盘转化生长因子β(PTGFβ)、胎盘骨形态发生蛋白(PLAB)、非甾体抗炎药激活基因-1(NAG-1)、巨噬细胞抑制因子-1(MIC-1)。人类GDF-15基因定位于19号染色体p12-13.1区域,由2 746个碱基对组成,包含2个外显子和1个内含子,翻译成40 kD大小的前肽转运至胞外,进一步裂解为25 kD大小的二硫键连接活性蛋白二聚体[2],潜在储存于细胞外基质中,前肽的分泌与细胞外基质有关[3]。GDF-15以未成熟的前肽和成熟的活性蛋白两种形式存在于细胞外,未成熟的GDF-15前肽能迅速分泌,成熟的GDF-15活性蛋白经细胞内加工后分泌至细胞外,分泌速度较慢,这一效应是由位于肽C端的47个氨基酸调节,可能在反面高尔基体管网状结构(TGN)或postTGN水平通过交替分泌途径起作用[4]。目前研究GDF-15两种形式的功能差别尚不明确。
1.1 动脉粥样硬化(AS) AS是一种脂质代谢与炎症性血管疾病,现代细胞和分子生物技术显示动脉粥样硬化病变具有巨噬细胞游移、平滑肌细胞增生、大量胶原纤维、弹力纤维和蛋白多糖等结缔组织基质形成及细胞内外脂质积聚的特点。血管内皮细胞的慢性炎症反应是一个重要特征。人体粥样硬化动脉中,GDF-15的免疫反应性完全局限于巨噬细胞内,并与氧化型低密度脂蛋白(ox-LDL)、超氧化物歧化酶(SOD)、细胞凋亡诱导因子(AIF)、凋亡蛋白(caspase-3)、多聚ADP-核糖聚合酶(PARP)、抑癌基因p53、c-Jun/AP-1信号通路免疫反应性共存[5],表明GDF-15可能有助于调节激活巨噬细胞的凋亡和炎症反应过程。通过敲除GDF-15炎性细胞研究发现GDF-15缺乏有助于减弱化学趋化因子受体(CCR-2)趋化性进而抑制巨噬细胞迁移和诱导胶原沉积,提高动脉粥样硬化斑块的稳定性,且影响转化生长因子β(TGF-β)信号转导的功能[6]。因此,认为在动脉粥样硬化中,GDF-15通过抑制TGF-β信号转导和增强CCR-2依赖的巨噬细胞迁移和聚集两种途径发挥心脏保护作用,延缓动脉粥样硬化的发生发展过程。
1.2 脂质代谢 脂质代谢紊乱导致内皮细胞功能紊乱是动脉粥样硬化斑块形成的关键环节。GDF-15通过激活磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(Akt)/一氧化氮合酶(eNOS)信号通路抑制内皮细胞凋亡,维持内皮细胞正常功能,从而抑制动脉粥样硬化发生[7]。高脂喂养载脂蛋白E基因敲除的动脉粥样硬化模型小鼠,发现GDF-15可缩小动脉粥样硬化斑块面积[8]。GDF-15可能通过抑制巨噬细胞活性、改善脂质代谢异常,缓解动脉炎症反应及脂质聚集,改善内皮细胞功能,延缓动脉粥样硬化进程,减少动脉粥样硬化性疾病发生。
1.3 心肌保护作用 绝大多数急性心肌梗死(AMI)病人冠状动脉可在粥样斑块基础上血栓形成,从而导致管腔堵塞。冠状动脉闭塞后20 min~30 min,受其供血心肌即有少数坏死,开始AMI病理过程。此过程分为3个阶段:第一阶段为炎症期,第二阶段为增生期,第三阶段为成熟期。炎症期绝大部分缺血心肌发生凝固性坏死,心肌间质充血、水肿,伴有大量炎症细胞浸润,之后坏死的心肌纤维逐渐溶解,形成肌溶灶,随后渐有肉芽组织形成,之后成纤维细胞表型改变分泌胶原蛋白,开始修复过程。为探讨GDF-15在AMI中的功能意义,通过短暂冠状动脉结扎GDF-15基因敲除小鼠与野生型小鼠,发现GDF-15基因敲除小鼠在梗死边缘区有较大的梗死面积和较多的心肌细胞凋亡,表明内源性GDF-15可减少缺血性组织损伤范围及直接抗心肌细胞凋亡。GDF-15的抗凋亡作用通过细胞培养研究发现PI3K-Akt、ERK1/2和Smad2/3信号通路参与[9];GDF-15具有直接抗心肌细胞凋亡外,还能抗血管紧张素Ⅱ、TGF-β1及NO-donor SNAP等因素诱导的心肌细胞凋亡[10]。有研究发现在AMI炎症期,炎症细胞聚集是心肌梗死后引起心脏破裂的关键因素,GDF-15诱导心脏心肌梗死区域局部,作为抗炎细胞因子,通过抑制骨髓细胞聚集到梗死区域,从而减少致命性心脏破裂风险。在此过程中,GDF-15活化Cdc42和抑制GTPaseRap1活性,导致β2整合素聚集及构象激活发挥功能[11]。GDF-15亦可通过减弱去甲肾上腺素活性避免心脏肥厚发生,进而减少心室重构[12]。上述研究证实GDF-15作为心肌保护因子在体内的生理作用。
2.1 GDF-15在急性冠脉综合征(ACS)中的作用 GDF-15对ACS的诊断及治疗具有较好的预测价值。ACS指急性心肌缺血引起的一系列临床症状,是导致死亡的一个重要原因。经典心血管危险因素(如高血压、吸烟、高脂血症和糖尿病)在预防心血管疾病的评估和治疗发挥重要作用。检测新型生物标志物,如C-反应蛋白(CRP)、B型脑钠肽(BNP)和GDF-15可提供额外信息,有助于评估心血管风险[13-16]。临床研究观察GDF-15是ACS病人的预后不良指标,高水平GDF-15与稳定性冠心病病人主要心血管事件密切相关,并提出GDF-15与其他风险因素不同,可作为一个独立的风险预测因子[17-18]。入院GDF-15检测可作为ST段抬高心肌梗死(STEMI)病人经皮冠状动脉介入治疗再灌注死亡率的预测指标,与心肌存活呈负相关,也是心肌梗死复发的预测指标;灌注损伤时,高水平GDF-15与较大面积梗死、微血管灌注和左心室功能受损密切相关,且在非ST段抬高心肌梗死病人,研究发现GDF-15是恶性事件的独立预测指标[9,19-20]。在非ST段抬高心肌梗死发生1个月及6个月临床稳定后GDF-15与死亡率、死亡率和心肌梗死复发的复合终点密切相关。心肌细胞的体外实验表明,GDF-15在心肌损伤和适应过程可能发挥作用[21]。高水平GDF-15可作为ACS病人年死亡率的独立预测因素,GDF-15可预测STEMI病人1年死亡率,同时增加心肌生物标志物包括BNP、肌钙蛋白T(cTnT)、心肌梗死溶栓分数的诊断价值[22-23]。通过对30 d内基线检测观察发现死亡率与GDF-15密切相关,为AMI后不良事件提供预测证据[19,22]。
2.2 GDF-15在慢性心力衰竭中的作用 慢性心力衰竭是一个主要的公共健康问题,相关发病率逐年增加,其住院率和死亡率随之增加[24-25]。准确的风险预测在疾病发展过程中具有重要作用,预后不良病人可能受益于积极治疗和随访[25]。GDF-15在慢性心力衰竭病人的预测价值受到重视。利钠肽可用于诊断和判断心力衰竭病人风险分级常用的生物标志物[25-26]。越来越多研究表明GDF-15作为新型生物标志物具有良好的应用前景。GDF-15水平与死亡风险及第一个并发症独立相关,校正N-末端脑钠肽前体(NT-proBNP)、超敏C反应蛋白(hs-CRP)和超敏肌钙蛋白(hs-TnT)等传统经典生物指标,GDF-15是心力衰竭病人死亡率的独立预测因素[27]。BNP在射血分数异常的心力衰竭升高,正常射血分数的心力衰竭病人GDF-15血清水平升高,其不良预后和收缩性心力衰竭病人相似;GDF-15水平与多种影像检查及心功能检查结果一致,与舒张功能障碍的多重超声心动图指标相关,与6 min步行实验不良结果及较低的SF-36物理评分独立相关;GDF-15检测正常射血分数的心力衰竭时与NT-proBNP同样有效,且和NT-proBNP组合标志物较单独NT-proBNP检测预测病人死亡率效果明显[28-29]。研究结果显示,年轻病人GDF-15血浓度与其他风险因子密切相关,并能作为心力衰竭风险的替代生物标志物,与无症状病人不良预后密切相关[30]。
2.3 GDF-15在循环系统其他疾病中的作用 GDF-15对循环系统其他疾病的诊断及预后有价值。如Takotsubo心肌病、肥厚梗阻性心肌病病人,高水平GDF-15与不良预后密切相关[31-32]。同时与冠状动脉旁路移植术后心房纤颤的发生密切相关[33]。
目前研究结果显示,GDF-15在心血管系统疾病中的作用是多重的。实验模型GDF-15作为心脏保护的细胞因子,具有调脂质代谢、稳定内皮细胞、抑制炎症等作用;高水平GDF-15与心血管疾病病人的不良预后密切相关,预示更高的死亡率及较差的生存质量。说明GDF-15是心脏损伤应激反应的结果,与NT-proBNP均是疾病的一种适应性反应,揭示疾病潜在的严重程度。不排除另一种可能:GDF-15在不同的细胞环境调控相反的作用机制。基于实验室研究可知GDF-15可诱导naive CD14+单核细胞来源的巨噬细胞向M2极化,并分泌表达TGF-β1,促进心室重构发生,导致一系列不良的临床预后[34]。提示GDF-15在心血管疾病早期具有保护心脏作用,在疾病后期可促进心脏疾病恶化的发生发展。
目前心血管系统疾病如冠心病、慢性缺血性心脏病、ACS、心力衰竭等病理状态下,血清GDF-15高水平如何影响疾病进程的机制尚不明确。因此,今后研究可明确GDF-15受体、阐明GDF-15的分子机制及心血管疾病中的作用过程,有助于评估GDF-15在临床中的价值,以期通过干预GDF-15达到预防和治疗心血管疾病的目的。
参考文献:
[1] Bootcov MR,Bauskin AR,Valenzuela SM,et al.MIC-1,a novel macrophage inhibitory cytokine,is a divergent member of the TGF-beta superfamily[J].Proc Natl Acad Sci USA,1997,94(21):11514-11519.
[2] Eling TE,Baek SJ,Shim M,et al.NSAID activated gene (NAG-1),a modulator of tumorigenesis[J].J Biochem Mol Biol,2006,39(6):649-655.
[3] Corre J,Hebraud B,Bourin P.Concise review:growth differentiation factor 15 in pathology:a clinical role?[J].Stem Cells Transl Med,2013,2(12):946-952.
[4] Bauskin AR,Jiang L,Luo XW,et al.The TGF-β superfamily cytokine MIC-1/GDF15:secretory mechanisms facilitate creation of latent stromal stores[J].Journal of Interferon & Cytokine Research,2010,30(6):389-397.
[5] Schlittenhardt D,Schober A,Strelau J,et al.Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1(GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions[J].Cell Tissue Res,2004,318(2):325-333.
[6] de Jager SCA,Bermudez B,Bot I,et al.Growth differentiation factor 15 deficiency protects against atherosclerosis by attenuating CCR2-mediated macrophage chemotaxis[J].Journal of Experimental Medicine,2011,208(2):217-225.
[7] Li J,Yang L,Qin W,et al.Adaptive induction of growth differentiation factor 15 attenuates endothelial cell apoptosis in response to high glucose stimulus[J].PLoS One,2013,8(6):e65549.
[8] Johnen H,Kuffner T,Brown DA,et al.Increased expression of the TGF-b superfamily cytokine MIC-1/GDF15 protects ApoE(-/-) mice from the development of atherosclerosis[J].Cardiovasc Pathol,2012,21(6):499-505.
[9] Kempf T,Eden M,Strelau J,et al.The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury[J].Circ Res,2006,98(3):351-360.
[10] Heger J,Schiegnitz E,von Waldthausen D,et al.Growth differentiation factor 15 acts anti-apoptotic and pro-hypertrophic in adult cardiomyocytes[J].J Cell Physiol,2010,224(1):120-126.
[11] Kempf T,Zarbock A,Widera C,et al.GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice[J].Nature Medicine,2011,17(5):581-588.
[12] Xu XY,Nie Y,Wang FF,et al.Growth differentiation factor (GDF)-15 blocks norepinephrine-induced myocardial hypertrophy via a novel pathway involving inhibition of epidermal growth factor receptor transactivation[J].J Biol Chem,2014,289(14):10084-10094.
[13] Yu X,Sun Y,Zhao Y,et al.Prognostic value of plasma galectin-3 levels in patients with coronary heart disease and chronic heart failure[J].Int Heart J,2015,56(3):314-318.
[14] Hassan K,Hassan S,Anwar S,et al.Predictors of left ventricular hypertrophy and their cutoffs in peritoneal dialysis patients[J].Int Heart J,2015,56(2):186-191.
[15] Karadeniz M,Duran M,Akyel A,et al.High sensitive CRP level is associated with intermediate and high syntax score in patients with acute coronary syndrome[J].Int Heart J,2015,56(4):377-380.
[16] Bootcov MR,Bauskin AR,Valenzuela SM,et al.MIC-1,a novel macrophage inhibitory cytokine,is a divergent member of the TGF-beta superfamily[J].Proc Natl Acad Sci USA,1997,94(21):11514-11519.
[17] Schopfer DW,Ku IA,Regan M,et al.Growth differentiation factor 15 and cardiovascular events in patients with stable ischemic heart disease(The Heart and Soul Study)[J].American Heart Journal,2014,167(2):186-192.
[18] Ek WE,Hedman AK,Enroth S,et al.Genome-wide DNA methylation study identifies genes associated with the cardiovascular biomarker GDF-15[J].Hum Mol Genet,2016,25(4):817-827.
[19] Wollert KC,Kempf T,Lagerqvist B,et al.Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non ST-elevation acute coronary syndrome[J].Circulation,2007,116(14):1540-1548.
[20] Eitel I,Blase P,Adams V,et al.Growth-differentiation factor 15 as predictor of mortality in acute reperfused ST-elevation myocardial infarction:insights from cardiovascular magnetic resonance[J].Heart,2011,97(8):632-640.
[21] Xu J,Kimball TR,Lorenz JN,et al.GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation[J].Circ Res,2006,98(3):342-350.
[22] Kempf T,Sinning JM,Quint A,et al.Growth-differentiation factor-15 for risk stratification in patients with stable and unstable coronary heart disease:results from the atherogene study[J].Circulation:Cardiovascular Genetics,2009,2(3):286-292.
[23] Kempf T,Bjorklund E,Olofsson S,et al.Growth-differentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction[J].European Heart Journal,2007,28(23):2858-2865.
[24] O'Donoghue M,Braunwald E.Natriuretic peptides in heart failure:should therapy be guided by BNP levels?[J].Nat Rev Cardiol,2010,7(1):13-20.
[25] Hunt SA,Abraham WT,Chin MH,et al.2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults:a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines:developed in collaboration with the International Society for Heart and Lung Transplantation[J].Circulation,2009,119(14):e391-e479.
[26] Mcmurray JJ,Adamopoulos S,Anker SD,et al.ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012:the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology.Developed in collaboration with the Heart Failure Association (HFA) of the ESC[J].Eur J Heart Fail,2012,14(8):803-869.
[27] Anand IS,Kempf T,Rector TS,et al.Serial measurement of growth-differentiation factor-15 in heart failure:relation to disease severity and prognosis in the Valsartan Heart Failure Trial[J].Circulation,2010,122(14):1387-1395.
[28] Stahrenberg R,Edelmann F,Mende M,et al.The novel biomarker growth differentiation factor 15 in heart failure with normal ejection fraction[J].European Journal of Heart Failure,2010,12(12):1309-1316.
[29] Chan MM,Santhanakrishnan R,Chong JP,et al.Growth differentiation factor 15 in heart failure with preserved vs reduced ejection fraction[J].Eur J Heart Fail,2016,18(1):81-88.
[30] Norozi K,Buchhorn R,Yasin A,et al.Growth differentiation factor 15:an additional diagnostic tool for the risk stratification of developing heart failure in patients with operated congenital heart defects?[J].Am Heart J,2011,162(1):131-135.
[31] Stiermaier T,Adams V,Just M,et al.Growth differentiation factor-15 in takotsubo cardiomyopathy:diagnostic and prognostic value[J].International Journal of Cardiology,2014,173(3):424-429.
[32] Hanatani S,Izumiya Y,Takashio S,et al.Growth differentiation factor 15 can distinguish between hypertrophic cardiomyopathy and hypertensive hearts[J].Heart Vessels,2014,29(2):231-237.
[33] Bouchot O,Guenancia C,Kahli A,et al.Low circulating levels of growth differentiation factor-15 before coronary artery bypass surgery may predict postoperative atrial fibrillation[J].J Cardiothorac Vasc Anesth,2015,29(5):1131-1139.
[34] 周治中.GDF-15对树突状细胞成熟和功能的影响[D].西安:第四军医大学,2013.