张 媛,谢华桃,朱映天
(1美国TissueTech生物公司研发部,佛罗里达迈阿密33173;2华中科技大学同济医学院附属协和医院眼科,湖北武汉430022)
人角膜内皮细胞的分离、培养及鉴定
张 媛1,谢华桃2,朱映天1
(1美国TissueTech生物公司研发部,佛罗里达迈阿密33173;2华中科技大学同济医学院附属协和医院眼科,湖北武汉430022)
人角膜内皮细胞(HCECs)位于角膜内侧,增殖能力有限,损伤后容易失去代偿功能,发生内皮盲.目前,角膜移植是治疗该疾病的唯一有效的方法,但供体短缺等因素制约了角膜移植术的应用.因此,使用组织工程角膜作为传统角膜供体的替代物已迫在眉睫.本文回顾了近年来国内外相关研究成果,阐述了为克服接触性抑制和内皮-间质转化(EMT)的问题,学者们对HCECs的分离和体外培养方法进行改进,并总结了从形态学,关键标志物以及基因水平来鉴定HCECs的方法,为HCECs组织工程角膜内皮植片的进一步研究提供参考.
人角膜内皮细胞;分离;体外培养;鉴定
人的角膜位于眼球前部,组织学上从前向后分为五层:上皮细胞层、前弹力层、基质层、后弹力层和内皮细胞层.角膜内皮由神经嵴发育而来,由单层六角形细胞构成,通过细胞间紧密连接形成的屏障功能和主动液泵功能对维持角膜相对脱水状态和透明性起着至关重要的作用[1-2].然而人角膜内皮细胞(human corneal endothelial cells,HCECs)属于终末细胞,增殖能力有限,在体内几乎不进行有丝分裂,损伤后主要依靠临近细胞的扩张和移行来修补[3].若角膜内皮的疾病(如Fuchs角膜内皮营养不良),外伤,手术(如白内障超声乳化术)等原因造成内皮细胞损伤较多,失去代偿功能,则会造成角膜水肿及大泡性角膜病变,最终发生内皮盲[4].
目前,角膜移植是治疗内皮盲的唯一有效方法.在过去的几十年里,治疗该疾病的手术方法已经从传统的穿透性角膜移植发展为角膜内皮移植,即从捐献的角膜取下有活性的内皮植片来替换患者已经失代偿的内皮,植片可以附带或者不附带角膜基质.较穿透性移植而言,这种术式恢复更快,视觉质量更好,排斥率更低,而且减少了外源性的角膜散光[5].可以预想,角膜移植手术的成功必然扩大对供体植片的需求,但全球人口老龄化以及供体短缺等因素严重制约了该术式的应用[6].因此,使用体外培养的角膜内皮,即组织工程角膜内皮作为传统角膜供体的替代物已迫在眉睫.本文回顾了近年来的相关研究成果,对角膜内皮干细胞的分离、培养以及鉴定的研究现状作如下综述.
HCECs的分离方法经历了一系列的演化.首先被报道的是机械刮削法[7].该方法由于会发生内皮-间质转化(endothelial-mesenchymal transition,EMT)[7]而被弃用.随后,胰蛋白酶和中性蛋白酶被用于分离 HCECs[8-9].但这两种方法同样会诱发EMT,使得HCECs失去原有的表型[4,9-13].我们[14]研究发现,当有表皮生长因子(epidermal growth factor,EGF)和/或成纤维细胞生长因子(fibroblast growth factor,FGF)存在的条件下,EMT是经由经典Wnt信号通路来发挥作用的,如果在此基础上添加TGF-β1,并导致核表达pSmad2/3和Zeb1/2,则该过程不可逆.
为了解决单细胞培养易发生EMT的问题[4],我们使用胶原酶来消化剥离下来的角膜内皮[9].具体方法为,使用镊子剥离整个角膜内皮连带后弹力层,放入胶原酶消化过夜,之后离心去除多余的酶,再漂洗一次,即得到所需要的细胞[9].胶原酶消化可以得到紧实的内皮细胞团,并且保留闭锁连接蛋白-1 (zonula occludens-1,ZO-1)介导的细胞间连接.这是因为胶原酶选择性地去除了间质胶原而非基底膜胶原,从而不干扰细胞间连接以及细胞的相互作用.这样得到的细胞团可以被扩增成表达ZO-1的单层六角形角膜内皮细胞[2].近年来,使用胶原酶来消化分离HCECs的方法已成为主流.
除了改进分离方法,学者们也尝试在培养过程中抑制EMT.其中一项主要改进是在培养基中加入ROCK的抑制物Y27632.在家兔[15]和猴[16]的角膜外伤实验中已经证明,这种小分子物质可以保留HCECs的增殖能力[17]和保持其正常表型而不发生EMT[15].这种作用很可能是通过保持Wnt信号通路的失活状态来实现的[18].我们也有数据证明,使用小分子的RhoA和ROCK抑制物,可以在细胞连接被打破的情况下抑制EMT[19].
在HCECs的体外培养过程中,除了容易发生EMT,导致培养失败,另一主要问题就是接触性抑制作用造成的细胞无法增殖.曾有文献[20]报道,HCECs处于非增殖状态的主要原因就是接触性抑制,此时细胞停留在有丝分裂的G1期.为了解决增殖能力的问题,许多学者和团队尝试了各种培养HCECs的底物.这些底物包括硫酸软骨素和层粘连蛋白[21],牛细胞外基质[22],层粘连蛋白-5[23],纤连蛋白[24]和Ⅳ型胶原[9,25]等.尽管牛细胞外基质,纤连蛋白和层粘连蛋白已广泛用于培养HCECs,但胶原Ⅳ可以更好地维持HCECs的存活、分裂能力和维持其特性(表1).
另外,为了解决接触性抑制的问题,我们尝试了干扰RNA技术.经过研究,我们发现在SHEM培养基,即以DMEM/F-12(1∶1)为基础,再添加5%胎牛血清,0.5%二甲基亚砜,2 ng/mL EGF,5 μg/mL胰岛素,5 μg/mL转铁蛋白,5 ng/mL硒,0.5 mg/mL氢化可的松和1 nM霍乱毒素[2]的培养基中,通过敲减p120基因,可以在体外培养出直径2.1±0.4 mm的HCECs植片,且可以维持HCECs的表型.这一作用在敲减β-连环蛋白,N-钙黏蛋白,或者ZO-1时无法实现[18].随后,我们发现如果同时敲减p120和Kaiso基因,维持表型的HCECs植片直径可以达到5.0± 0.3 mm.这时,细胞核表达p120,激活p120-Kaiso信号通路.同时,在SHEM培养基中,RhoA-ROCK-非经典BMP信号通路也被激活,此时核表达磷酸化的NFκB(pNFκB)[1].
表1 体外培养HCECs的常用底物及其特点
为了进一步扩大HCECs植片,满足临床上内皮植片直径常为7~8 mm的需求,我们尝试更换培养基来扩大植片直径.在近年来的研究中,数种培养基曾被用于角膜内皮细胞的扩增.如DMEM,SHEM,Ham's F12/M199和Opti-MEM-I[26].这些培养基多是含有较多营养成分的广谱细胞培养基.Peh等[27]曾报道在上述四种培养基中,HCECs可以在6 h内贴壁并增殖,但DMEM中的HCECs无法传代,而Ham's F12/M199和Opti-MEM-I中的HCECs无法维持六角形的细胞形态.另外,有学者[28]比较了SFM,F99,含有2%小牛血清的MEM和含有5%小牛血清的MEM这四种培养基对HCECs成活率的影响.结果显示,四种培养基中生长的细胞形态都不令人满意,而且含有小牛血清的MEM培养基中HCECs有较高的凋亡比例[28].我们实验室曾成功使用无血清的MESCM,即以DMEM/F-12(1∶1)为基础,再添加10%敲除血清,5 μg/mL胰岛素,5 μg/mL转铁蛋白,5 ng/mL亚硒酸钠,4 ng/mL bFGF,10 ng/mL白血病抑制因子(leukemia inhibitory factor,LIF),50 μg/mL庆大霉素和1.25 μg/mL两性霉素B来培养角膜缘微环境干细胞[29-30],因此,我们将培养基从 SHEM换成了无血清的MESCM[2].研究[31]发现,在同时敲减 p120和Kaiso基因的基础上,将培养基从SHEM换成MESCM可以使HCECs植片的直径增大到11.0±0.6 mm,这一现象除了p120-Kaiso信号通路,还得益于LIF-JAKSTAT3信号通路的激活对于接触性抑制的延迟.这一大小已经可以满足临床角膜内皮移植的需求,为临床使用该植片提供可能性[1-2].
角膜内皮从供体上剥离时,常常带有其它层的细胞,因此,对体外培养的HCECs需要在形态学、关键标志物以及基因水平上进行鉴定.在形态学上,通过显微镜或者电镜进行观察,原代培养的HCECs通常是单层六角形细胞,排列比较紧密[32-33].其干细胞较小,具有较高的增殖潜能[34].在关键标志物方面,HCECs表达细胞连接的一些关键性蛋白如ZO-1,间隙连接蛋白-43,N-钙黏蛋白等,其阳性可证明培养的HCECs具有细胞间及细胞与细胞外基质间形成连接的潜能.另外,水孔蛋白,Na+/K+泵也是常用的HCECs标志物[35-37].HCECs的干细胞表达 AP2α,AP2β,FOXD3,HNK1,MSX1,p75NTR和Sox9等神经嵴细胞的标志物[2,38-40].同时,这些细胞还表达Myc,Klf4,Nanog,Nestin,Oct4,Rex1,Sox2,SSEA4等胚胎干细胞标志物[2,31,38-40].在基因水平上,有学者[41]通过分析来自培养的HCECs的反转录产物与人COL8A2 cDNA具有100%的同源性来进行鉴定.这一方法的理论依据为COL8A2基因编码的α2-Ⅷ胶原蛋白是构成后弹力层的重要成分,该成分是由HCECs分泌而来[41].也有学者[42]通过检测CYYR1,SLC4A11,和COL8A2这一组基因的表达来鉴定体外培养的HCECs.不过该学者也表示迄今为止,仍然没有一个特异性的基因可以作为鉴定HCECs的标志物[42].
在过去的几十年里,一些实验室已经报道了体外培养角膜内皮植片的动物实验.曾有学者报道了应用人及动物角膜内皮体外培养植片进行角膜移植的案例[43],受体动物有家兔[44]、牛[45]、猫[46]和鼠类[47]等.目前,角膜内皮移植(包括DSAEK,DMEK等)已成为治疗角膜内皮失代偿的主要方法[48-50],而全球人口老龄化以及供体短缺等因素严重制约了角膜移植术的应用[6].HCECs的体外培养方法虽已基本建立,但是这种方法培养的HCECs存在增殖缓慢、不易保存等问题[4,51],这些都制约着体外培养的HCECs走向临床.随着技术的成熟,相信在不久的将来,人们可以通过体外培养的方法,制备出稳定的组织工程角膜内皮植片,为角膜病患者带来福音.
[1]Zhu YT,Han B,Li F,et al.Knockdown of both p120 catenin and Kaiso promotes expansion of human corneal endothelial monolayers via RhoA-ROCK-noncanonical BMP-NFκB pathway[J].Invest Ophthalmol Vis Sci,2014,55(3):1509-1518.
[2]Zhu YT,Li F,Han B,et al.Activation of RhoA-ROCK-BMP signaling reprograms adult human corneal endothelial cells[J].J Cell Biol,2014,206(6):799-811.
[3]Konomi K,Joyce NC.Age and topographical comparison of telomere lengths in human corneal endothelial cells[J].Mol Vis,2007,13: 1251-1258.
[4]Lee JG,Kay EP.FGF-2-mediated signal transduction during endothelial mesenchymal transformation in corneal endothelial cells[J].Exp Eye Res,2006,83(6):1309-1316.
[5]Zhu YT,Tighe S,Chen SL,et al.Engineering of human corneal endothelial grafts[J].Curr Ophthalmol Rep,2015,3(3):207-217.
[6]McColgan K.Corneal transplant surgery[J].J Perioper Pract,2009,19(2):51-54.
[7]Petroll WM,Jester JV,Bean JJ,et al.Myofibroblast transformation of cat corneal endothelium by transforming growth factor-β1,-β2,and-β3[J].Invest Ophthalmol Vis Sci,1998,39(11):2018-2032.
[8]Chen KH,Azar D,Joyce NC.Transplantation of adult human corneal endothelium ex vivo:a morphologic study[J].Cornea,2001,20(7): 731-737.
[9]Li W,Sabater AL,Chen YT,et al.A novel method of isolation,preservation,and expansion of human corneal endothelial cells[J].Invest Ophthalmol Vis Sci,2007,48(2):614-620.
[10]Yokoo S,Yamagami S,Yanagi Y,et al.Human corneal endothelial cell precursors isolated by sphere-forming assay[J].Invest Ophthalmol Vis Sci,2005,46(5):1626-1631.
[11]Hsiue GH,Lai JY,Chen KH,et al.A novel strategy for corneal endothelial reconstruction with a bioengineered cell sheet[J].Transplantation,2006,81(3):473-476.
[12]Sumide T,Nishida K,Yamato M,et al.Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces[J].FASEB J,2006,20(2):392-394.
[13]Hatou S,Yoshida S,Higa K,et al.Functional corneal endothelium derived from corneal stroma stem cells of neural crest origin by retinoic acid and Wnt/beta-catenin signaling[J].Stem Cells Dev,2013,22(5):828-839.
[14]Chen HC,Zhu YT,Chen SY,et al.Wnt signaling induces epithelial-mesenchymal transition with proliferation in ARPE-19 cells upon loss of contact inhibition[J].Lab Invest,2012,92(5):676-687.
[15]Okumura N,Koizumi N,Ueno M,et al.ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue[J].Am J Pathol,2012,181(1):268-277.
[16]Okumura N,Koizumi N,Kay EP,et al.The ROCK inhibitor eye drop accelerates corneal endothelium wound healing[J].Invest Ophthalmol Vis Sci,2013,54(4):2493-2502.
[17]Okumura N,Nakano S,Kay EP,et al.Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors(Y-27632 and Y-39983)during wound healing of corneal endothelium[J].InvestOphthalmol Vis Sci,2013,55(1):318-329.
[18]Zhu YT,Chen HC,Chen SY,et al.Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions[J].J Cell Sci,2012,125(Pt 15):3636-3648.
[19]Chen HC,Zhu YT,Chen SY,et al.Selective Activation of p120 (ctn)-Kaiso Signaling to Unlock Contact Inhibition of ARPE-19 Cells without Epithelial-Mesenchymal Transition[J].PLoS One,2012,7(5):e36864.
[20]Joyce NC.Cell cycle status in human corneal endothelium[J].Exp Eye Res,2005,81(6):629-638.
[21]Engelmann K,Bhnke M,Friedl P.Isolation and long-term cultivation of human corneal endothelial cells[J].Invest Ophthalmol Vis Sci,1988,29(11):1656-1662.
[22]Miyata K,Drake J,Osakabe Y,et al.Effect of donor age on morphologic variation of cultured human corneal endothelial cells[J].Cornea,2001,20(1):59-63.
[23]Yamaguchi M,Ebihara N,Shima N,et al.Adhesion,migration,and proliferation of cultured human corneal endothelial cells by laminin-5[J].Invest Ophthalmol Vis Sci,2011,52(2):679-684.
[24]Hara S,Hayashi R,Soma T,et al.Identification and potential application of human corneal endothelial progenitor cells[J].Stem Cells Dev,2014,23(18):2190-2201.
[25]Zhu YT,Hayashida Y,Kheirkhah A,et al.Characterization and comparison of intercellular adherent junctions expressed by human corneal endothelial cells in vivo and in vitro[J].Invest Ophthalmol Vis Sci,2008,49(9):3879-3886.
[26]Mimura T,Yokoo S,Yamagami S.Tissue engineering of corneal endothelium[J].J Funct Biomater,2012,3(4):726-744.
[27]Peh GS,Toh KP,Wu FY,et al.Cultivation of human corneal endothelial cells isolated from paired donor corneas[J].PLoS One,2011,6(12):e28310.
[28]Jckel T,Knels L,Valtink M,et al.Serum-free corneal organ culture medium(SFM)but not conventional minimal essential organ culture medium(MEM)protects human corneal endothelial cells from apoptotic and necrotic cell death[J].Br J Ophthalmol,2011,95(1):123-130.
[29]Chen SY,Hayashida Y,Chen MY,et al.A new isolation method of human limbal progenitor cells by maintaining close association with their niche cells[J].Tissue Eng Part C Methods,2011,17(5): 537-548.
[30]Xie HT,Chen SY,Li GG,et al.Limbal epithelial stem/progenitor cells attract stromal niche cells by SDF-1/CXCR4 signaling to prevent differentiation[J].Stem Cells,2011,29(11):1874-1885.
[31]Liu X,Tseng SC,Zhang MC,et al.LIF-JAK1-STAT3 signaling delays contact inhibition of human corneal endothelial cells[J].Cell Cycle,2015,14(8):1197-1206.
[32]Schmedt T,Chen Y,Nguyen TT,et al.Telomerase immortalization of human corneal endothelial cells yields functional hexagonal monolayers[J].PLoS One,2012,7(12):e51427.
[33]Jay L,Bourget JM,Goyer B,et al.Characterization of tissue-engineered posterior corneas using second-and third-harmonic generation microscopy[J].PLoS One,2015,10(4):e0125564.
[34] Yoo H,Feng X,Day RD.Adolescents'empathy and prosocial behavior in the family context:a longitudinal study[J].J Youth Adolesc,2013,42(12):1858-1872.
[35]Okumura N,Kay EP,Nakahara M,et al.Inhibition of TGF-β signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine[J].PLoS One,2013,8(2):e58000.
[36]Noh JW,Kim JJ,Hyon JY,et al.Stemness characteristics of human corneal endothelial cells cultured in various media[J].Eye Contact Lens,2015,41(3):190-196.
[37]Zhang Z,Niu G,Choi JS,et al.Bioengineered multilayered human corneas from discarded human corneal tissue[J].Biomed Mater,2015,10(3):035012.
[38]Liu Y,Sun H,Hu M,et al.Human corneal endothelial cells expanded in vitro are a powerful resource for tissue engineering[J].Int J Med Sci,2017,14(2):128-135.
[39]Lu WJ,Tseng SC,Chen S,et al.Senescence mediated by p16ink4a impedes reprogramming of human corneal endothelial cells into neural crest progenitors[J].Sci Rep,2016,6:35166.
[40]Zhu YT,Tighe S,Chen SL,et al.Engineering of human corneal endothelial grafts[J].Curr Ophthalmol Rep,2015,3(3):207-217.
[41]Engler C,Kelliher C,Wahlin KJ,et al.Comparison of non-viral methods to genetically modify and enrich populations of primary human corneal endothelial cells[J].Mol Vis,2009,15:629-637.
[42]Chng Z,Peh GS,Herath WB,et al.High throughput gene expression analysis identifies reliable expression markers of human corneal endothelial cells[J].PLoS One,2013,8(7):e67546.
[43]Insler MS,Lopez JG.Extended incubation times improve corneal endothelial cell transplantation success[J].Invest Ophthalmol Vis Sci,1991,32(6):1828-1836.
[44]Gospodarowicz D,Greenburg G,Alvarado J.Transplantation of cultured bovine corneal endothelial cells to rabbit cornea:clinical implications for human studies[J].Proc Natl Acad Sci U S A,1979,76(1):464-468.
[45]Lange TM,Wood TO,McLaughlin BJ.Corneal endothelial cell transplantation using Descemet's membrane as a carrier[J].J Cataract Refract Surg,1993,19(2):232-235.
[46]Gospodarowicz D,Greenburg G,Alvarado J.Transplantation of cultured bovine corneal endothelial cells to species with nonregenerative endothelium.The cat as an experimental model[J].Arch Ophthalmol,1979,97(11):2163-2169.
[47]Joo CK,Green WR,Pepose JS,et al.Repopulation of denuded murine Descemet's membrane with life-extended murine corneal endothelial cells as a model for corneal cell transplantation[J].Graefes Arch Clin Exp Ophthalmol,2000,238(2):174-180.
[48]Koenig SB,Covert DJ.Early results of small-incision Descemet's stripping and automated endothelial keratoplasty[J].Ophthalmology,2007,114(2):221-226.
[49]Terry MA,Shamie N,Chen ES,et al.Endothelial keratoplasty a simplified technique to minimize graft dislocation,iatrogenic graft failure,and pupillary block[J].Ophthalmology,2008,115(7): 1179-1186.
[50]Price MO,Baig KM,Brubaker JW,et al.Randomized,prospective comparison of precut vs surgeon-dissected grafts for descemet stripping automated endothelial keratoplasty[J].Am J Ophthalmol,2008,146(1):36-41.
[51]Soh YQ,Peh GS,Mehta JS.Translational issues for human corneal endothelial tissue engineering[J].J Tissue Eng Regen Med,2016.
Isolation,expansion and characterization of human corneal endothelial cells
ZHANG Yuan1,XIE Hua-Tao2,ZHU Ying-Tian1
1Research and DevelopmentDepartment,TissueTech,Inc.,Miami,Florida 33173,USA;2Department of Ophthalmology,Union Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430022,China
Human corneal endothelial cells(HCECs)are located in the posterior cornea.They are well-known for their limited proliferative capability and therefore prone to corneal endothelial dysfunction that eventually may lead to blindness.At present,the only effective way to cure corneal endothelial dysfunction is corneal transplantation.However,because of the global shortage of donor corneas,it is vital to engineer corneal tissue in vitro that could potentially be transplanted clinically.In this review,we elaborately review recent research achivements of isolation and expansion of HCECs in order to unlock the contact inhibition and further avoid endothelial-mesenchymal transition(EMT).Also,we summarize the characterization methods from the morphology,key markers and genetics level,and provide reference for potential clinical application of corneal endothelial cell grafts.
human corneal endothelial cells;isolation;expansion;characterization
R77;R772.2
A
2095-6894(2017)08-72-04
2017-07-03;接受日期:2017-07-20
国家自然科学基金青年科学基金项目(81300736)
张 媛.博士,研究员.研究方向:眼科,眼表疾病,干细胞.E-mail:yuanzdr@outlook.com
朱映天.博士,高级科学家.研究方向:眼科,眼表疾病,干细胞.E-mail:yzhu@tissuetechinc.com