数形结合 演绎精彩

2018-01-08 03:48魏定波
中学数学杂志(高中版) 2018年5期
关键词:射影数学试题数形

魏定波

试题呈现

已知实数x 1、x 2、y 1、y 2满足:x2 1+y2 1=1,x2 2+y2 2=1,x 1x 2+y 1y 2= 1 2 ,则 |x 1+y 1-1|  2  + |x 2+y 2-1|  2  的最大值为[CD#4].

本题为2018年上海市高考数学试题第12题,从题面上看,考查的是以“绝对值和方程”为载体、不等式为主线的典型问题,着重考查学生分析问题、解决问题的能力,能够检验学生对曲线与方程之间关系的认知程度,对转化思想、数形结合思想等的掌握情况.

2  解法探究

解法1 從距离公式切入

设P(x 1,y 1),Q(x 2,y 2),则点P、Q都在单位圆x2+y2=1上,由 OP · OQ =x 1x 2+y 1y 2,

得cos< OP , OQ >= 1 2 ,即△OPQ为等边三角形,如图1,显然 |x 1+y 1-1|  2  + |x 2+y 2-1|  2  就是P、Q到直线l:x+y-1=0的距离之和|PP′|+ |QQ′|,设PQ的中点为M,且M在直线l上的射影为M′,原点O在直线l上的射影为O′,则|PP′|+ |QQ′|=2|MM′|≤2(|MO|+|OO′|)

=2(  3  2 +  2  2 )= 3 + 2 .

故当M、O、M′共线,且M与O都在直线l的同侧时(如图1), |x 1+y 1-1|  2  + |x 2+y 2-1|  2  取得最大值 3 + 2 .

3  深入探究

3.1 求最小值

当P、Q两点分别在直线l的两侧(包括在直线l上,如图3),则  |x 1+y 1-1|  2  + |x 2+y 2-1|  2  =  2  2 -sinα+sin( 120°-α)-  2  2

注:此题由2018年浙江省高考试题第17题改编,附原试题:已知点P(0,1),椭圆 x2 4 +y2=m(m>1)上两点A,B满足 AP =2 PB ,则当m= 时,点B横坐标的绝对值最大.

猜你喜欢
射影数学试题数形
数形结合 相得益彰
数形结合思想及其应用
数形结合思想及其应用
三参数射影平坦芬斯勒度量的构造
谈数形结合思想在高中数学中的应用
追寻高考数学试题中的奇异美
数形结合的实践探索
2016年高考新课标全国二卷理科数学试题分析
射影定理在2016年高考中应用例析
一道2009年清华大学自主招生数学试题的思考