海水灌溉对‘赤霞珠’葡萄果实品质的影响

2017-10-10 01:31黄丽鹏张秀圆王杨付艳东翟衡邵小杰
中国农业科学 2017年18期
关键词:赤霞珠咸水菌肥

黄丽鹏,张秀圆,王杨,付艳东,翟衡,邵小杰

(山东农业大学园艺科学与工程学院/作物生物学国家重点实验室,山东泰安 271000)

海水灌溉对‘赤霞珠’葡萄果实品质的影响

黄丽鹏,张秀圆,王杨,付艳东,翟衡,邵小杰

(山东农业大学园艺科学与工程学院/作物生物学国家重点实验室,山东泰安 271000)

【目的】研究海水灌溉对葡萄果实品质的影响,探讨海水在葡萄园灌溉上的合理应用途径。【方法】以蓬莱国宾、中粮长城两个基地的‘赤霞珠’葡萄为试材,于2013—2016年在果实发育期连续4年进行10%海水灌溉。2016年进行不同海水组合处理(10%磁化海水、10%海水加菌肥、1年10%海水和2年10%海水)的比较试验,在果实成熟期测定葡萄可溶性固形物、可滴定酸、糖组分、总酚、单宁、花色苷、维生素C和香气成分等品质指标。【结果】国宾基地连续3年、4年进行10%海水灌溉,均显著增加‘赤霞珠’果实可溶性固形物含量,降低可滴定酸含量,但对果皮色差无显著性影响。中粮基地10%磁化海水、10%海水+菌肥、1年10%海水和2年10%海水4种海水灌溉处理均显著降低了果实可滴定酸,提高了糖酸比,只有10%海水+菌肥显著提高了果实百粒重和可溶性固形物含量。不同海水处理提高了果实葡萄糖、果糖含量,1年和2年海水处理的果糖含量比对照(清水)显著提高了35.3%和42.7%,葡萄糖提高了66.7%和70.7%。海水处理还提高了果实总酚、花色苷、维生素C的含量,降低了单宁含量,其中,4种海水处理显著提高了维生素C含量,分别增加46.8%、60.8%、57.2%和 79.7%,磁化海水、添加菌肥显著降低单宁含量。赤霞珠葡萄果实共检测到 38种香气成分,主要包括醇类、醛类、酯类、酮类等物质,海水灌溉和对照共有香气成分为24种,海水处理增加了香气种类,提高香气物质总量,4种处理比对照分别增加了75%、92.2%、25.9%和38.8%;香气总量以添加菌肥处理的增加幅度最大,其次为磁化海水。主要香气成分(E)-2-己烯-1醇、2-己烯醛、(E)-2-己烯醛、壬醛等物质中,均以磁化海水和添加菌肥处理的增加幅度最大;含量最高的2-己烯醛在4个处理中比对照分别提高了46.9%、95.6%、0.5%、19.3%。【结论】10%海水长期灌溉提高了果实品质,海水+菌肥则大幅提高了果实可溶性固形物含量和(E)-2-己烯-1醇、2-己烯醛等香气成分的积累。

‘赤霞珠’葡萄;海水灌溉;品质;香气成分

Abstract:【Objective】This study was carried out to investigate the effects of seawater irrigation on grape fruit quality and to explore the reasonable application of sea water in improving grape quality.【Method】The Cabernet Sauvignon grapes from two bases of Penglai Guobin and COFCO Changcheng were taken as test materials for 4 consecutive years in 2013-2016 in Penglai. Additionally, the different seawater treatments were applied in 2016, including 10% magnetized sea water, and 10% sea water plus fertilizer magnetization, 1 and 2 years 10% water. Some quality parameters were determined, including fruit soluble solids, titratable acid, total phenolics, tannins, anthocyanins, reductive Vitamin C and aroma. 【Result】 The results showed that an experiment of 10% seawater irrigation was conducted at Guobin base, which significantly increased the soluble solids content of Cabernet Sauvignon fruit and decreased titratable acid content, but had no significant effect on the color difference of pericarp in 3 and 4 years. Four seawater irrigation treatments including 10% magnetized water, 10% water fertilizer, 10% waterfor 1 year and 10% water for 2 years significantly reduced the titratable acid, sugar acid ratio increased at COFCO Changcheng base. Bacterial manure and magnetization seawater significantly increased the content of sugar compared with the control. In contrast, significant difference in fruit sugar components was found among different seawater treatments. Fruit fructose contents from 1- and 2-year seawater irrigation were significantly enhanced by 35.3% and 42.7%, respectively. Glucose increased by 66.7% and 70.7%. The contents of total phenols, anthocyanin content, reductive Vitamin C were increased by seawater treatments. Among them, 4 kinds of seawater treatment significantly increased the Vitamin C content of the fruit by 46.8%,60.8%, 57.2% and 79.7%, respectively, and adding bacterial fertilizer and magnetized water significantly reduced the content of tannin in fruits. There were 38 kinds of aroma components in Cabernet Sauvignon grape fruits were detected, including alcohols,aldehydes, esters, ketones and other substances. There were 24 aromas in fruits of seawater irrigation treatments and control.Seawater irrigation increased the total content of aroma components of 14 kinds of aroma. Fruit aroma was significantly increased, and total aroma amount was increased by 92.2%, 75%, 25.9%, and 38.8% in the treatments of 10% sea water and bacterial fertilizer, 10% magnetized seawater, one-year 10% seawater and two-year 10% seawater, respectively. Among the main aroma components of (E)-2-Hexen-1-ol, 2- hexenal, (E)-2-hexenal, nonanal and other substances, the highest content of 2-hexenal in the fruits of magnetized seawater and magnetized seawater plus bacterial fertilizer treatments in, increased by 46.9%,95.6%, 0.5%, 19.3% as compared with the control. 【Conclusion】 It was concluded that 10% seawater irrigation could promote the quality of wine grape, and seawater irrigation increased water soluble solids content and (E)-2-Hexen-1-ol, 2- hexenal aroma components in fruits.

Key words:Cabernet Sauvignon grapes; seawater irrigation; quality; aroma components

0 引言

【研究意义】赤霞珠葡萄(Cabernet Sauvignon)为中国自1892年就引入的的欧亚种(Vitis vinifera L.)酿酒品种,在全国葡萄主产区均有分布,是中国目前栽培面积最大的酿造红葡萄酒品种。海水是沿海地区容易获得的廉价的呈碱性的微咸水资源,研究分析海水处理对葡萄果实品质的影响,对利用天然微咸水资源改善酿酒葡萄果实品质和提高葡萄酒质量均具有重要意义。【前人研究进展】微咸水是指含盐量在2—5 g·L-1范围内的水资源,富含钠、钾、钙、镁、铜、铁、锌等矿质元素。以色列和美国是国外对微咸水灌溉科学应用的典型范例,中国新疆、宁夏、辽宁、河北、西北等均有利用微咸水灌溉的农业实践[1-2],合理的微咸水灌溉在甜菜、小麦、水稻、高粱、大麦等农作物上取得成功[3-4]。相关研究表明,微咸水灌溉番茄、西瓜,在提高产量的同时还提高了果实含糖量和维生素C含量,进而提高果实品质[5-7]。用微咸水滴灌枣树可以增加红枣可溶性固形物、维生素C含量,降低有机酸含量[8];咸淡混合水灌溉提高了苹果、梨的果实硬度和可溶性固形物含量,降低了可滴定酸,且对苹果和梨的产量没有影响[9]。BRAVDO等[10]发现用盐水灌溉或在含盐较高土壤上生长的‘赤霞珠’‘霞多丽’等葡萄酿造的葡萄酒中有非常好的香气品质。微咸水的合理应用,可以使土壤表层的盐分处于一个相对平衡的状态,提高果实品质、矫正和遏制土壤酸化进程[11],但微咸水盐浓度过高或过度灌溉,则会对果实品质及土壤造成伤害,造成土壤微生物数量减少和土壤次生盐碱化。灌溉水经磁化处理后能显著提高盐渍化土壤的脱盐效果,提高水分利用率[12]。磁化水灌溉有效促进了沾化冬枣的枝叶生长和果实发育,提高了果实品质[13]。磁化水处理‘红星’苹果提高了果实可溶性固形物的含量,降低了呼吸强度,保持果实在贮藏期的硬度,从而改善苹果贮藏品质[14]。生物菌肥作为一种无公害肥料,则主要以微生物生命活动的产物及其所含的酶类来改善植物根际的营养条件和抑制病原菌,能够有效增强土壤生物活性、提高植物的抗逆境能力和改善作物品质[15]。【本研究切入点】微咸水灌溉对品质影响的研究主要集中在一年生作物上,对多年生作物尤其是果树研究较少,且不够深入,大多侧重于产量或糖酸等理化指标。而有关微咸水长期灌溉对葡萄果实风味品质(味感物质和嗅感物质)的影响,未见报道。【拟解决的关键问题】以蓬莱国宾、中粮两个基地的赤霞珠葡萄为试材,进行长期连续(4年)海水灌溉和不同海水组合处理,研究海水灌溉对葡萄主要品质性状的改善和调控,探讨海水的合理运用方式,为指导葡萄优质生产提供理论依据。

1 材料与方法

试验于 2013—2016年在山东省蓬莱市国宾酒庄葡萄基地及中粮长城酒庄基地进行。

1.1 试验设计

蓬莱国宾基地:以9年生酿酒葡萄赤霞珠(Vitis vinifera L. Cabernet Sauvignon)/SO4为试材。葡萄园为棕壤土,土壤pH 6—7。行距2 m,株距1 m,正常生产管理措施,周年无大规模病虫害发生。本试验在2013开始分别于6月、7月、8月、9月在国宾酒庄进行4次10%海水浇灌,每年增加1个灌溉小区作为一年海水灌溉小区,至2016年形成4个不同年份的灌溉处理。每个处理3行,每3个柱子空间为一个小区,重复3次。各处理均采用沟灌的方式,平均每株灌溉量为8 L,可浸润至土层40 cm,对照为清水。于果实成熟期测定不同年份果实可溶性固形物、可滴定酸含量和果实色度。

蓬莱中粮长城基地:2015年开始以5年生赤霞珠/SO4葡萄为试材同期进行 4次 10%海水浇灌。并于2016年增加不同海水处理,包括10%海水浇灌1年、10%海水浇灌2年、10%磁化海水处理、10%海水+菌肥,以浇等量清水为对照(CK)。平均每株每次灌溉量为8 L。每个处理3个柱子空间,每空间8株葡萄植株。灌后稍稍划锄,以减少水分蒸发。于果实成熟期测定不同处理果实可溶性固形物、可滴定酸含量、糖酸比、糖组分、果实总酚、单宁、花色苷、维生素C的含量和香气成分。

1.2 试验方法

采用 WZB-45数显折光仪测定果实可溶性固形物,采用酸碱滴定法测定可滴定酸含量,便携式测色仪测定果实色度,采用Folir-Denis法测定单宁含量,采用Folin-Cioealetu法测定总酚含量,采用铁还原法测定维生素C,采用pH示差法测定花色苷含量,采用毛细管电泳法测定糖含量[16]。

1.3 香气成分的分析和鉴定

精确量取20 g样品放入50 mL的顶空瓶中,加入1 g NaCl,促进香气成分的挥发,再加入30 μL内标(2-辛醇),立刻用铝箔纸密封压紧。在温度为45℃下,用DVB/CAR/PDMS的萃取头萃取50 min,进行气相色谱-质谱分析。GC/MS条件程序:升温为 30℃保持 1 min,以 6℃/min升至 100℃,以 3℃/min升温200℃,以10℃/min升温至210℃,保持3 min。进样器温度250℃,检测器温度250℃,无分流进样。定性分析:用气相色谱质谱—计算机联用仪进行分析鉴定。分析结果运用计算机谱库(NIST08和WILEY7)进行初步检索及资料分析,再结合文献进行人工谱图解析,确认香气物质的各个化学成分。

1.4 统计分析

所有的统计分析采用 DPS软件(2005)。采用单因素方差分析(方差分析),差异显著性为P<0.05。

2 结果

2.1 长期海水灌溉对葡萄果实糖酸及颜色的影响

2.1.1 对果实糖酸含量的影响 在蓬莱国宾酒庄基地连续4年进行10%海水灌溉,结果显示(表1),赤霞珠葡萄可溶性固形物随着灌溉年份的增加而增加,3Y、4Y显著高于对照(P<0.05),分别提高了3.8%、9%。果实可滴定酸含量则随着灌溉年份的增加显著降低,1Y、2Y、3Y、4Y分别比对照降低了5.4%、15.7%、19.3%、21.7%。长期海水浇灌有利于葡萄糖分的积累和酸含量的降低。

表1 海水灌溉对酿酒葡萄‘赤霞珠’果实可溶性固形物和可滴定酸含量的影响Table 1 Effects of seawater irrigation on sugar and acid contents of Cabernet Sauvignon

2.1.2 对果实着色的影响 表2显示,赤霞珠葡萄果实的明暗度(L*)随着海水灌溉年限的增加而逐渐增大,果实变亮。与对照相比,测得4Y红绿色(a值)提高了15.2%,果实的色泽变红,测得4Y黄蓝色(a值)降低了24.4%,果实的颜色变蓝。经过长期海水浇灌后,果实色度有小幅度的变化,但未达到显著差异(P<0.05)。

表2 海水灌溉对酿酒葡萄‘赤霞珠’果实果皮色值的影响Table 2 Effects of seawater irrigation on Cabernet Sauvignon fruit color value

2.2 海水灌溉处理对葡萄果实品质的影响

2.2.1 对葡萄果实重量、可溶性固形物、可滴定酸和糖酸比的影响 在蓬莱中粮基地采用了10%磁化海水、10%海水+菌肥等4种海水灌溉处理,表3结果显示,与清水灌溉(CK)相比,海水灌溉处理显著降低了果实可滴定酸(P<0.05),提高了糖酸比。只有10%海水+菌肥显著提高了葡萄果实百粒重和可溶性固形物含量,达到显著差异,分别比对照增加了2.5%、5.4%,而10%磁化海水、1年10%海水和2年10%海水处理均未达到显著差异。另外,10%海水+菌肥的糖酸比显著高于CK和其他处理。

表3 不同海水处理对葡萄果实重量、可溶性糖及pH的影响Table 3 Effects of different seawater treatments on fruit weight, soluble sugar and pH

2.2.2 对果实成熟期糖酸组分的影响 海水灌溉处理总体增加了果实糖组分含量(表4)。1年和2年海水浇灌处理显著提高了果糖和葡萄糖含量(P<0.05),果糖比对照分别增加了 35.3%和 42.7%,葡萄糖分别增加了 66.7%和 70.7%,添加菌肥和磁化海水处理未达到显著差异。

表4 不同海水处理对葡萄果实成熟期糖组分的影响Table 4 Effects of different seawater treatments on sugar content of fruit during ripening

2.2.3 海水灌溉对果实花色苷、单宁、总酚和维生素C的影响 表5可以看出,与CK相比,1年和2年海水灌溉处理显著提高了果实的总酚含量(P<0.05),比对照分别增加了3.6%和5.8%;添加菌肥、1年和2年海水灌溉处理显著提高了果实的花色苷含量,分别增加了 29.6%、39.4%、42.3%;4种海水处理显著提高了果实维生素 C含量,分别增加60.8%、46.8%、57.2%和79.7%。与对照相比,添加菌肥和磁化海水处理显著降低了单宁含量,分别降低了14.1%、17.3%。由于磁化海水及添加菌肥抵消了海水的一部分作用,可以看出总酚含量有所降低。

2.2.4 对葡萄果实香气物质的影响

2.2.4.1 果实香气成分 长期海水灌溉及对照处理的赤霞珠葡萄共检测到38种香气成分(表6),香气成分主要包括醇类、醛类、酮类、酯类、烃类、杂环等物质,其中,乙醇、己醛、2-己烯醛、壬醛邻苯二甲酸二乙酯、2-辛酮等24种成分为对照和4种处理所共有,不同海水灌溉处理比对照增加了14种香气成分,分别是二乙烯丁酸乙酯、辛醛、羟甲基糠醛、6-甲基-5-庚烯-酮等。海水处理增加了香气总量,磁化海水、添加菌肥、1年和2年海水处理的香气物质总量比对照分别增加了75%、92.2%、25.9%和38.8%,香气总量以添加菌肥处理最高,1年海水处理增加的幅度最小。

表5 不同海水处理对葡萄总酚、单宁、花色苷和维生素C的影响Table 5 Effects of different seawater treatments on total phenols, tannins, anthocyanins and reducing Vitamin C in Cabernet Sauvignon

表6 不同海水处理对葡萄果实主要香气成分的影响Table 6 Effects of different seawater treatments on main aroma compounds in grape fruits (μg·g-1)

续表6 Continued table 6

醇类检测到4种,其中(E)-2-己烯醇含量最高,其次是正己醇,(E)-2-己烯醇含量增加了73.8%、61%、22.7%、37.8%,正己醇含量增加了 36.6%、38.0%、19.7%、5.1%。醛类9种,2-己烯醛含量最高,其次是己醛、壬醛、(E)-2-己烯醛,2-己烯醛分别提高了46.9%、95.6%、0.5%、19.3%,己醛分别提高了23.7%、144.7%、35.8%、97%,壬醛分别提高了285.8%、195%、34.2%、49.2%,(E)-2-己烯醛分别提高了113.0%、105.6%、20.4%、66.7%。酯类4种,(E)-2-乙烯-1-醇乙酸酯含量最高,其次是邻苯二甲酸二乙酯。另有酮类3种,烃类10种,其他8种。

2.2.4.2 果实香气种类 与对照相比(表7),4种海水处理均增加了醇类、醛类、酮类、烃类等香气物质含量。10%磁化海水、10%海水加菌肥、1年和 2年 10%海水处理后醇类分别比对照增加了 55.4%、61.7%、23.1%、20.1%,醛类分别增加了 68.1%、114.9%、9.7%、34.3%。酯类物质含量在1年10%海水中增加了45.4%,添加菌肥增加了6.3%,其他2个处理中分别减少了24.4%、13.9%。海水各处理也显著增加了酮类物质、烃类物质含量。

2.3 海水灌溉对土壤理化性状的影响

中粮基地,经过不同海水灌溉处理,土壤(0—20 cm土层)的pH有缓慢升高趋势(表8),海水灌溉1年和2年的处理分别比对照提高了17%和18%,增加菌肥或磁化海水则抵消了海水的作用。浇灌 1年和2年海水及10%磁化海水均显著提高了土壤容重,分别比对照提高了15.3%、16.6%、14.6%。其他指标差异不显著。

利用海水浇灌对土壤水溶性盐分总量、Cl-含量和SO42-含量均有增加,但差异不显著;增加菌肥或磁化海水有一定抑制盐分上升的趋势,但短时间效果亦不显著(表9)。

表7 海水灌溉对葡萄香气种类的影响Table 7 Effects of seawater irrigation on aroma component of grapes (μg·g-1)

表8 海水灌溉对土壤(0-20 cm)土层pH、容重、比重、总孔隙度的影响Table 8 Effects of seawater irrigation on soil pH, bulk density, specific gravity, total porosity and water content of 0-20 cm soil depth

表9 海水灌溉对土壤水溶性盐分含量的影响Table 9 Effects of continuous seawater irrigation on soil salt content

3 讨论

海水作为沿海地区丰富的微咸水资源,是一种复盐体系,除富含氮、磷、钠、钾、钙、镁等矿质元素和氯、硫酸根离子、碳酸氢根等,还含有大量铜、铁、锌、硅、锰、钼、钴、硼等微量元素[17]。矿质营养作为果树生长发育、产量形成和品质提高的物质基础,对葡萄等果树的生理代谢和品质形成具有极其重要的调控作用[18-19]。本试验的研究结果显示,蓬莱国宾基地连续4年进行10%海水灌溉和中粮基地4种海水灌溉处理均增加赤霞珠果实可溶性固形物含量,降低了可滴定酸,提高了糖酸比,提高了葡萄的糖酸品质指标。在番茄、梨和苹果上的研究表明,利用微咸水灌溉可以显著提高果实的可溶性固形物含量,降低苹果可滴定酸[7,20],这与本研究结果相一致。路超等[19]的研究则表明,可溶性固形物含量与土壤全盐量的相关性最大,呈极显著的正相关水平。这进一步证明,适度的微咸水可以提高葡萄的品质。

海水浇灌增加果实葡萄糖、果糖含量,适度盐水处理下增加糖异生作用,促进了葡萄糖和果糖含量的增加[21]。维生素C、酚类物质作为一种天然的抗氧化物质,在缓解植物逆境胁迫,清除人体内自由基等方面具有重要作用[22]。各种酚类物质对葡萄酒的特性如颜色、口感、香气等方面有重要作用,花色苷含量与葡萄和葡萄酒的质量密切相关,花色苷合成越多,颜色就越深[23-25]。本研究结果显示,采用10%海水进行田间浇灌对‘赤霞珠’花色苷、维生素C等指标有一定程度的提升效果,而且随海水灌溉年限的增加而显著提高。利用微咸水滴灌西瓜增加了西瓜维生素C含量[26]。宋哲等[27]在‘富士’苹果上的试验表明,花青素含量和着色程度与果肉还原糖和可溶性糖含量呈显著正相关,这与本研究用海水浇灌‘赤霞珠’的研究结果是一致的。

葡萄果实的香气是葡萄风味品质的重要组成部分,也是葡萄与葡萄酒的感官品评指标之一。海水处理增加了香气种类,提高了香气物质总量,10%磁化海水、10%海水+菌肥、1年10%海水和2年10%海水4种处理比对照分别增加了 75%、92.2%、25.9%和38.8%,表明海水中丰富的矿质元素促进了‘赤霞珠’葡萄的香气物质形成。BRAVDO等[10]报道用盐水灌溉或含盐较高土壤上生长的‘赤霞珠’‘霞多丽’等葡萄所酿的葡萄酒中有着非常好的香气品质。在葡萄上,通过增加土壤含盐量可以提高 Nero d’Avola 葡萄酒的香气[28]。

另外,‘赤霞珠’属于非芳香型葡萄,具有典型的青草香气特征,其主要香气成分如2-己烯醇、2-己烯醛、(E)-2-己烯醛等,均以磁化海水和添加菌肥处理的增加幅度最大,4种处理中含量最高的2-己烯醛比对照分别提高了46.9%、95.6%、0.5%、19.3%。矿质元素主要影响葡萄果实中具有生青味的 C6类香气物质的积累[29],海水灌溉带入土体Ca2+、Mg2+、K+以及其他对植物生长有益微量元素的同时,也增加了土壤中大量的Na+和Cl-的浓度。低浓度盐一般对植物生长没有显著影响,还可以改善植物品质,而高浓度盐对植物造成盐胁迫,严重时会影响植物的正常生长和品质的提高,尽管盐分对果实香气影响的机制尚不明确,上述试验结果初步表明磁化海水和添加菌肥处理提高盐渍化土壤的脱盐效果、改善葡萄根际的营养条件,以抵消部分高浓度盐对植物造成盐胁迫,从而提高葡萄植株的抗逆境能力并改善了果实香气品质。

目前利用低浓度海水合理有效的灌溉能缓慢提高土壤 pH,减缓土壤酸化[30]。在沿海地区,海水运输方便,本研究在果实第一次膨大近结束时开始灌溉,于转色完成时结束,一般于6—9月在蓬莱中粮基地进行4次10%海水浇灌,期间由于生长季节充沛的降雨淋洗,海水灌溉对果园土壤不会造成明显的盐渍化,pH的缓慢升高也在可控范围内,增加菌肥有一定抑制盐分上升的作用。对未酸化的土壤进行适度的海水灌溉是可行的,酸化的土壤可适当增加海水灌溉的次数,并注意增施有机肥,特别是生物有机肥。

4 结论

利用10%海水连续4年灌溉9年生‘赤霞珠’葡萄,连续3年、4年的灌溉显著增加果实可溶性固形物含量,降低可滴定酸含量,对果皮色差无显著影响。海水灌溉提高了5年生‘赤霞珠’果实可溶性固形物、总酚、花色苷、Vc和香气含量,降低了果实可滴定酸、单宁含量,提高了果实品质。10%海水+菌肥则最大幅度提高了果实可溶性固形物含量和(E)-2-己烯-1醇、2-己烯醛等香气成分的积累,可推荐在生产实践中应用。

[1]王全九, 徐益敏, 王金栋, 王永平, 蒋庆华. 咸水与微咸水在农业灌溉中的应用. 灌溉排水, 2002, 21(4): 73-77.WANG Q J, XU Y M, WANG J D, WANG Y P, JIANG Q H.Application of saline and slight saline water for farmland irrigation.Irrigation and Drainage, 2002, 21(4): 73-77. (in Chinese)

[2]王海霞, 徐征和, 庞桂斌, 张立志, 王秀茹. 微咸水灌溉对土壤水盐分布及冬小麦生长的影响. 水土保持学报, 2017, 31(3): 291-297.WANG H X, XU Z, PANG G, ZHANG L Z, WANG X R. Effects of brackish water irrigation on water-salt distribution and winter wheat growth. Journal of Water and Soil Conservation, 2017, 31(3): 291-297.(in Chinese)

[3]DUTT G R, PENNINGTON D A, TURNER F J R. Irrigation as a solution to salinity problems of river basins//Salinity in Watercourses and Reservoirs. French: Ann Arbor Science Michigan, 1984: 465-472.

[4]VAN HOOM J W. Quality of irrigation water, limits of use and prediction of long-term effects//Salinity Seminar, Baghdad. Irrigation and Drainage Paper 7. FAO, Rome, 1971: 117-135.

[5]SATO S, SAKAGUCGIS, FURUKAWA H, IKEDA H. Effects of NaCl application to hydroponic nutrient solution on fruit characteristic of tomato (Lycopersi cones culentum Mill.). Scientific Horticulture,2006, 109: 248-253.

[6]KEUTGEN A J, PAWELIZK E. Quality and nutritional value of strawberry fruit under long term salt stress. Food Chemistry, 2008,107: 1413-1420.

[7]吴蕴玉, 金星, 徐元, 王铁凝, 邵孝侯. 秸秆覆盖条件下微咸水灌溉对番茄生长和产量品质的影响. 节水灌溉, 2015(7): 21-24.WU Y Y, JI X, XU Y, WANG T N. Effects of saline water irrigation on tomato growth quality and yield under straw mulching. Water-saving Irrigation, 2015(7): 21-24. (in Chinese)

[8]张世卿, 王兴鹏, 徐崇志. 微咸水滴灌对红枣果实品质的影响. 北方园艺, 2016(7): 23-27.ZHANG S Q, WANG X P, XU C Z. Effects of saline water irrigation on jujube fruit quality. Northern Horticulture, 2016(7): 23-27. (in Chinese)

[9]张艳红, 焦艳平, 刘为忠, 高巍, 张书奎. 微咸水灌溉对苹果、梨的产量和品质以及土壤盐分的影响. 南水北调与水利科技, 2012,10(6): 118-122.ZHANG Y H, JIAO Y P, LIU W Z, GAO W, ZHANG S K. Effects of saline water irrigation on yield and quality of apple and pear and soil salinity. South-to-North Water Transfers and Water Science &Technology, 2012, 10(6): 118-122. (in Chinese)

[10]BRAVDO B A. Effect of cultural practices and environmental factors on fruit and wine quality. Agriculturae Conspectus Scientificus, 2001,66(1): 13-20.

[11]史晓楠, 王全九, 苏莹. 微咸水水质对土壤水盐运移特征的影响.干旱区地理, 2005, 28(4): 516-520.SHI X N, WANG Q J, SU Y. Effeets of slight saltwater quality on the charaeteristies of soil water and salt transference. Arid Land Geography, 2005, 28(4): 516-520. (in Chinese)

[12]万晓, 王华田. 磁化水处理技术在农林业中的应用进展. 中国农学通报, 2014, 30(6): 52-55.WAN X, WANG H T. The application progress of magnetic technology in agriculture and forestry. Chinese Agricultural Science Bulletin, 2014, 30(6): 52-55. (in Chinese)

[13]王渌, 郭建曜, 刘秀梅, 朱红, 王华田, 王迎, 万晓, 马风云, 仲凤维. 磁化水灌溉对冬枣生长及品质的影响. 园艺学报, 2016, 43(4):653-662.WANG L, GUO J Y, LIU X M, ZHU H, WANG H T, WANG Y, WAN X, MA F Y, ZHONG F W. Effects of magnetized water irrigation on growth and quality of Ziziphus jujuba ‘Dongzao’. Acta Horticulturae Sinica, 2016, 43(4): 653-662. (in Chinese)

[14]陈晓春, 程文林, 杨佩芳, 王如福. 磁化水对红星苹果贮藏品质影响的研究. 落叶果树, 1994(4): 1-4.CHEN X C, CHENG W L, YANG P F, WANG R F. Effect of magnetized water on storage quality of starking apple fruit. Deciduous Fruit Tree, 1994(4): 1-4. (in Chinese)

[15]徐志峰, 王旭辉, 丁亚欣, 王钰. 生物菌肥在农业生产中的应用.现代农业科技, 2010(5): 269-270.XU Z F, WANG X H, DING Y X, WANG Y. Application of biological fertilizer in agricultural production. Modern Agricultural Science and Technology, 2010(5): 269-270. (in Chinese)

[16]刘笑宏, 孙永江, 孙红, 翟衡. 同叶幕类型对‘摩尔多瓦’葡萄果穗微域环境及果实品质的影响. 中国农业科学, 2016, 49(21):4246-4254.LIU X H, SUN Y J, SUN H, ZHAI H. Effect of canopy types on the cluster micro-environment and fruit quality of the ‘Moldova’ Grapes.Scientia Agricultura Sinica, 2016, 49(21): 4246-4254. (in Chinese)

[17]李潇, 路文海, 杨翼, 王秋璐, 向先全, 刘书明. 海水金属元素检测方法的研究进展. 海洋开发与管理, 2016, 33(6): 43-50.LI X, LU W H, YANG Y, WANG Q L, XIANG X Q, LIU S M.Advances in determination of metal elements in seawater. Ocean Development and Management, 2016, 33(6): 43-50. (in Chinese)

[18]魏绍冲, 姜远茂. 山东省苹果园肥料施用现状调查分析. 山东农业科学, 2012, 44(2): 77-79.WEI S C, JIANG Y M. Investigation and analysis of fertilizer application in apple orchard in Shandong. Shandong Agricultural Sciences, 2012, 44(2): 77-79. (in Chinese)

[19]路超, 薛晓敏, 王翠玲, 安国宁, 王金政. 山东省苹果园果实品质指标、叶片营养与土壤营养元素的相关性分析. 中国农学通报,2011, 27(25): 168-172.LU C, XUE X M, WANG C L, AN G N, WANG J Z. Correlation analysis of fruit quality index, leaf nutrition and soil nutrients in apple orchard in Shandong. Chinese Journal of Agricultural Sciences, 2011,27(25): 168-172. (in Chinese)

[20]卢书平. 微咸水灌溉对梨和苹果生长、产量与果实品质的影响[D].秦皇岛: 河北科技师范学院, 2013.LU S P. Effect of irrigation with slight saline water on growth product and fruit quality of pear and apple [D]. Qinhuangdao: Hebei Normal University, 2013. (in Chinese)

[21]CRAMER G R, ERGUL A, GRIMPLET J, TILLETT R L, TATTERSALLE A R, BOHLMAN M C, QUILICI D. Water and salinity stress in grapevines: Early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics, 2007, 7: 111-134.

[22]刘永立, 胡海涛, 兰大伟. 维生素C的生物合成及其基因调控研究进展. 果树学报, 2006,23(3): 431-436.LIU Y L, HU H T, LAN D W. Advance in research on Vitamin C biosynthesis and gene engineering. Journal of Fruit Science, 2006,23(3): 431-436. (in Chinese)

[23]刘旭, 李金璐, 田裕平, 张振文. 果实异质性对媚丽葡萄酚类物质及抗氧化活性的影响. 现代食品科技, 2015, 31(12): 134-140.LIU X, LI J L, TIAN Y P, ZHANG Z W. Influence of berry heterogeneity on the phenolics and antioxidant activity of Meili (Vitis vinifera L.) grapes. Modern Food Science and Technology, 2015,31(12): 134-140. (in Chinese)

[24]VIDAL S, FRANCIS L, NOBLE A, KWIATKOWSKI M, CHEYNIER V, WATERS E. Taste and mouth-feel properties of different types of tannin-like polyphenolic compounds and anthocyanins in wine.Analytica Chimica Acta, 2004, 513(1): 57-65.

[25]邓洁红, 位佳静, 刘永红, 王维茜, 魏一枝. 刺葡萄花色苷自聚合条件及水合动力学特性的研究. 现代食品科技, 2015, 31(3):144-150, 164.DENG J H, WEI J J, LIU Y H, WANG W Q, WEI Y Z. Selfassociation conditions and hydration kinetics of spine grape anthocyanins.Modern Food Science and Technology, 2015, 31(3): 144-150, 164. (in Chinese)

[26]雷廷武, 肖娟, 王建平, 刘志忠. 微咸水滴灌对盐碱地西瓜产量品质及土壤盐渍度的影响. 水利学报, 2003(4): 85-89.LEI T W, XIAO J, WANG J P, LIU Z Z. Experimental investigation on the effects of saline water drip irrigation on water use efficiency and quality of watermelons grown in saline soils. Journal of Hydraulic Engineering, 2003(4): 85-89. (in Chinese)

[27]宋哲, 李天忠, 徐贵轩. “富士”苹果着色期果皮花青苷与果实糖份及相关酶活性变化的关系. 中国农学通报, 2008, 24(4): 255-260.SONG Z, LI T Z, XU G X. Studies on the relationship among the anthocyanin sugar and related enzymes activity during the coloring stage of ‘Fuji’ apple. Chinese Agricultural Science Bulletin, 2008,24(4): 255-260. (in Chinese)

[28]SCACCO A,VERZERA A, LANZAL C M, SPARACIO A, GENNA G, RAIMONDI S. Influence of soil salinity on sensory characteristics and volatile aroma compounds of Nero d’Avola wine. American Journal of Enology Viticulture, 2010, 61(4): 498-505.

[29]刘迪, 张也, 杨玉梅, 潘秋红. 叶面喷施微量元素和稀土元素混合液对酿酒葡萄果实中矿质元素及主要香气物质的影响. 果树学报,2015, 32(4): 620-632.LIU D, ZHANG Y, YANG Y M, PAN Q H. Effects of foliar spray of trace and rare earth elements on mineral elements and main volatiles in developing grape berries. Journal of Fruit Science, 2015, 32(4):620-632. (in Chinese)

[30]于忠范, 张振英, 王平, 丛建强. 胶东果园土壤酸化现状及原因分析. 烟台果树, 2010(2): 31-32.YU Z F, ZHANG Z Y, WANG P, CONG J Q. Jiaodong orchard soil acidification present situation and cause analysis. Yantai Fruits,2010(2): 31-32. (in Chinese)

(责任编辑 赵伶俐)

Effects of Seawater Irrigation on Fruit Quality of Cabernet Sauvignon

HUANG LiPeng, ZHANG XiuYuan, WANG yang, FU YanDong, ZHAI Heng, SHAO XiaoJie
(College of Horticulture and Engineering, Shandong Agricultural University, Tai’an 271000, Shandong)

2017-03-07;接受日期:2017-07-25

国家葡萄产业技术体系(CARS-30)、教育部“长江学者和创新团队发展计划”创新团队项目(IRT15R42)

联系方式:黄丽鹏,E-mail:1058065320@qq.com。通信作者邵小杰,E-mail:shaoxj65@163.com

猜你喜欢
赤霞珠咸水菌肥
不同砧木对‘赤霞珠’酿酒葡萄果实品质的影响
微生物菌肥在农业生产中的价值和应用策略探究
生物菌肥种类及用量对猕猴桃果实的品质影响
绿盲蝽为害与赤霞珠葡萄防御互作中的表观响应
年产50万吨生物有机菌肥项目在孝义开工
菌肥施用注意四问题
聊城市地下咸水地质特征与综合开发利用分析
砧木对赤霞珠9葡萄叶片质量和光合光效的影响研究
惊险!大胆蜗牛鳄口脱险
微咸水滴灌能提高红枣果实品质