miR-15a对糖尿病性视网膜病变抗炎和抗新生血管生成的双重调节作用*

2017-09-04 03:40吕红彬
关键词:低糖高糖荧光素酶

石 佳, 唐 晨, 吕红彬

1四川省西南医科大学附属医院眼科,泸州 646000 2四川省德阳市人民医院眼科,德阳 618000

实验研究

miR-15a对糖尿病性视网膜病变抗炎和抗新生血管生成的双重调节作用*

石 佳1,2, 唐 晨2, 吕红彬1△

1四川省西南医科大学附属医院眼科,泸州 6460002四川省德阳市人民医院眼科,德阳 618000

目的 探讨miR-15a对糖尿病性视网膜病变抗炎和抗新生血管生成的调节作用。方法 通过25 mmol/L葡萄糖诱导人视网膜色素上皮细胞株HARPE-19建立高糖模型(HG),并以5 mmol/L葡萄糖诱导的HARPE-19细胞作为对照(LG),将HG组和LG组分为4个亚组:miR-15a mimic组、NC-mimic组、miR-15a inhibitor组和NC-inhibitor组,MTT增殖实验检测细胞增殖能力,细胞划痕实验检测细胞迁移能力,双荧光素酶报告基因实验验证miR-15a与酸性鞘磷脂酶(ASM)的关系,RT-PCR检测miR-15a、ASM、VEGF、IL-1β、IL-6、TNF-α mRNA表达。结果 NC-mimic细胞和NC-inhibitor细胞中,HG组miR-15a表达均显著低于LG组(均P<0.05)。miR-15a mimic组ASM mRNA表达水平显著低于NC-mimic组(P<0.05),miR-15a inhibitor组ASM mRNA表达水平显著高于NC-inhibitor组(P<0.05)。miR-15a mimic组细胞迁移距离显著大于NC-mimic组(P<0.05),miR-15a inhibitor组细胞迁移距离显著小于NC-inhibitor组(P<0.05)。转染24~120 h,MTT法检测miR-15a mimic组吸光度值显著高于NC-mimic组(P<0.05),miR-15a inhibitor组吸光度值显著低于NC-inhibitor组(P<0.05)。NC-mimic细胞和NC-inhibitor细胞中,HG组VEGF、IL-1β、IL-6、TNF-α mRNA表达水平均显著高于LG组(均P<0.05)。结论 降低miR-15a表达能够促进视网膜细胞炎症反应和血管新生,miR-15a通过炎症反应和血管生成双重调节作用参与糖尿病性视网膜病变的发生。

微小RNA; 糖尿病性视网膜病变; 炎症反应; 血管新生

糖尿病性视网膜病变(diabetic retinopathy,DR)是中老年人群常见的致盲眼病之一[1],流行病学调查显示约有1/3的糖尿病患者存在糖尿病性视网膜病变体征,其中1/15出现影响视力的并发症[2]。由于DR患者多发病于工作年龄,一旦丧失有用的视力,将会给家庭、社会造成沉重的负担。有研究证实[3],促炎性因子和促血管生成因子能介导视网膜血管通透性增加和细胞凋亡,最终导致视网膜发生病变。微小RNA(miRNA)是一种非编码单链RNA分子,近年研究发现miRNA参与多种细胞过程,包括分化、增殖、凋亡、代谢和信号转导等。最新研究证实[4-5],miRNA参与调节脂类、碳水化合物的代谢以及激活炎性通路,因此miRNA可能在糖尿病及其并发症的发生方面发挥重要作用。miR-15a是近年来发现的一种与内皮细胞功能密切相关的miRNA,Sun等[6]报道称在高糖刺激的糖尿病环境下,miR-15a表达显著降低。Spinetti等[7]也证实miR-15a过表达能够阻断Akt磷酸化途径,抑制高糖诱导的细胞增殖作用。本研究主要探讨miR-15a对DR抗炎和抗新生血管生成的调节作用,旨在为DR的预防和治疗提供新的作用靶点,现报道如下。

1 材料与方法

1.1 细胞来源及处理

人视网膜色素上皮细胞株HARPE-19(HRPE)购自美国菌种保藏中心(American type culture collection,ATCC),HRPE细胞接种于DMEM培养液(含10%胎牛血清、100 U/mL青霉素和100 mg/mL链霉素),恒温培养箱中以37℃、5%CO2培养。细胞70%融合时,用不含胎牛血清的培养液继续培养12 h,细胞以40%密度接种于6孔板,将HRPE细胞分为2组:高血糖组(HG)和低血糖组(LG),HG组培养液中加入25 mmol/L葡萄糖,LG组培养液中加入5 mmol/L葡萄糖,37℃、5%CO2继续培养24 h。

1.2 实验试剂

DMEM培养液购自美国Gibco公司,RIPA裂解液、胰蛋白酶、二甲基亚砜(DMSO)、胎牛血清购自广州碧云天生物技术研究所。Trizol试剂、RT-PCR反应试剂盒、脂质体Lipofectamine 2000TM购自美国Invitrogen公司。miR-15a mimic/inhibitor特异性寡核苷酸序列及阴性对照均委托上海生工生物工程股份有限公司合成设计,miR-15a mimic:5′-AAACCGUUACCAUUACUGAGUUCUCAGUA-AUGGUAACGGUUUU-3′,阴性对照(NC-mimic):5′-UUCUCCGAACGUGUCACGUTTACG-UGACACGUUCGGAGAATT-3′;miR-15a inhibitor:5′-AACUCAGUAAUGGUAACGGUUU-3′,阴性对照(NC-inhibitor):5′-UUGUACUACAA-AAGUACUG-3′。RNA提取试剂、SYBR-Premix ExTaqⅡ试剂盒、OligodT-Adaptor Primer、AMV Reverse Transcriptase、RNase inhibitor购自宝生物工程(大连)有限公司,Transwell小室、Matrigel人工基底膜购自美国BD公司。

1.3 细胞转染

将HG组和LG组均分为4个亚组:miR-15a mimic组、NC-mimic组、miR-15a inhibitor组和NC-inhibitor组,细胞80%融合时,将细胞接种于24孔板,取100 nmol/L miR-15a mimic、NC-mimic、miR-15a inhibitor或NC-inhibitor,溶于100 μL无胎牛血清的DMEM培养液(A液)静置10 min,再取4 μL Lipofectamine 2000TM,溶于100 μL无胎牛血清的DMEM培养液(B液)静置5 min;关灯,于黑暗中将A液和B液混匀后室温静置10 min。将混合液加至培养板,置于37℃、5%CO2培养箱中培养6 h。弃去转染液,加入2 mL DMEM培养液继续培养,待细胞生长完全融合时收集上清液,按1∶3比例传代培养。

1.4 RT-PCR检测miR-15a及ASM、VEGF、IL-1β、IL-6、TNF-α mRNA表达

取生长状态良好的细胞,PBS冲洗3次,加入1 mL RNAiso,冰浴上静置10 min,再加入1/4体积氯仿充分振荡20 s,待溶液完全乳化后静置5 min,4℃、12 000 r/min离心10 min。吸取上层至EP管,再加入等体积异丙醇充分混匀,静置10 min,4℃、12 000 r/min离心10 min。弃去上清液,向沉淀中加入1 mL冷乙醇(75%)清洗沉淀。紫外分光光度计测定260 nm和280 nm处吸光度值,A260/A280>2.0说明RNA纯度合格。取1 μL总RNA进行逆转录。反应体系:MgCl22 μL、RT Buffer 1 μL、dNTP 1 μL、RNase inhibitor 0.25 μL、OligodT-Adaptor Primer 0.5 μL、总RNA 1 μL、ddH2O 3.75 μL、AMV Reverse Transcriptase 0.5 μL。反应条件:45℃ 10 min、50℃ 30 min、97℃ 5 min、5℃ 5 min。冰浴上配置PCR反应体系:5×PCR缓冲液5 μL、ddH2O 14.35 μL、Primer 0.25 μL、RT反应液0.15 μL、EX Taq HS 0.15 μL。反应条件:95℃预变性30 s,95℃变性10 s,60℃延伸40 s,35个循环后74℃延伸5 min。miR-15a内参为U6,酸性鞘磷脂酶(ASM)、血管内皮生长因子(VEGF)、白介素(IL)-1β、IL-6、肿瘤坏死因子-α(TNF-α)内参为β-actin;采用Lane ID图像分析软件分析产物并进行半定量分析,目的基因表达水平以U6或β-actin作为参比。

1.5 MTT增殖实验检测细胞增殖能力

取对数生长期细胞,用不含胎牛血清的培养液调整浓度为1×105/mL,接种于96孔板,每组设置6个复孔,37℃、5%CO2条件下培养,分别于细胞接种0、24、48、72、96、120 h时加入MTT试剂(20 μL/孔),孵育4 h后再向每孔中加入150 μL DMSO,室温下振荡15 min,置于酶标仪上检测490 nm处吸光度(A)值,以评价细胞生长能力。

1.6 细胞划痕实验检测细胞迁移能力

将细胞接种于6孔板,待细胞70%融合时进行划痕实验。用marker笔在培养板后均匀划间距为0.5 cm的横线(确保每孔至少有4条线穿过),每孔铺1×105个细胞,细胞80%融合时用无菌移液枪的枪头在单层细胞沿底部划出“一”字划痕,PBS冲洗3次后,显微镜下测量划痕的宽度,划痕宽度=当前划痕宽度/初始划痕宽度×100%。实验重复3次,取平均值。

1.7 双荧光素酶报告基因实验

采用双荧光素酶报告基因实验验证miR-15a是否与ASM的3′-端非翻译区(3′untranslated region,3′UTR)结合,实验操作简述如下:细胞80%融合时,分别转染100 ng 3′UTR克隆的鞘磷脂磷酸二酯酶-1(SMPD1)表达载体(ASM-3′UTR-WT)或3′UTR突变的SMPD1表达载体(ASM-3′UTR-MUT),即miR-15a的结合部位5′-TGCTGCT-3′突变为5′-TGTGACT-3′;ASM-3′UTR-WT或ASM-3′UTR-MUT分别转染至100 nmol/L miR-15a mimic细胞或NC-mimic细胞,同时以未转染的作为阴性对照。转染24 h后用Dual-Luciferase Reporter Assay检测荧光素酶的信号,所有操作均严格按照仪器说明书进行。

1.8 统计学方法

2 结果

2.1 高糖环境诱导对细胞miR-15a、ASM mRNA表达的影响

分别转染miR-15a mimic和miR-15a inhibitor后,miR-15a mimic组miR-15a表达水平显著高于NC-mimic组(P<0.01,图1A),miR-15a inhibitor组miR-15a表达水平显著低于NC-inhibitor组(P<0.01,图1B),证实细胞转染成功。在NC-mimic细胞和NC-inhibitor细胞中,HG组miR-15a表达均显著低于LG组(均P<0.05,图1A,1B)。进一步分析显示,miR-15a mimic组ASM mRNA表达水平显著低于NC-mimic组(均P<0.01,图1C),miR-15a inhibitor组ASM mRNA表达水平显著高于NC-inhibitor组(均P<0.01,图1D);在NC-mimic细胞和NC-inhibitor细胞中,HG组ASM mRNA表达均显著高于LG组(均P<0.01,图1C,1D)。

A:低糖和高糖环境下转染miR-15a mimic后miR-15a表达;B:低糖和高糖环境下转染miR-15a inhibitor后miR-15a表达;C:低糖和高糖环境下转染miR-15a mimic后ASM mRNA表达;D:低糖和高糖环境下转染miR-15a inhibitor后ASM mRNA表达;*P<0.05 **P<0.01图1 各组细胞miR-15a、ASM mRNA表达水平Fig.1 Cell expression levels of miR-15a and ASM mRNA in different groups

2.2 miR-15a与ASM 3′UTR结合抑制ASM mRNA表达

ASM-3′UTR-WT+miR-15a mimic组荧光素酶活性显著低于ASM-3′UTR-WT组、ASM-3′UTR-WT+NC-mimic组、ASM-3′UTR-MUT组、ASM-3′UTR-MUT+miR-15a mimic和ASM-3′UTR-MUT+NC-mimic组(均P<0.01,图2),证实miR-15a是与ASM mRNA的3′UTR结合发挥抑制ASM mRNA的作用。

2.3 细胞增殖与迁移能力

miR-15a mimic组细胞迁移距离显著高于NC-mimic组(均P<0.01,图3A),miR-15a inhibitor组细胞迁移距离显著低于NC-inhibitor组(均P<0.01,图3B);在NC-mimic细胞和NC-inhibitor细胞中,HG组细胞迁移距离均显著低于LG组(均P<0.01,图3A,3B)。转染24~120 h,miR-15a mimic组吸光度值显著高于NC-mimic组(均P<0.05,图3C),miR-15a inhibitor组吸光度值显著低于NC-inhibitor组(均P<0.05,图3D);在NC-mimic细胞和NC-inhibitor细胞中,HG组吸光度值均显著低于LG组(均P<0.05,图3C,3D)。

1:ASM-3′UTR-WT;2:ASM-3′UTR-WT+miR-15a mimic;3:ASM-3′UTR-WT+NC-mimic;4:ASM-3′UTR-MUT;5:ASM-3′UTR-MUT+miR-15a mimic;6:ASM-3′UTR-MUT+NC-mimic;**P<0.01图2 各组荧光素酶活性Fig.2 Luciferase activity in different groups

A:低糖和高糖环境下转染miR-15a mimic后细胞迁移距离;B:低糖和高糖环境下转染miR-15a inhibitor后细胞迁移距离;C:低糖和高糖环境下转染miR-15a mimic后吸光度值;D:低糖和高糖环境下转染miR-15a inhibitor后吸光度值;*P<0.05 **P<0.01图3 各组细胞增殖与迁移能力Fig.3 Cell proliferation and migration capacity in different groups

2.4 miR-15a对VEGF、IL-1β、IL-6、TNF-α mRNA表达的影响

RT-PCR实验结果显示,miR-15a mimic组VEGF、IL-1β、IL-6、TNF-α mRNA表达水平显著低于NC-mimic组(均P<0.05),miR-15a inhibitor组VEGF、IL-1β、IL-6、TNF-α mRNA表达水平显著高于NC-inhibitor组(均P<0.05);在NC-mimic细胞和NC-inhibitor细胞中,HG组VEGF、IL-1β、IL-6、TNF-α mRNA表达水平均显著高于LG组(P<0.05,P<0.01),见图4。

3 讨论

DR是糖尿病严重并发症,也是最常见的致盲原因之一。既往研究证实,血糖、血脂代谢异常与DR发病有关[8]。然而临床上发现,即使血糖得到有效控制依然无法预防和控制DR发病,因此学者推测可能还有血糖、血脂异常之外的其他因素参与DR的发病[9-10]。研究发现[11],高血糖和血脂异常能激活多种信号通路,导致促炎症因子、促血管生成因子分泌增加,并促进DR的发生和进展。由于多数信号通路的激活与miRNA有关,因此miRNA可能是DR发病的潜在作用机制之一。目前已证实多种miRNA与糖尿病及其并发症有关,如miR-126和miR-195对炎症因子的调节作用可能是糖尿病肾病的发病机制之一[12-13];高糖环境能够下调miR-200b表达,并诱导视网膜病变。

A:低糖和高糖环境下转染miR-15a mimic后VEGF mRNA表达;B:低糖和高糖环境下转染miR-15a inhibitor后VEGF mRNA表达;C:低糖和高糖环境下转染miR-15a mimic后IL-1β mRNA表达;D:低糖和高糖环境下转染miR-15a inhibitor后IL-1β mRNA表达;E:低糖和高糖环境下转染miR-15a mimic后IL-6 mRNA表达;F:低糖和高糖环境下转染miR-15a inhibitor后IL-6 mRNA表达;G:低糖和高糖环境下转染miR-15a mimic后TNF-α mRNA表达;H:低糖和高糖环境下转染miR-15a inhibitor后TNF-α mRNA表达;*P<0.05 **P<0.01图4 各组细胞VEGF、IL-1β、IL-6、TNF-α mRNA表达Fig.4 Cell expression levels of VEGF,IL-1β,IL-6,TNF-α mRNA in different groups

MiR-15a是近年来发现的一种与内皮功能密切相关的miRNA。高血糖环境下,miR-15a表达明显降低,提示miR-15a可能与糖尿病及其并发症发生有关。本研究也发现,在NC-mimic细胞和NC-inhibitor细胞中,HG组miR-15a表达均显著低于LG组,说明高糖环境能够抑制miR-15a的表达。Murray等[14]报道称糖尿病视网膜酸性鞘磷脂酶(ASM)被激活,引起的鞘脂类代谢功能失调是导致DR炎症反应变化的重要代谢机制。内皮细胞是ASM的主要来源。有研究[15]发现,与正常视网膜细胞相比,糖尿病视网膜内皮细胞ASM显著升高。正常ASM水平在维持视网膜功能方面发挥关键作用,ASM异常升高或降低均能导致一系列严重并发症。本研究发现,miR-15a mimic组ASM mRNA显著降低,miR-15a inhibitor组ASM mRNA显著升高;在NC-mimic细胞和NC-inhibitor组细胞中,HG组ASM mRNA表达均显著高于LG组,说明高糖环境能够诱导ASM表达,miR-15a过表达能够抑制ASM表达。Dannhausen等[16]证实ASM能够促进视网膜神经酰胺表达,并抑制细胞迁移和损伤修复功能。miRNA发挥作用有赖于与靶mRNA 3′UTR互补配对,抑制RNA分子翻译、转录或导致RNA分子降解[17-18]。本研究采用双荧光素酶报告基因检测miR-15a与ASM的相互作用,结果显示ASM-3′UTR-WT+miR-15a mimic组荧光素酶活性显著降低,证实miR-15a是与ASM的3′UTR结合,发挥调节ASM的作用。

生理情况下,血管生成有赖于促血管生成因子和抑制血管生成因子的平衡,当2种因子的平衡被打破,则会诱导DR等病理性血管生成疾病。Yin等[19]报道称miR-15a能够抑制下肢缺血大鼠病理性血管形成,提示miR-15a可能参与新生血管形成过程。VEGF是重要的血管生成调节因子,与新生血管密切相关。有报道称[20],ASM能够促进VEGF表达和迁移,导致血管通透性增加和血管新生。结合上述结果,提示miR-15a可能通过调节ASM代谢和VEGF的生成影响DR的发病。Guo等[21]也证实miR-15a能够直接与VEGF的3′UTR端结合,拮抗DR血管生成的作用。TNF-α是广泛分布于内皮细胞表面的细胞因子,与内皮细胞的增殖、血管新生密切相关。IL-1β、IL-6均可以加重血-视网膜屏障损伤,导致局部视网膜细胞浸润、水肿和渗出。王超等[22]证实2型糖尿病KK/Upj-Ay小鼠视网膜组织和血液IL-1β、IL-6、TNF-α显著高于正常小鼠,高糖和缺氧环境能够促进内皮细胞增殖、相关炎症因子释放,导致视网膜黄斑水肿或增殖期DR。本研究显示,miR-15a mimic组VEGF、IL-1β、IL-6、TNF-α mRNA表达显著降低,miR-15a inhibitor组VEGF、IL-1β、IL-6、TNF-α mRNA表达显著升高,说明miR-15a能够抑制炎症因子的合成与释放,通过控制炎症反应抑制DR的发生和进展。

综上所述,降低miR-15a表达水平能够促进视网膜细胞炎症反应和血管新生,miR-15a通过调节炎症反应和血管生成参与DR的发病过程。

[1] Mitsuhashi J,Morikawa S,Shimizu K,et al.Intravitreal injection of erythropoietin protects against retinal vascular regression at the early stage of diabetic retinopathy in streptozotocin-induced diabetic rats[J].Exp Eye Res,2012,106(16):64-73.

[2] Scanlon P H,Aldington S J,Stratton I M.Delay in diabetic retinopathy screening increases the rate of detection of referable diabetic retinopathy[J].Diabet Med,2014,31(4):439-442.

[3] Abu El-Asrar A M,Nawaz M I,Kangave D,et al.Angiogenesis regulatory factors in the vitreous from patients with proliferative diabetic retinopathy[J].Acta Diabetol,2013,50(4):545-551.

[4] Kravchik M,Sunkar R,Damodharan S,et al.Global and local perturbation of the tomato microRNA pathway by a trans-activated DICER-LIKE 1 mutant[J].J Exp Bot,2013,65(2):725-739.

[5] Cifuentes D,Xue H,Taylor D W,et al.A novel miRNA processing pathway independent of dicer requires argonaute 2 catalytic activity[J].Science,2010,328(5986):1694-1698.

[6] Sun L L,Jiang B G,Li W T,et al.MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression[J].Diabetes Res Clin Pract,2011,91(1):94-100.

[7] Spinetti G,Fortunato O,Caporali A,et al.MicroRNA-15a and micro RNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia[J].Circ Res,2013,112(2):707-715.

[8] Ola M S,Nawaz M I,Siddiquei M M,et al.Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy[J].J Diabetes Complications,2012,26(1):56-64.

[9] Santos J M,Tewari S,Kowluru R A.A compensatory mechanism protects retinal mitochondria from initial insult in diabetic retinopathy[J].Free Radic Biol Med,2012,53(9):1729-1737.

[10] Mohammad G,Kowluru R A.Diabetic retinopathy and signaling mechanism for activation of matrix metalloproteinase-9[J].J Cell Physiol,2012,227(3):1052-1061.

[11] 侯阳,刘学政,张克剑,等.视网膜Müller细胞在糖尿病视网膜病变发病中的作用及其研究进展[J].山东医药,2010,50(42):115-116.

[12] Mortuza R,Feng B,Chakrabarti S.miR-195 regulates SIRT1-mediated changes in diabetic retinopathy[J].Diabetologia,2014,57(5):1037-1046.

[13] Mcauley A K,Dirani M,Wang J J,et al.A genetic variant regulating miR-126 is associated with sight threatening diabetic retinopathy[J].Diab Vasc Dis Res,2015,12(2):133-138.

[14] Murray A R,Chen Q,Takahashi Y,et al.MicroRNA-200b downregulates oxidation resistance 1(Oxr1)expression in the retina of type 1 diabetes model[J].Invest Ophthalmol Vis Sci,2013,54(3):1689-1697.

[15] da Silveira Dos Santos A X,Riezman I,Aguilera-Romero M A,et al.Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis[J].Mol Biol Cell,2014,25(20):3234-3246.

[16] Dannhausen K,Karlstetter M,Caramoy A,et al.Acid sphingomyelinase(aSMase)deficiency leads to abnormal microglia behavior and disturbed retinal function[J].Biochem Biophys Res Commun,2015,464(2):434-440.

[17] Minguzzi S,Selcuklu S D,Spillane C,et al.An NTD-associated polymorphism in the 3′UTR of MTHFD1L can affect disease risk by altering miRNA binding[J].Hum Mutat,2014,35(1):96-104.

[18] Kropivšek K,Pickford J,Carter D A.Postnataldynamics of Zeb2 expression in rat brain:analysis of novel 3′UTR sequence reveals a miR-9 interacting site[J].J Mol Neurosci,2014,52(1):138-147.

[19] Yin K J,Olsen K,Hamblin M,et al.Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia[J].J Biol Chem,2012,287(32):27055-27064.

[20] Ito H,Tanaka K,Hagiwara K,et al.Transcriptional regulation of neutral sphingomyelinase 2 in all-trans retinoic acid-treated human breast cancer cell line,MCF-7[J].J Bio Chem,2012,151(6):599-610.

[21] Guo S,Xu X,Tang Y,et al.miR-15a inhibits cell proliferation and epithelial to mesenchymal transition in pancreatic ductal adenocarcinoma by down-regulating Bmi-1 expression[J].Cancer Lett,2014,344(1):40-46.

[22] 王超,邢邯英,王杏,等.通心络胶囊对糖尿病视网膜病变KK/Upj-Ay小鼠血液及视网膜炎性因子表达的影响[J].中国全科医学,2014,17(27):3264-3268.

(2017-01-13 收稿)

Anti-inflammatory and Anti-angiogenic Effect of miR-15a on Diabetic Retinopathy

Shi Jia1,2,Tang Chen2,Lv Hongbin1△

1Department of Ophthalmology,Affiliated Hospital of Southwest Medical University,Luzhou 646000,China2Department of Ophthalmology,Deyang People’s Hospital of Sichuan Province,Deyang 618000,China

Objective To explore the anti-inflammatory and anti-angiogenic effect of miR-15a in diabetic retinopathy(DR).Methods High glucose model(HG)was established by treatment with 25 mmol/L glucose in human retinal pigment epithelial cell line HARPE-19,and HARPE-19 cells treated with 5 mmol/L glucose served as control(LG).HG group and LG group were divided into 4 subgroups:miR-15a mimic group,NC-mimic group,miR-15a inhibitor group and NC-inhibitor group.Cell proliferation ability was detected by MTT proliferation assay.Cell migration ability was detected by cell scratch assay.The relationship between miR-15a and ASM was identified by 3′UTR luciferase reporter assay.miR-15a,ASM,VEGF,IL-1β,IL-6,TNF-α mRNA expression was detected by RT-PCR method.Results In NC-mimic cells and NC-inhibitor cells,the expression of miR-15a in HG group was significantly lower than that in LG group(allP<0.05).The expression level of ASM mRNA in miR-15a mimic group was significantly lower than that in NC-mimic group (P<0.05),the expression level of ASM mRNA in miR-15a inhibitor group was significantly higher than that in NC-inhibitor group (P<0.05).The cell scratch width in miR-15a mimic group was significantly higher than that in NC-mimic group(P<0.05).The cell scratch width in miR-15a inhibitor group was significantly lower than that in NC-inhibitor group(P<0.05).The absorbance value in miR-15a mimic group was significantly higher than that in NC-mimic group(P<0.05),the absorbance value in miR-15a inhibitor group was significantly lower than that in NC-inhibitor group(P<0.05).In NC-mimic cells and NC-inhibitor cells,the mRNA expression levels of VEGF,IL-1β,IL-6 and TNF-α in HG group was significantly higher than those in LG group(allP<0.05).Conclusion miR-15a downexpression induces inflammatory reaction and angiogenesis in retinal cells.miR-15a is involved in the pathogenesis of DR by dual regulation of inflammation and angiogenesis.

microRNA; diabetic retinopathy; inflammatory; angiogenesis

*四川省科学技术厅科研基金资助项目(No.15ZC0869)

R774.1

10.3870/j.issn.1672-0741.2017.04.014

石 佳,女,1982年生,主治医师,硕士研究生,E-mail:1760246657@qq.com

△通讯作者,Corresponding author,E-mail:oculistlvhongbin@163.com

猜你喜欢
低糖高糖荧光素酶
低糖电饭煲技术分析
巴基斯坦:推出低糖杧果品种
NNMT基因启动子双荧光素酶报告系统的构建及其与SND1靶向关系的验证
不同双荧光素酶方法对检测胃癌相关miRNAs靶向基因TIAM1的影响
重组双荧光素酶报告基因质粒psiCHECK-2-Intron构建转染及转染细胞萤火虫荧光素酶和海肾荧光素酶表达
小心掉入“低糖饮品”陷阱
葛根素对高糖诱导HUVEC-12细胞氧化损伤的保护作用
丹红注射液对高糖引起腹膜间皮细胞损伤的作用
芝麻素对高糖损伤SH-SY5Y细胞的保护效果及机制
低糖食品的优势