沈留红,肖劲邦,巫晓峰,姜思汛,江涛,邓俊良,左之才,余树民,曹随忠
(四川农业大学动物医学院,动物疫病与人类健康四川省重点实验室/奶牛疾病研究中心,成都 611130)
复方天然植物制剂对奶牛回乳效果及调控激素的影响
沈留红,肖劲邦,巫晓峰,姜思汛,江涛,邓俊良,左之才,余树民,曹随忠
(四川农业大学动物医学院,动物疫病与人类健康四川省重点实验室/奶牛疾病研究中心,成都 611130)
【目的】探究复方天然植物制剂对奶牛回乳效果及回乳期奶牛血清胰岛素(INS)、氢化可的松(HC)、生长激素(GH)和胰岛素生长因子1(IGF-1)含量的影响。【方法】试验于2016年1—6月进行,选择四川省某规模化奶牛场半封闭统一舍饲,体重(582±41)kg、第2—4胎中国荷斯坦奶牛150头。从中选取体况良好,健康,乳房、乳汁均正常,即将进入回乳期,产奶量为(15.42±0.71)kg的妊娠后期即将干乳的健康奶牛80头。随机分为A、B、C、D组,每组20头,均采用逐渐干奶法回乳,回乳开始当天记为第0天,A组为对照组,不饲喂复方天然植物制剂。B、C、D组均从回乳开始第1天,每日上午8∶00分别饲喂复方天然植物制剂400、500、600g,回乳完成后停止饲喂复方天然植物制剂。复方天然植物制剂由麦芽,朴硝,升麻,柴胡,香附,薏仁,蚕蜕,白术,黄芩,知母,苏梗,芡实,五味子,蒲公英,甘草等按一定比例组成。分别采集奶牛回乳期第0、1、3、5、7、9和11天尾静脉血,置于未加抗凝剂的离心管中,室温下静置1h,置离心机352×g离心10min,转移上层血清于EP管中,-20℃冻存。采用双抗体夹心酶联免疫吸附技术(ELISA)法检测血清INS、HC、GH和IGF-1含量,并记录回乳期奶牛单日产奶量。【结果】A、B、C、D 4组奶牛回乳时间分别为 11、7、5、5天。各组回乳期奶牛血清 IGF-1和 HC含量均呈下降趋势,且对照组下降趋势较各复方天然植物制剂组慢,复方天然植物制剂组血清IGF-1、HC和GH含量在回乳期后回升,对照组血清INS含量上升趋势较各复方天然植物制剂组慢,第0至1天,各组奶牛血清HC、IGF-1和GH含量差异均不显著(P>0.05);第3—7天,A组奶牛血清HC、GH和IGF-1含量极显著高于B、C、D组(P<0.01),而血清INS含量极显著低于B、C、D组(P<0.01);第9天,A、D组奶牛血清HC含量均显著高于C组(P<0.05),A、B组奶牛血清GH和IGF-1含量均极显著低于C、D组(P<0.01),A组奶牛血清INS含量极显著低于B、C、D组(P<0.01);第11天,A组奶牛血清HC、GH和IGF-1含量极显著低于B、C、D组(P<0.01),A组奶牛血清INS显著低于D组(P<0.05),但极显著低于B、C组(P<0.01); C、D组奶牛血清IGF-1、GH、HC和INS含量在整个回乳期均差异性不显著(P>0.05)。在奶牛回乳期,产奶量、HC、GH和IGF-1两两间均呈极显著正相关(P<0.01),INS与产奶量、HC、GH和IGF-1均呈极显著负相关(P<0.01)。【结论】复方天然植物制剂能显著促进回乳期奶牛回乳,饲喂500g/日复方天然植物制剂,奶牛回乳时间为5d,回乳效果即可达到最佳。回乳期奶牛血清INS、HC、IGF-1含量和产奶量变化两两间均呈极显著相关,IGF-1、GH和HC对奶牛回乳起负向调控功能,而INS对奶牛回乳起正调控作用。
奶牛;回乳;复方天然植物制剂;泌乳激素
Abstract:【Objective】the objective of this study is to explore the impact of compound natural plant preparation on the milk withdrawal and serum insulin(INS), hydrocortisone(HC), growth hormone(GH) and insulin growth factor 1(TGF-1)levels in dairy cows.【Method】A total of 150 Chinese Holstein cows, weighing (582±41) kg, pregnant with 2-4 fetuses, and fed in a large-scale dairy farm in Sichuan Province from January 2016 to June 2016, were used in the present study. Eighty healthy cows with normal milk and udder that in late pregnancy and gave (15.42±0.71) kg milk per day were chosen. The cows were randomly divided into four groups: groups A, B, C and D, with 20 of them in each group. Stop dairy cows’ milk by gradually dry milk method and the day when cows gave less milk was recorded as 0 d. Group A was a control group, did not feed compound natural plant preparation and the groups B, C and D were fed 400g, 500g, 600g compound natural plant preparation,respectively, at 8.00 am from 1 d to the day of dry milk completely. Compound natural plant preparation comprises fructus hordei germinatus, mirabilite, rhizoma cimicifugae, bupleurum, rhizoma cyperi, coix seed, silkworm slough, rhizome atratylodis, scutellaria baicalensis, rhizome anemarrhenae, caulis perllae, semen euryales, schisandra chinensis, dandelion,licorice and so on. The cows’ venous blood was collected from tail on the day 0, 1, 3, 5, 7, 9 and 11, the samples were placed in the centrifuge tubes without anticoagulant at room temperature for 1h. The suspension was centrifuged at 352 × g for 10 min and then put into the refrigerator at -20℃. ELISA was used to evaluate the expression levels of serum INS, HC and IGF-I and the daily milk production was recorded.【Result】Groups A, B, C and D returned milk on the 11 d, 7 d, 5 d and 5 d respectively.The expression levels of serum IGF-1 and HC were declining in all 4 groups and the decline trend of the control group was slower than compound natural plant preparation groups. The expression levels of serum IGF-1, HC and GH were raised after the period of milk withdrawal, the upward trend of the expression levels of serum INS in the control group was slower than compound natural plant preparation groups. From the day 0 to the 1, the expression levels of serum HC, IGF-1 and GH had no significant difference(P>0.05). From the day 3 to the day7, the expression levels of serum HC, GH and IGF-1 in group A were highly and significantly higher than those of groups B, C and D (P<0.01), while the expression level of INS in group A was highly significant loser than those of groups B, C and D(P<0.01). On the day 9, the expression levels of serum HC in groups A and D were significantly higher than that of group C(P<0.05), the expression levels of serum GH and IGF-1 in groups A and B were highly and significantly lower than those of groups C and D(P<0.01), the expression levels of serum INS in group A was highly and significantly lower than that of groups B, C and D(P<0.01). On the day 11, the expression levels of serum HC, GH and IGF-1 in group A were highly significantly lower than those of groups B, C and D(P<0.01), the expression levels of serum INS in group A was highly significant lower than that of groups B and C(P<0.01) and significantly lower than that of group D(P<0.05). The expression levels of serum IGF-1, GH, HC and INS had no significant difference between group C and D during the period of milk withdrawal (P>0.05). During the period of milk withdrawal, there were significant positive correlations among milk production, HC, GH and IGF-1(P<0.01) and there was a significant negative correlation between INS and milk production, HC, GH, IGF-1(P<0.01).【Conclusion】 Compound natural plant preparation can help cows milk withdrawal significantly, feeding 500g·d-1can shorten the period of milk withdrawal to 5 days can make the best effect on milk withdrawal. The expression levels of serum INS, HC, IGF-1 and milk production had a highly significant correlation. IGF-1 GH and HC are negative regulation factors of milk withdrawal, while INS is a positive regulation factor.
Key words:dairy cow; milk withdrawal; compound natural plant preparation; galactin
【研究意义】奶牛经过漫长的泌乳期,机体损耗大量营养物质,需经回乳期,进入干奶期,蓄积机体储备,更新乳腺组织及优化内分泌系统。为分娩后高效泌乳做物质准备。回乳期奶牛的回乳效果将直接影响产后泌乳量及乳汁品质。当下次泌乳期再次来临,乳腺细胞必须具有较强活力才能够支撑大量泌乳而引起的营养损耗[1]。若乳腺上皮细胞持续分泌乳汁,乳腺细胞无法休整,不仅影响下一个泌乳期的泌乳量,且对之后胎次的泌乳均有不利影响[2]。因此,缩短回乳期,使奶牛快速进入干乳期,对奶牛乳腺的保护具有重要意义。目前还未见专一缩短奶牛回乳期的药物,复方天然植物制剂因具有多种功效,无抗药性和耐药性,无药物残留和不良反应少等独特优势,自古以来一直被广泛应用于提高免疫、促进生长、催乳和回乳等[3]。探究复方天然植物制剂对回乳期奶牛回乳效果及血清泌乳激素、因子的影响,有助于奶牛乳房保健产品的开发,改进奶牛回乳方法,降低回乳期奶牛乳房炎发生率。【前人研究进展】影响奶牛乳腺合成、乳汁分泌的因素很多,如饲养管理、遗传育种、营养代谢、内分泌因素等[4]。但在相同的饲养管理模式下,奶牛乳腺合成、乳汁分泌主要受到泌乳激素和因子的调控,其中直接调控乳腺发育和泌乳的激素主要有胰岛素(insulin, INS)、氢化可的松(hydrocortisone,HC)、生长激素(growth hormone,GH)、催乳素(prolactin,PRL)、雌激素(estrogen, E)和孕酮(progesterone,P4)等[5-6],其通过与胰岛素样生长因子1(Insulin-like growth factor 1,IGF-1)、转化生长因子 β1(transforming growth factor β1,TGF-β1)和信号转导和转录激活因子5(signal transduction and transcriptional activation factor of 5,STAT5)等[7]细胞因子相互作用而形成乳腺发育和泌乳的调控网络。运用复方天然植物制剂可提高人、小鼠、大鼠、兔、肉牛等动物机体INS、HC、GH、IGF-1含量[3,8-13]以及促进人和小鼠等动物回乳或泌乳已有研究[14-16],并显示均与泌乳激素及因子呈一定的相关性[17-18]。【本研究切入点】奶牛经过泌乳期,机体消耗严重,需要干奶期恢复体质,更新乳腺组织,为下一个泌乳期做充分准备,而传统回乳方法效果差,容易造成乳房炎、流产、抗生素残留等副作用[19],回乳复方天然植物制剂在奶牛回乳期的运用有巨大研究前景[20]。因此本文旨在研究复方天然植物制剂对回乳期奶牛回乳效果及血清泌乳激素、因子的影响。为进一步研究复方天然植物制剂对回乳期奶牛泌乳相关激素的调控机理,以及为寻求更安全有效的回乳技术措施提供理论依据。【拟解决的关键问题】通过对回乳期奶牛饲喂复方天然植物制剂,探究血清INS、HC、GH和IGF-1含量变化,以期为复方天然植物制剂在回乳期奶牛的应用提供理论依据,确保复方天然植物制剂在奶牛回乳期的应用正确合理。
1.1.1 试验动物 2016年1—6月,选择四川省某规模化奶牛场半封闭统一舍饲,体重(582±41)kg、2—4胎中国荷斯坦奶牛150头。从中选取体况良好,健康,乳房、乳汁均正常,即将进入回乳期,产奶量为(15.42±0.71)kg的妊娠后期奶牛80头。随机分为A、B、C、D 4组,每组20头。各组均采用逐渐干奶法进行回乳,回乳当天记为第0天,从回乳第1天,A组为对照组,不饲喂复方天然植物制剂,B、C、D组每日上午 8:00分别饲喂复方天然植物制剂 400、500、600g,直至停奶,停止饲喂。
1.1.2 试验药物 复方天然植物制剂由四川农业大学动物医学院奶牛疾病研究中心研发。由麦芽,朴硝,升麻,柴胡,香附,薏仁,蚕蜕,白术,黄芩,知母,苏梗,芡实,五味子,蒲公英和甘草等组成。均购自成都荷花池中药材专业市场(一等品)。按比例配方,粉碎过60目筛,塑料袋500 g/袋分装备用。
1.1.3 试验试剂 牛胰岛素、氢化可的松、生长激素和胰岛素样生长因子1双抗体夹心酶联免疫吸附检测(ELISA)试剂盒,均由美国RD公司提供。
1.2.1 回乳方式 采用逐渐干奶法[10-11],方法为:停喂多汁饲料,减少精料喂量,以青干草为主,控制饮水,适当加强运动。在回乳第1天,挤奶次数由3次改为2次,第2天改为1次,逐渐减少挤奶次数,当日产奶量为3—4 kg时,停止挤奶。
1.2.2 血清收集 试验奶牛回乳开始当天记为第 0天,依次采集第0、1、3、5、7、9和11天尾静脉血10mL,置于未加抗凝剂的离心管中,室温下静置1h,离心352×g离心10min,转移上层血清于EP管中,-20℃冻存,待检。
1.2.3 ELISA检测 采用双抗体夹心酶联免疫吸附技术(ELISA)测定牛胰岛素、氢化可的松、生长激素和胰岛素样生长因子1的水平,步骤严格按照说明书进行。血清样品的检测于2016 年7—8月在四川农业大学动物医学院动物疫病与人类健康四川省重点实验室和奶牛疾病研究中心进行。
SPSSl9.0软件进行统计学分析,K-S检验计量资料是否服从正态分布,以平均数±标准差(¯X±S)表示,两组间采用独立样本t检验,多组间比较采用单因素方差分析,相关性分析采用双变量 Pearson相关分析,P<0.05为差异有统计学意义,P<0.01为差异性极显著。
如表1所示,A、B、C、D 4组奶牛回乳期需要时间分别是11、7、5和5d,回乳第0天,各组间奶产量差异不显著(P>0.05);第1天,B组产奶量极显著高于D组(P<0.01);第3—5天,A、B组产奶量均极显著高于C、D组(P<0.01),且A组产奶量极显著高于B组(P<0.01);第7天,A组产奶量极显著高于B组;C、D组产奶量在整个回乳期差异均不显著(P>0.05)。
表1 复方天然植物制剂对回乳期奶牛奶产量的影响(kg·d-1,¯X±S)Table 1 The effects of compound natural plant preparation on the milk production of dairy cows during the period of milk withdrawal
如表2所示,在奶牛回乳期,各组INS含量均随时间推移呈上升趋势,回乳第0—1天,各组INS含量差异均不显著(P>0.05);第3—5天,A组INS含量极显著低于B、C、D组(P<0.01),B组显著低于C组(P<0.05);第7天,A、B组INS含量极显著低于C、D组(P<0.01),A组极显著低于B组(P<0.01);第9天,A组INS含量极显著低于B、C、D 组(P<0.01),B 组显著低于 C、D 组(P<0.05);第 11天,A组极显著低于 B、C组(P<0.01),A组显著低于D组(P<0.05);C、D组INS含量在整个回乳期均差异性不显著(P>0.05)。
表2 复方天然植物制剂对回乳期奶牛血清INS含量的影响(nIU·mL-1,¯X±S)Table 2 The effects of compound natural plant preparation on the insulin of dairy cows during period of milk withdrawal
如表3所示,在奶牛回乳期,各组HC含量均随时间推移呈下降趋势,回乳第0—1天,各组HC含量差异均不显著(P>0.05);第3—7天,A组HC含量极显著高于B、C、D组(P<0.01);第9天,A、D组HC含量均显著高于C组(P<0.05);第11天,A组HC含量极显著低于B、C、D组(P<0.01),且B组显著低于C、D组(P<0.05);C、D组HC含量在整个回乳期差异均不显著(P>0.05)。
如表4所示,在奶牛回乳期,各组奶牛血清GH含量均呈下降趋势,并在回乳期后上升。第0—1 天,GH含量在四组间差异均不显著(P>0.05);第3—7天,A组GH含量均极显著高于B、C、D组(P<0.01);第9天,A、B组GH含量均极显著低于C、D组(P<0.01);第11天,A组GH含量极显著低于B、C、D组(P<0.01),B组GH含量显著低于C组(P<0.05),B组GH含量极显著低于D组(P<0.01);C、D组GH含量在整个回乳期差异均不显著(P>0.05)。
表3 复方天然植物制剂对回乳期奶牛血清HC含量的影响(ng·mL-1,¯X±S)Table 3 The effects of compound natural plant preparation on the HC of dairy cows during the period of milk withdrawal
表4 复方天然植物制剂对回乳期奶牛血清GH含量的影响(ng·mL-1,¯X±S)Table 4 The effects of compound natural plant preparation on GH of dairy cows during the period of milk withdrawal
如表5所示,在奶牛回乳期,各组IGF-1含量均随时间推移呈下降趋势,并在回乳期后回升,回乳第0天,B组IGF-1含量显著高于C组(P<0.05);第1天,各组IGF-1含量差异均不显著(P>0.05);第37天,A组IGF-1含量极显著高于B、C、D组(P<0.01);第9天,A、B组IGF-1含量均极显著低于C、D组(P<0.01),A组极显著高于B组(P<0.01);第11天,A组IGF-1含量极显著低于B、C、D组(P<0.01);C、D组IGF-1含量在整个回乳期均差异性不显著(P>0.05)。
表5 复方天然植物制剂对回乳期奶牛血清IGF-1含量的影响(ng·mL-1,¯X±S)Table 5 The effects of compound natural plant preparation on IGF-1 of dairy cows during the period of milk withdrawal
利用对照组进行相关性分析,结果如表6所示,在奶牛回乳期,产奶量、HC、GH和IGF-1两两间均呈极显著正相关(P<0.01),INS与产奶量、HC、GH和IGF-1均呈极显著负相关(P<0.01)。
表6 回乳期奶牛血清INS、HC、IGF-1含量和产奶量的相关性Table 6 Correlation between the expression levels of INS, HC and IGF-1 milk yield during the period of withdrawal
目前,人医运用麦芽口服,芒硝外敷等回乳方式已不少见[14,16]。王雄[14]使用“回乳抑增一号”(麦芽、牡蛎、浙川贝等)使妇女溢乳改善,郝振华等[15]利用麦芽治疗妇女产后溢乳有明显疗效。现有回乳复方天然植物制剂中多有麦芽,且已经人工合成麦角衍生物——卡麦角林能明显抑制PRL生成,进而控制泌乳[22]。然而,复方天然植物制剂运用于奶牛回乳还鲜有报道,本研究结果显示,在奶牛回乳过程中,各组奶牛产奶量均随时间推移呈降低趋势,回乳第 1天,400g组产奶量极显著高于 500g组(P<0.01);第3—5天,对照组和400g组产奶量极显著高于500、600g组(P<0.01),且对照组产奶量极显著高于 400g组(P<0.01),表明了复方天然植物制剂具有较好回乳效果,缩短了奶牛回乳期,且有效减少了日产奶量,推测其机理可能是复方天然植物制剂以炒麦芽消食、回乳[14,16];升麻、柴胡、香附、白术疏肝理气;黄芩、知母、苏梗安胎;五味子、蒲公英固精敛阴,清热解毒,统筹全局,断其生化之源,使肝气调达四运,有效抑制乳汁分泌而回乳,500、600g组产奶量在整个回乳期差异均不显著(P>0.05),表明饲喂复方天然植物制剂达到500g/日时,回乳效果即可达到最佳。
INS具有加强糖原合成、维持血糖恒定并调控泌乳等作用[23]。其可激活胰岛素亚基受体I(IRS-I),通过配体约束力和自动磷酸化的诱导,促使生成INS受体蛋白位点,从而调控乳腺上皮细胞乳糖、乳脂的生物合成[24]。但INS对反刍动物乳腺发育的作用仍存在争议,佟慧丽等[25]利用INS处理奶山羊乳腺上皮细胞后发现,细胞活力无明显变化,而陈建晖等[26]对奶牛乳腺上皮细胞进行类似处理后细胞活力下降,田青等[27]则表示INS对奶牛泌乳细胞生长及分化均有促进作用。本研究结果显示,在奶牛回乳过程中,血清INS含量在第0—1天变化不显著(P>0.05),在第3—11天依次升高且差异均极显著(P<0.01),可能由于回乳期间GH含量降低,其对INS的抑制作用减少,并且由于怀孕后期,胎犊宫内发育需要大量糖脂沉积,共同促进机体释放INS。
PANG等[28]利用黄连治疗糖尿病患者取得良好效果,王璟[8]发现生地、黄芪、当归等组成的复方天然植物制剂提高了糖尿病患者INS含量,张秋华等[9]指出,黄芩、知母、白术等复方天然植物制剂可提高小鼠体内INS表达量,另有研究表明,黄连、黄芩、知母等复方天然植物制剂能够显著提高INS对糖代谢作用率[29],本研究显示,在奶牛回乳过程中,复方天然植物制剂能够极显著提高回乳期奶牛血清 INS含量(P<0.01),400g组INS含量升高趋势较500、600g组慢,但500、600g组INS含量在整个回乳期差异均不显著(P>0.05),表明饲喂500和600g复方天然植物制剂对奶牛回乳期血清INS含量的影响不显著。可能是复方天然植物制剂中黄芩和知母等可提升奶牛血清INS含量,促进奶牛机体糖脂沉积,为满足奶牛自身及胎儿生长发育的营养和能量需要,从而减少了产奶量。
HC是哺乳动物肾上腺皮质分泌的主要糖皮质激素之一,近年来,关于HC对提高奶牛泌乳量及改善乳品质逐渐成为研究热点。HC与乳腺细胞胞内核受体结合,启动并调控泌乳相关基因表达和乳蛋白合成,通过基因组机制实现其生理和药理功能[30-31]。KABOTANSKI等[32]研究发现HC能够增强PRL对酪蛋白mRNAs累积,进而对奶牛乳腺上皮细胞增殖起重要调控。本研究结果显示,在奶牛回乳过程中,血清HC含量在第0—1天变化不显著(P>0.05),第3天极显著高于其余各天(P<0.01),可能是由于奶牛饲粮成分改变和饲舍转换等造成的应激使HC含量升高,而第 3—11天依次降低且差异均极显著(P<0.01),提示奶牛回乳期血清PRL降低,促使乳腺减少其泌乳细胞胞内核受体表达量,反馈抑制肾上腺皮质分泌 HC[33],降低泌乳量,也从正面表明了 HC在奶牛回乳中的重要作用。
王喜军等[10]利用六味地黄丸降低了HC致大鼠肾虚动物模型HC表达量,苏成虎等[11]利用水芹提取物减少了HC致肾阳虚小鼠体内HC含量。本研究发现,在奶牛回乳过程中,饲喂复方天然植物制剂各组均极显著降低血清HC含量(P<0.01),说明复方天然植物制剂降HC含量效果明显,在回乳期后,中药组血清 HC含量明显回升,且各中药组间差异不显著(P>0.05),可能是由于奶牛及胎犊对糖、脂肪和蛋白质等代谢调节需求 HC[34],而对照组继续下降,可能是由于对照组回乳持续时间较长,致使HC还未达到回升期,综上所述,奶牛在回乳期HC明显降低,并在回乳期后回升,表明各组复方天然植物制剂降奶牛血清HC含量均有良好效果。
GH是由脑垂体分泌的一种单一肽链的蛋白质激素,有促进生长发育,调控泌乳等作用[35-36]。运用牛生长素可调节奶牛机体物质代谢,提高饲料转化率,增加产奶量[37-38], 对早期泌乳奶牛注射GH可增加产奶量[17],其主要通过JAK2/STAT5信号通路、IGF-I和GH受体等增加乳腺血流量,使营养成分向乳腺聚集,促进乳腺发育[39]。本试验结果表明,在奶牛回乳过程中,GH含量呈下降趋势,并在回乳期后回升,可能是减少了挤奶刺激,乳房GH受体表达受到抑制,进而反馈抑制垂体分泌 GH,也可能是由于怀孕末期,为满足胎犊宫内快速生长发育需求导致。
李嫔等[3]利用生地、黄柏和知母等制成浓缩合剂饲喂大鼠,能够调控GH蛋白表达。LO等[31]对大鼠灌服大黄衍生物使GH表达增加。王金合等[12]对肉牛拌喂柴胡、当归等提高肉牛血清GH含量。本研究表明,在奶牛回乳过程中,对照组血清GH含量在回乳第1—11天均呈下降趋势,且在第3—7天,对照组血清 GH含量极显著高于中药组(P<0.01),400g组在第3—5天极显著高于500、600g组(P<0.01),随后,复方天然植物制剂组GH含量均上升,且500与600g组在整个回乳期差异性不显著(P>0.05)。说明复方天然植物制剂对回乳期奶牛降 GH效果明显,饲喂500g/日即可达到最佳效果,且在回乳期后,复方天然植物制剂组GH含量回升,推测复方天然植物制剂对胎儿生长发育有促进作用,而对照组GH在回乳期呈现逐渐下降趋势,可能是由于对照组奶牛回乳速度较慢,GH还未达到回升期。表明复方天然植物制剂能够使奶牛快速回乳,使血清GH含量快速回升,进而间接促进胎犊生长发育。
IGF-1是一类功能复杂的多肽因子,可促进乳腺泌乳,特别是介导 GH的催乳作用[7]。研究表明,乳腺组织中存在IGF-1及其受体,对早期泌乳奶牛注射GH,增加了IGF-1及其受体表达量[17],另外,IGF-1可直接通过受体作用于乳腺,对乳腺最终分化完全、发育成熟与乳汁生成以及新生儿的生长发育具有调控作用[41],MURNEY 等[42]和 HERNANDEZ 等[43]也表示IGF-1与奶牛产奶量相关性显著。本研究结果表示,在奶牛回乳过程中,血清IGF-1含量依次呈阶梯式下降,而第0和1天、第3和5天、第7和9天、第9和11天之间差异均不显著(P>0.05),与上述结果趋势一致,可能是由于GH降低,其与IGF-1结合减少,反馈抑制乳腺泌乳细胞分泌。表明奶牛IGF-1不仅在奶牛青春期乳腺生长和泌乳期起正向调控,且在奶牛回乳期可降低IGF-1含量,促进回乳进行。
王昶[44]和唐中生等[45]发现丹参可使大鼠血清和肝组织IGF-1表达量上升,张弛等[46]利用丹参、黄芩等组成的复方天然植物制剂在兔上的研究结果类似,石宝明等[13]利用益母草、王不留行、黄芩等组成的复方天然植物制剂显著增加泌乳大鼠产奶量及IGF-1含量。本试验结果显示,在奶牛回乳过程中,对照组血清IGF-1含量较复方天然植物制剂组下降慢,复方天然植物制剂500和600g组血清IGF-1含量下降较400g组快,而复方天然植物制剂组500和600g差异不显著(P>0.05)。表明复方天然植物制剂降IGF-1效果明显,其中500、600g组效果较好,在回乳期后复方天然植物制剂IGF-1含量均上升,表明复方天然植物制剂可使奶牛快速回乳,减少IGF-1低含量持续时间,间接促进IGF-1对GH的介导作用,加快胎犊生长发育。
神经内分泌的多种激素与乳腺外组织及乳腺分泌的多种生长因子相互协同,以内分泌、旁分泌和自分泌等方式共同调节乳腺的生长发育和泌乳[5]。有研究表明,IGF-1可介导GH的催乳作用,提高奶牛产奶量[47],而INS与GH在泌乳过程中存在拮抗,当血清中存在高浓度的 INS,其调控葡萄糖转运至非乳腺组织,使乳腺对葡萄糖的摄取不敏感,而IGF-1介导的GH在低水平INS下可调节乳腺和乳腺外营养竞争,使营养向乳腺转移,促进乳腺发育和乳的合成[48]。本研究显示,奶牛回乳期,GH含量与HC含量、IGF-1含量和产奶量呈极显著正相关(P<0.01),INS含量与IGF-1、HC含量、GH含量和奶产量呈极显著负相关(P<0.01),另有研究资料表明,HC可促进乳腺对葡萄糖的摄取,提升血清IGF-1含量,增加泌乳量[47],本研究显示,奶牛回乳期,IGF-1含量、HC含量和产奶量两两间呈极显著正相关(P<0.01),表明在奶牛回乳期,IGF-1、GH和HC对奶牛回乳起负向调控功能,而INS对奶牛回乳起正调控作用。
复方天然植物制剂能显著促进回乳期奶牛回乳,饲喂500g/日复方天然植物制剂,奶牛回乳时间为5d,回乳效果即可达到最佳。回乳期奶牛血清胰岛素、氢化可的松、胰岛素样生长因子1含量和产奶量变化两两间均呈极显著相关,生长激素、胰岛素样生长因子1和氢化可的松对奶牛回乳起负向调控作用,而胰岛素对奶牛回乳起正调控作用。
[1]王春璈. 奶牛临床疾病学[M]. 北京:中国农业科学技术出版社,2007.WANG C A. Dairy Cow Clinical Disease[M]. Beijing: China Agricultural Science and Technology Press, 2007. (in Chinese)
[2]ZOBEL G, LESLIE K, WEARY D M, VON KEYSERLINGK M A G.Gradual cessation of milking reduces milk leakage and motivation to be milked in dairy cows at dry-off. Journal of Dairy Science, 2013,96(8): 5064-5071.
[3]李嫔, 向正华, 蔡德培. 中药对大鼠下丘脑生长抑素及垂体生长激素基因表达与蛋白表达的调节作用. 中国中西医结合杂志, 2003,23(3): 207-210.LI B, XIANG Z H, CAI D P. Regulative effect of Chinese herbal medicine on gene and protein expression levels of somatostatin and growth hormone in hypothalamus and hypophysis. Chinese Journal of Integrated Traditional and Western Medicine, 2003, 23(3): 207-210.(in Chinese)
[4]TUCKER C B, LACY-HULBERT S J, WEBSTER J R. Effect of milking frequency and feeding level before and after dry off on dairy cattle behavior and udder characteristics. Journal of Dairy Science,2009, 92(7): 3194-3203.
[5]OGATA Y,YU G M, HIDAKA T, MATZUSHIGE T, MAEDA T.Effective embryo production from Holstein cows treated with gonadotropin-releasing hormone during early lactation. Theriogenology,2016, 86(6): 1421-1426.
[6]文静, 卜登攀, 王建发, 孙鹏. 激素调控乳蛋白合成的作用及其分子机制. 华北农学报, 2012, 27(s1): 111-115.WEN J, BU D P, WANG J F, SUN P. Progress in the regulation role of lactoprotein synthesis by hormone and its molecular mechanism. Acta Agriculturae Boreali-Sinica, 2012, 27 (s1):111-115. (in Chinese)
[7]BACH L A. Insulin-like growth factor binding proteins--an update.Pediatric Endocrinology Reviews: Per, 2015, 13(2):521-30.
[8]王璟. 中药对胰岛素治疗2型糖尿病低血糖发生率的影响. 西部中医药, 2014, 27(4): 94-95.WANG J. Effects of herbs on the incidence rate of hypoglycemia ofthe patients with type two diabetes mellitus. Western Journal of Traditional Chinese Medicine, 2014, 27(4): 94-95. (in Chinese)
[9]张秋华, 付彦君. 肥胖相关胰岛素抵抗中医药研究现状. 中医药信息, 2012, 29(2): 114-116.ZHANG Q H, FU Y J. Obesity insulin resistance related research status of traditional Chinese medicine. Information on Traditional Chinese Medicine, 2012, 29(2): 114-116. (in Chinese)
[10]王喜军, 张宁, 孙晖, 李丽静, 吕海涛. 六味地黄丸血中移行成分对氢化可的松致大鼠肾虚动物模型的保护作用研究. 中国实验方剂学杂志, 2008, 14(2): 33-37.WANG X J, ZHANG N, SUN H, LI L J, LÜ H T. Protective effect of Liuwei Dihuang Wan and its constituents absorbed into blood after oral administration on hydrocortisone inducing renal deficiency in rat.Chinese Journal of Experimental Traditional Medical Formulae, 2008,14(2): 33-37. (in Chinese)
[11]苏成虎, 杨新波, 黄正明, 陈晓农, 陈红艳, 程丽娟, 于珊, 徐雪钰.水芹提取物对氢化可的松致肾阳虚小鼠的对抗作用. 中国中医药信息杂志, 2011, 18(12): 39-42.SU C H, YANG X B, HUANG Z M, CHEN X N, CHEN H Y,CHENG L J, YU S, XU X Y. Effect of extract of Oenanthe javanica against kidney yang deficiency in mice caused by hydrocortisone.Chinese Journal of Information on Traditional Chinese Medicine,2011, 18(12): 39-42. (in Chinese)
[12]王金合, 李荣誉, 汪德刚, 王居强. 中草药添加剂对肉牛增重和血清中生长激素的影响. 河南农业科学, 2007 (9): 101-103.WANG J H, LI R Y, WANG D, WANG J Q. The Chinese herb additive increases heavy and in the blood serum to the beef cattle the growth hormone influence. Journal of Henan Agricultural Sciences,2007(9): 101-103. (in Chinese)
[13]石宝明, 单安山. 促乳中草药对泌乳大鼠内分泌功能的影响. 东北农业大学学报, 2011, 42(12): 45-50.SHI B M, SHAN A S. Effect of Chinese herbs for improving milk production on dam endocrine function during suckling period.Journal of Northeast Agricultural University, 2011, 42(12): 45-50. (in Chinese)
[14]王雄. 回乳抑增一号治疗高泌乳素血症与乳腺增生药效学研究[D].武汉: 湖北中医药大学, 2012.WANG X. Pharmacodynamics study on menehanism of NO.1 Huiru Yizeng on hyperprolactinemia and mazoplasia in rats[D]. Wuhan:Hubei University of Chinese Medicine, 2012. (in Chinese)
[15]郝振华, 郭震兵. 重用生麦芽治疗高泌乳素血症性不孕的临床观察. 新疆中医药, 2016, 34(1): 13-14.HAO Z H,GUO Z B. The clinical observation of treating infertility with high prolactin with large-dose raw malt. Xinjiang Journal of Traditional Chinese Medicine, 2016, 34(1): 13-14. (in Chinese)
[16]钟慧萍. 炒麦芽泡茶饮用联合芒硝外敷双乳回奶的效果观察. 中外医学研究, 2015,13(34): 157-159.ZHONG H P. Fried malt tea drinking joint of glauber's salt topical breasts back to observe the effect of milk. Chinese and Foreign Medical Research, 2015, 13(34): 157-159. (in Chinese)
[17]MACRINA A L, KAUF A C W, KENSINGER R S. Effect of bovine somatotropin administration during induction of lactation in 15-month-old heifers on production and health. Journal of Dairy Science,2011, 94(9): 4566-4573.
[18]WANG J F, FU S P, LI S N, HU Z M, XUE W J, LI Z Q, HUANG B X, LV Q K, LIU J X, WANG W. Short-chain fatty acids inhibit growth hormone and prolactin gene transcription via cAmp/PKA/CREB signaling pathway in dairy cow anterior pituitary cells. International Journal of Molecular Sciences, 2013, 14(11): 21474-21488.
[19]HENDERSON A C, HUDSON C D, BRADLEY A J, SHERWIN V E,GREEN M J. Prediction of intramammary infection status across the dry period from lifetime cow records. Journal of Dairy Science, 2016,99(7): 5586-5595.
[20]ZHAO F R, MAO H P,ZHANG H, HU L M, WANG H, WANG Y F,YANAQIHARA N, GAO X M. Antagonistic effects of two herbs in Zuojin Wan, a traditional Chinese medicine formula, on catecholamine secretion in bovine adrenal medullary cells. Phytomedicine International Journal of Phytotherapy and Phytopharmacology, 2010,17(8-9): 659-668.
[21]吴文英, 周惠欢, 吴秀娥. 芒硝外敷治疗产后回奶的观察及护理.医学信息, 2013, 26(8):375.WU W Y, ZHOU H H, WU X E. Glauber's salt external observation and nursing for the treatment of postpartum back to milk. Medical Information, 2013, 26(8):375. (in Chinese)
[22]杨强, 陈晋, 刘军. 卡麦角林治疗泌乳素型垂体瘤的研究进展. 中国神经精神疾病杂志, 2016, 42(5):311-314.YANG Q, CHEN J, LIU J. Cabergoline therapy research progress of prolactin type of pituitary adenoma. Chinese Journal of Nervous and Mental Diseases, 2016, 42(5): 311- 314. (in Chinese)
[23]RIEHLE C, ABEL E D. Insulin signaling and heart failure.Circulation Research, 2016,118(7):1151- 1169.
[24]AKERS R M. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows.Journal of Dairy Science, 2006, 89(4): 1222-1234.
[25]佟慧丽, 高学军, 李庆章, 严云勤. 胰岛素、催乳素对奶山羊乳腺上皮细胞泌乳功能的影响. 畜牧兽医学报, 2008, 39(6): 721-725.TONG H L, GAO X J, LI Q Z, YAN Y Q. Impacting of insulin and prolactin on mammary gland epithelial cell line. Chinese Journal of Animal and Veterinary Sciences, 2008, 39(6): 721-725. (in Chinese)
[26]陈建晖, 佟慧丽, 李庆章, 高学军. 胰岛素、催乳素和孕酮对奶牛乳腺上皮细胞泌乳功能的影响. 中国奶牛, 2008(8): 9-13.CHEN J H, TONG H L, LI Q Z, GAO X J. Influence of insulin,prolactin and progesterone on milk-secr etion of mammary gland epithelial cell in dairy cow. China Dairy, 2008(8):9-13. (in Chinese)
[27]田青, 季昀, 庞学燕, 王洪荣. 胰岛素对奶牛乳腺上皮细胞酪蛋白合成调节机理的研究. 动物营养学报, 2013, 25(3): 550-560.TIAN Q, JI Y, PENG X Y, WANG H R. A study of insulin action mechanism on casein synthesis of bovine mammary epithelial cells.Chinese Journal of Animal Nutrition, 2013, 25(3): 550-560. (in Chinese)
[28]PANG B, YU X T, ZHOU Q, ZHAO T Y, WANG H, GU C J, TONG X L. Effect of Rhizoma coptidis (Huang Lian) on treating diabetes mellitus. Evidence-based Complementary and Alternative Medicine,2015:921416. http://dx.doi.org/10.1155/2015/921416.
[29]毕博, 孙兰军. 中药改善胰岛素抵抗及其降糖作用. 现代中西医结合杂志, 2009, 18(22): 2739-2740.BI B, SUN L J. Traditional Chinese medicine to improve insulin resistance and its hypoglycemic effect. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2009, 18(22): 2739-2740.(in Chinese)
[30]李敏. 新型糖皮质激素对肥大细胞脱颗粒的快速作用及其机制研究[D]. 第二军医大学, 2010.LI M. New glucocorticoid on mast cell degranulation quick effect and its mechanism[D]. Second Military Medical University, 2010. (in Chinese)
[31]SHEEHY P A, NICHOLAS K R, WYNN P C. An investigation of the role of insulin in bovine milk protein gene expression in mammary explant culture. Asian Australasian Journal of Animal Sciences, 2000,13:272-275.
[32]KABOTYANSKI E B, RIJINKELS M, FREEMAN-ZADROWSKI C,BUSER A C, EDWARDS D P, ROSEN J M. Lactogenic hormonal induction of long distance interactions between Β-Casein gene regulatory elements. Journal of Biological Chemistry, 2009, 284(34):22815-22824.
[33]LITTLEJOHN M D, HENTY K M, TIPLADY K, JOHNSON T,HARLAND C, LOPDELL T, SHERLOCK R G, LI W, LUKEFAHR S D, SHANKS B C, GARRICK D J, SNELL R G, SPELMAN R J,DAVIS S R. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nature Communications,2014, 5: 5861-5861.
[34]WHITAKER M J, SPIELMANN S, DIGWEED D, HUATAN H,ECKLAND D, JOHNSON T N, TUCKER G, KRUDE H,BLANKENSTEIN O, ROSS R J. Development and testing in healthy adults of oral hydrocortisone granules with taste masking for the treatment of neonates and infants with adrenal insufficiency. Journal of Clinical Endocrinology & Metabolism, 2015, 100(4): 1681-1688.
[35]STEYN F J. Nutrient sensing ooverrides somatostatin and growth hormone- releasing hormone to control pulsatile growth hormone release. Journal of Neuroendocrinology, 2015, 27(7): 577-587.
[36]BROWN-BORG H M. Reduced growth hormone signaling and methionine restriction: interventions that improve metabolic health and extend life span. Annals of the New York Academy of Sciences,2015, 1363(1): 40-49.
[37]FORSYTH I A, WALLIS M. Growth hormone and prolactin—molecular and functional evolution. Journal of Mammary Gland Biology and Neoplasia, 2002, 7(3): 291-312.
[38]RHOADS M L, MEYER J P, KOLATH S J, LAMBERSON M C,LUCY M C. Growth hormone receptor, insulin-like growth factor(IGF)-1, and IGF-binding protein-2 expression in the reproductive tissues of early postpartum dairy cows. Journal of Dairy Science,2008, 91(5): 1802-1813.
[39]ELENA L, BERIT K, BJORN J, KERSTIN A W. Growth hormone(GH) dose-dependent IGF-I response relates to pubertal height gain.Bmc Endocrine Disorders, 2015, 15(1): 1-14.
[40]LO Y H, CHEN Y J, CHUNG T Y, LIN N H, CHEN W Y, CHEN C Y,LEE M R, CHOU C C, TZEN-JASON T C. Emoghrelin, a unique emodin derivative in Heshouwu, stimulates growth hormone secretion via activation of the ghrelin receptor. Journal of Ethnopharmacology,2015, 159(5): 1-8.
[41]NAWATHE A R, CHRISTIAN M, KIM S H, JOHSON M,SAVVIDOU M D, TERZIDOU V. Insulin-like growth factor axis in pregnancies affected by fetal growth disorders. Clinical Epigenetics,2016, 8(1): 1-13.
[42]MURNEY R, STELWAGEN K, WHEELER T T, MARGERISON J K, SINGH K. The effects of milking frequency on insulin-like growth factor 1 signaling within the mammary gland of dairy cows. Journal of Dairy Science, 2015, 98(8): 5422-5428.
[43]HERNANDEZ H, FLORES J A, DELGADILLO J A, FERNANDEZ I G, FLORES M J, MEJIA A, ELIZUNDIA J M, BEDOS M, PONCE J L, RAMIREZ S. Effects of exposure to artificial long days on milk yield, maternal insulin-like growth factor 1 levels and kid growth rate in subtropical goats. Animal Science Journal, 2016, 87(4):484-491.
[44]王昶. 胰岛素样生长因子-1在肝纤维化大鼠中的表达及中药的干预作用[D]. 大连:大连医科大学, 2015.WANG C. Insulin-like growth factor 1 expression in liver fibrosis in rats and the intervention effect of Chinese traditional medicine[D].Dalian:Dalian Medical University, 2015. (in Chinese)
[45]唐中生, 吕明庄, 贺志光, 王旭东. 耳针联合中药对血管性痴呆大鼠记忆障碍及胰岛素样生长因子-1及乙酰胆碱酯酶表达的影响.中华中医药杂志, 2008, 23(3): 270-272.TANG Z S, LÜ M Z, HE Z G, WANG X D. Earpins combined traditional Chinese medicine (TCM) memory impairment of vascular dementia rats and insulin-like growth factor 1 and acetyl cholinesterase expression. China Journal of Traditional Chinese Medicine and Pharmacy, 2008, 23(3): 270-272. (in Chinese)
[46]张弛, 杨志伟, 段小英. 活血通络法治疗激素性股骨头坏死兔胰岛素样生长因子 1的变化. 中国组织工程研究, 2012, 16(52):9787-9791.ZHANG C, YANG Z W, DUAN X Y. Changes of insulin-like growth factor 1 levels in rabbits with steroid-induced femoral head necrosis after treatment with Huoxuetongluo method. Chinese Journal of Tissue Engineering Research, 2012, 16(52): 9787-9791. (in Chinese)
[47]李蔚辉, 魏学鑫. 糖皮质激素的信号转导系统. 亚太传统医药,2007, 3(12): 21-25.LI W H, WEI X X. Signal transduction system of glucocorticoid.Asia-Pacific Traditional Medicine, 2007, 3(12): 21-25. (in Chinese)
[48]赵国丽, 宫艳斌, 韩元, 李鹏, 秦春华, 史远刚. 激素和生长因子调控奶牛乳腺发育的研究进展. 中国奶牛, 2011(6): 25-30.ZHAO G L, GONG Y B, HAN Y, LI P, QIN C H, SHI Y G. Advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows. China Dairy, 2011(6): 25-30. (in Chinese)
(责任编辑 林鉴非)
Effects of Compound Natural Plant Preparation on Milk Withdrawal and Galactin in Dairy Cows
SHEN LiuHong, XIAO JinBang, WU XiaoFeng, JIANG SiXun, JIANG Tao, DENG JunLiang,ZUO ZhiCai, YU ShuMin, CAO SuiZhong
(The Key Laboratory of Animal Disease and Human Health of Sichuan Province/The Medical Research Center for Cow Disease,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130)
2016-11-30;接受日期:2017-07-20
四川省教育厅重点项目(15ZA0024)、四川农业大学双支计划(03571303)、四川农业大学本科科研兴趣培养计划(KY2016062)
联系方式:沈留红,E-mail:shenlh@sicau.edu.cn。肖劲邦,E-mail:811031312@qq.com。沈留红和肖劲邦为同等贡献作者。通信作者曹随忠,E-mail:suizhongcao@126.com