张家硕,蒋 威
(安徽大学 数学科学学院,合肥 230601)
分数阶非线性中立型时变系统的可控性*
张家硕,蒋 威**
(安徽大学 数学科学学院,合肥 230601)
基于拉普拉斯变换,拉普拉斯逆变换以及卷积定理等,得出了多时滞分数阶非线性中立型时变系统的解的表达形式;根据系统解的表达形式,得到格兰姆矩阵,并给出了多时滞分数阶非线性中立型时变系统的可控性的判定依据,即对于任意给定状态x0,xtf都有一个控制函数u(t),使得系统的解满足x(tf)=xtf.
可控性;分数阶;非线性;中立型
到目前为止分数阶系统的研究已经有近300年的历史了,然而至今它仍是一个热门的话题,在实际生活中有很重要的应用背景,例如生物工程,金融、化学、数学等.文献[1-4]不能够解决的现象,最近几年在文献[5-10]已经得到了很好地解决.可见分数阶导数可以解决整数阶所含有的问题,同时也有自己独有的性质.研究是建立在文献[11]关于分数阶线性中立型时变系统以及文献[12]分数阶非线性系统的可控性基础上,研究一类分数阶中立型时变系统的可控性.然而在文献[11]中并没有给出在系统有多时滞控制的条件下系统如何变化.研究的独特之处在于得到了判定多时滞时变系统可控性的条件,那么,当系统为单时滞时,很容易判定系统的可控性.可见文献[12]是研究的一个特例.
研究了系统:
(1)
这里0<α<1,x(t)∈Rn是一个状态量,u(t)∈Rm是一个控制输入,A,B,E是n次常数矩阵,E≠0,cDα表示α开普拓阶导数,φ(t)是一个连续的初始函数.
给出了一些基本的定义和结论.
定义1[7]当0<α<1时,函数x(t)的分数阶积分的定义如下:
(2)
其中,Γ(·)是Gamma函数.
定义2[10]Mittag-Leffler双参数函数的定义是:
Mittag-Leffler双参数函数的拉普拉斯变换是
其中,Re(s)表示s的实数部分.另外,关于tα-1的拉普拉斯变换是
L[tα-1;s]=Γ(α)s-α,Re(s)>0.
(3)
Caputo导数的Laplace变换是
(4)
引理1 当0<α<1时,则有
为了证明系统是可控的给出下面的引理.
引理2 如果x(t)是系统(1)的解,那么x(t)满足
x(t)=φ(0)-Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+
Eh(t,x(t-τ0(t)),…,x(t-τp(t))) +
Eh(0,φ(-τ0(0)),…,(φ-τp(0)))+
Eh(s,x(s-τ0(s)),…,x(s-τp(s)))]ds+
(5)
证明系统(1)等价于以下的积分形式
x(t)=φ(0)-Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+
Eh(t,x(t-τ0(t)),…,x(t-τp(t)))+
x(s-τp(s)))+Cu(s)]ds
(6)
因此
x(s-τp(s)))+Cu(s)]ds=tα-1*[Ax(t)+
Bg(t,x(t-τ0(t)),…,x(t-τp(t)))+Cu(t)].
其中*表示卷积.
则式(6)可以写成
x(t)=φ(0)-Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+
Eh(t,x(t-τ0(t)),…,x(t-τp(t))) +
x(t-τp(t)))+Cu(t)]
(7)
在式(7)的两边同时运用拉普拉斯变换和式(4),有
Eh(t,x(t-τ0(t)),…,x(t-τp(t)));s]+
x(t-τp(t)))+Cu(t);s])
(8)
x(t-τp(t)))+Cu(t);s]
(9)
(10)
在式(9)(10)的两边同时乘以(sαI-A)-1得到
(sαI-A)-1L[Bg(t,x(t-τ0(t)),…,
x(t-τp(t)))+Cu(t);s]
(11)
(sαI-A)-1L[Bg(t,x(t-τ0(t)),…,x(t-τp(t)))+
Cu(t);s]=L[φ(0)-Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+Eh(t,x(t-τ0(t)),…,x(t-τp(t)));s]+
A(sαI-A)-1L[φ(0)-Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+Eh(t,x(t-τ0(t)),…,x(t-τp(t)));s]+
(sαI-A)-1L[Bg(t,x(t-τ0(t)),…,x(t-τp(t)))+Cu(t);s].
Eh(t,x(t-τ0(t)),…,x(t-τp(t)));s]+L[Atα-1Eα,α(Atα);s]·L[φ(0)-Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+Eh(t,x(t-τ0(t)),…,x(t-τp(t)));s]+
L[tα-1Eα,α(Atα);s]·L[Bg(t,x(t-τ0(t)),…,
x(t-τp(t)))+Cu(t);s]
(12)
应用拉普拉斯变换,拉普拉斯逆变换以及卷积定理,得到x(t)=φ(0)-Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+
Eh(t,x(t-τ0(t)),…,x(t-τp(t)))+
(Atα-1Eα,α(Atα))*[φ(0)-Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+Eh(t,x(t-τ0(t)),…,x(t-τp(t)))]+
(tα-1Eα,α(Atα))*[Bg(t,x(t-τ0(t)),…,
x(t-τp(t)))+Cu(t)].
Eα,α(A(t-s)α)[φ(0)-Eh(0,φ(-τ0(0)),…,
(φ-τp(0)))+Eh(s,x(s-τ0(s)),…,
[Bg(s,x(s-τ0(s)),…,x(s-τp(s)))+Cu(s)]ds.注:根据式(5),得到系统(1)在[0,∞)上的解.
x(t)=φ(0)-Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+
Eh(t,x(t-τ0(t)),…,x(t-τp(t)))+
Eh(0,φ(-τ0(0)),…,(φ-τp(0)))+
x(s-τp(s)))+Cu(s)]ds.
x(t)=φ(0)-Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+
Eh(t,φ1(t-τ0(t)),…,φ1(t-τp(t)))+
Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+
Eh(s,φ1(s-τ0(s)),…,φ1(s-τp(s)))]ds+
Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+
Eh(s,φ1(s-τ0(s)),…,φ1(s-τp(s)))]ds+
定理1 系统(1)在[0,tf]上是可控的,对任意tf∈(0,∞),当且仅当格拉姆矩阵是
[CTEα,α(AT(tf-s)α)]ds.
AT是非奇异的.这里AT表示A的转置.
Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+
Eh(s,x(s-τ0(s)),…,x(s-τp(s))))ds-
根据式(5)很轻易地得出x(tf)=0.因为系统(1)在[0,+∞)上是可控的.
必要性:假设系统(1)是可控的,现在证明Wc[0,tf]是非奇异的.事实上如果Wc[0,tf]是奇异的,然后存在一个非零向量z0使得
z0=φ(0)-Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+
Eh(tf,x(tf-τ0(tf)),…,x(tf-τp(tf)))+
Eh(0,φ(-τ0(0)),…,(φ(-τp(0)))+
Eh(s,x(s-τ0(s)),…,x(s-τp(s)))]ds+
[Bg(s,x(s-τ0(s)),…,x(s-τp(s)))]ds+
(13)
在s∈[0,tf]因为系统(1)是可控的,存在两个控制输入u1(t)和u2(t)
Eh(0,φ(-τ0(0)),…,(φ(-τp(0)))+
Eh(s,x(s-τ0(s)),…,x(s-τp(s)))]ds=
z0-φ(0)+Eh(0,φ(-τ0(0)),…,φ(-τp(0)))-
Eh(tf,x(tf-τ0(tf)),…,x(tf-τp(tf)))-
(14)
z0=φ(0)-Eh(φ(-τ0(t)),…,φ(-τp(t)))+Eh(tf,x(tf-τ0(t)),…,x(tf-τp(t)))+
[φ(0)-Eh(0,φ(-τ0(t)),…,(φ(-τp(t)))+
Eh(s,x(s-τ0(t)),…,x(s-τp(t)))]ds+
[Bg(s,x(s-τ0(t)),…,x(s-τp(t)))]ds+
(15)
联立式(14),通过事实可知:
C(u1(s)-u2(s))ds=0.
推出z0=0,这样证明就完成了.
定理2 系统(1)在[0,tf]上是可控的,当且仅rank(CAC…An-1C)=n.
令M=φ(0)-Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+
Eh(tf,x(tf-τ0(tf)),…,x(tf-τp(tf)))+
Eh(s,x(s-τ0(s)),…,x(s-τp(s))))ds+
然后根据式(5),得到
x(tf)=φ(0)-Eh(0,φ(-τ0(0)),…,φ(-τp(0)))+
Eh(tf,x(tf-τ0(tf)),…,x(tf-τp(tf)))+
Eh(s,x(s-τ0(t)),…,x(s-τp(t)))]ds+
得到
(CAC…An-1C)(d0,d1,…,dn-1)T.
对于任意x(tf)和φ(t)是rank(CAC…An-1C)=n,证明完毕.
现在应用定理1去证明系统(1)是可控的.
很容易得出矩阵Wc[0,1],通过计算得到
很容易得出Wc[0,1]是非奇异的.因此系统(1)是可控的.
则系统(1)是可控的.
[1] HIFER R.Applications of Fractional Calculus in Physics[J].World Scientific,2000(4):103-119
[2] LIANG J,YANG H.Controllability of Fractional Integro Differential Nevolution Equations with Nonlocal Conditions[J].Appl Math Comput,2015,254:20-29
[3] MILLER K S,ROSS B.An Introduction to the Fractional Calculus and Fractional Differential Equations[J].Wiley,1993(5):183-188[4] PODLUBNY I.Fractional Differential Equations[J].Academic Press,1999(1):14-19
[5] ANATOLY A K,HARI M S,TRUJIILLO J J.Theory and Applications of Fractionnal Differential Equations[J].Elsevier,2006,120:43-50
[6] POLUBNY I.Fractional Differential Equations[M].San Diego:Academic Press,1999
[7] ZHOU Y.Existence and Uniqueness of Fractional Func-tional Differential Equations with Unbound Delay[J].American Mathematical Scociety,2008(4):239-244
[8] ARIKOGLU A,OZKOL I.Solution of Fractional Differential Equations by Using Differential Transform Method[J].Chaos Fractals,2007,34:1473-1481
[9] ZHOU X F,JIANG W,HU L G.Controllability of A Fractional Linear Time-invariant Neutral Dynamical System[J].Appl Math Lett,2013,26:418-424
[10] ZHENG Z X.Theory of Functional Differential Equations[J].Anhui Education Press,1994,13:55-59
[11] LAKS V.Theory of Fractional Functional Differential Equations [J].Nonlinear Analysis,2008,69:3337-3343
[12] JIANG W,SONG W Z.Controllability of Singular Systems with Control Delay [J].Automatica,2001,37:1873-1877
[13] DIETHELM K,FORD N J.Analysis of Fractional Differential Equations[J].Math Anal Appl,2002,265:229-248
[14] 刘彪.关于几类微分方程变分方程问题、能控性及稳定性的研究[M].合肥:安徽大学出版社,2016
LIU B.Research on the Problem of Variational Equations of the Several Kinds of Differential Equations,Controllability and Stability[M].Hefei:The Anhui University Press,2016
[15] 蒋威.退化时滞微分系统[M].合肥:安徽大学出版社,1998
JIANG W.Degradation and Delay Differential Systems[M].Hefei: The Anhui University Press,1998
[16] 王智,蒋威.中立型分数阶微分控制系统能控性[J].重庆工商大学学报(自然科学版),2015(8):1-5
WANG Z,JIANG W.Controllability of Neutral Fractional Differential Control Systems[J].Journal of Chongqing Technology and Business University (Nat Sci Ed),2015(8):1-5
Controllability of Fractional Order Nonlinear Neutral Time-varying Systems
ZHANGJia-shuo,JIANGWei
(School of Mathematical Science,Anhui University,Hefei 230601,China)
Based on Laplace transform,Laplace inverse transform and convolution theorem and so on,the expression of the solutions to fractional order nonlinear neutral systems with multiple time-varying is derived.According to the expression of the solutions to the system,the Gramain matrix is obtained,and then the basis of judgment for the controllability of fractional order nonlinear neutral systems with multiple time-varying is given.i.e.,for any given state ofx0,xtf,there is a controllability function u(t),which makes the solution of the system satisfyx(tf)=xtf.
controllability; fractional order; nonlinear; neutral
O177.3
:A
:1672-058X(2017)05-0001-06
责任编辑:田静
10.16055/j.issn.1672-058X.2017.0005.001
2017-02-08;
:2017-04-15.
国家自然科学基金(11371027;11601003);国家教育部博士点基金(20093401110001 );安徽省教育委员会基金(KJ2010ZD02).
张家硕(1990-),男,硕士研究生,从事泛函微分方程研究.
**通讯作者:蒋威(1959-),男,教授,博士后,从事泛函微分方程、控制理论和系统理论研究.