利雪阳 王 云 孙雨晴 马丹旭 吴安石 岳 云
(首都医科大学附属北京朝阳医院麻醉科,北京 100020)
· 麻醉学与神经科学 ·
A型肉毒素复合低剂量加巴喷丁对切口痛大鼠脊髓背角神经激肽-1受体内化的影响
利雪阳 王 云*孙雨晴 马丹旭 吴安石 岳 云
(首都医科大学附属北京朝阳医院麻醉科,北京 100020)
目的 评价A型肉毒素复合低剂量加巴喷丁对切口痛大鼠行为学及脊髓背角神经激肽-1(neurokinin-1, NK-1)受体内化的影响。方法 雄性SD大鼠,体质量280~300 g,6~8周龄。采用数字表法随机分为5组(n=9):对照组(Control组)、切口痛—盐水组(Saline组)、切口痛—加巴喷丁组(GBP组)、切口痛—毒素组(BoNT/A组)、切口痛—毒素复合加巴喷丁组(G+B组)。BoNT/A组和G+B组于造模前1 d鞘内注射BoNT/A 0.5U,GBP组和G+B组于造模前30 min鞘内注射GBP 50 mg。切口痛模型制备后3 h,每组各随机抽取6只进行累计疼痛评分(cumulative pain scores, CPS)和机械缩足阈值(paw withdrawal threshold, PWT)的测量;每组各抽取3只,通过免疫荧光技术测定NK-1受体内化情况。结果 与Control组比较,切口后3 h Saline组、GBP组、BoNT/A组和G+B组右后足CPS升高、PWT降低、脊髓背角NK-1受体内化神经元数目上调(P<0.05);与Saline组比较,BoNT/A组和G+B组CPS降低、PWT升高、脊髓背角NK-1受体内化神经元数目下调(P<0.05),GBP组差异无统计学意义(P>0.05);与BoNT/A组比较,G+B组CPS降低、PWT升高、脊髓背角NK-1受体内化神经元数目下调(P<0.05)。结论 单独应用低剂量GBP对大鼠切口痛无效,BoNT/A复合低剂量GBP治疗切口痛大鼠的术后疼痛有明显的协同作用,疗效优于单独应用BoNT/A,其镇痛机制可能与抑制切口痛大鼠脊髓背角NK-1受体内化有关。
A型肉毒杆菌毒素;加巴喷丁;疼痛;神经激肽1受体;脊髓
术后疼痛是一种常见的急性疼痛,严重影响病人术后生理功能的恢复和生活质量的改善。由于术后镇痛的不完善,约有25%~55%的术后急性疼痛可转化为慢性疼痛,迁延数月或数年,给家庭和社会带来沉重负担[1]。A型肉毒素(botulinum toxin A,BoNT/A)是肉毒杆菌在繁殖中分泌的一种有毒性的蛋白质,可阻断神经递质在突触前膜的释放,可减轻神经病理性痛等慢性疼痛[2]及切口痛模型大鼠的术后疼痛[3]。大剂量加巴喷丁(gabapentin,GBP)可以有效缓解神经病理性痛,但GBP作为一种抗癫痫药,大剂量使用可引起嗜睡等不良反应[4]。而BoNT/A复合低剂量GBP对切口痛影响尚不清楚。P物质作为一种与疼痛传递相关的神经递质或调质,在术后疼痛和术后急性痛向慢性痛转化过程中起非常重要的作用[5]。脊髓背角神经激肽-1(neurokinin-1, NK-1)受体是G蛋白偶联受体,其内化是反映初级感觉神经元末梢释放P物质的重要指标[6]。本研究拟评价A型肉毒素复合低剂量加巴喷丁对切口痛大鼠行为学及NK-1受体内化的影响。
1.1 动物与药品
SPF级雄性SD大鼠,体质量280~300 g,6~8周龄,由北京维通利华实验动物技术有限公司提供,实验动物许可证号:SCXK(京)2012-0001。饲养于昼夜周期12 h的恒温房间内,自由进食、饮水。
A型肉毒素(批号:C3786 C3,Allergan公司,美国),小鼠抗神经元核抗原(NeuN)抗体(批号:ab104224,Abcam公司,美国),兔抗神经激肽-1(NK-1)受体抗体(批号:NB300-101,Novus公司,美国),TRITC标记的抗兔IgG抗体(批号:111-025-003,Jackson公司,美国),FITC标记的抗小鼠IgG抗体(批号:115-095-003,Jackson公司,美国)。
1.2 实验方法
1)鞘内置管的实施参照文献[7]:腹腔注射10%(质量分数)水合氯醛300 mg/kg麻醉,碘伏消毒并正中剪开腰椎表面皮肤,剪断L4、L5棘间韧带,钝性分离,暴露椎间隙,向上提起L4棘突,7号针头刺破硬膜囊,沿针孔置入无菌PE10导管3 cm,置入蛛网膜下腔后可见甩尾反应或脑脊液流出。PE10导管的另一端经皮下隧道从大鼠颈部背侧引出并固定,0.9%(质量分数)氯化钠注射液10μL冲洗管腔,热熔封口。缝合腰部创面。术后每只大鼠单笼饲养,第6天时鞘内注射2%(质量分数)利多卡因10 μL,若注射后30 s内出现双后肢瘫痪说明鞘内置管成功。鞘内置管后7 d没有神经功能损伤的大鼠用于实验。
2)切口痛模型的制备:参照Brennan等[8]介绍的方法制备大鼠切口痛模型。吸入异氟醚麻醉下,消毒右后肢足底后,在大鼠右后足掌中间距足跟部0.5 cm处沿脚趾方向做一纵形切口,切开皮肤和筋膜,长度约1 cm,用小弯镊提起跖肌,纵行切开,保持肌肉起止部位完整,轻压止血后缝合皮肤,局部涂抹氧氟沙星软膏预防感染。
3)分组与给药:采用数字表法,随机将其分为5组(n=9):对照组(Control组)、切口痛-盐水组(Saline组)、切口痛-加巴喷丁组(GBP组)、切口痛-毒素组(BoNT/A组)、切口痛-毒素复合加巴喷丁组(G+B组)。Saline组于切口手术前1 d鞘内注射0.9%(质量分数)氯化钠注射液10 μL,切口手术前30 min 鞘内注射0.9%(质量分数)氯化钠注射液10 μL。BoNT/A组于切口手术前1 d鞘内注射BoNT/A 0.5 U(0.5 U/10 μL),切口手术前30 min 鞘内注射0.9%(质量分数)氯化钠注射液10 μL。GBP组于切口手术前1 d鞘内注射0.9%(质量分数)氯化钠注射液10 μL,切口手术前30 min鞘内注射GBP 50 mg (50 mg/10 μL)。G+B组于切口手术前1 d鞘内注射BoNT/A 0.5 U(0.5 U/10 μL),切口手术前30 min 鞘内注射GBP 50 mg(50 mg/10 μL)。
4)行为学测试:每组取6只大鼠,分别于术后3 h时测定右后足累计疼痛评分(cumulative pain scores,CPS)和机械缩足反应阈值(paw withdrawal threshold,PWT)。CPS的评分标准:右后足完全负重为0分;右后足仅仅接触地面而没有变白或者扭曲为1分;右后足抬离地面为2分。每5 min评价1次,每次观察1 min,持续观察1 h,1 h内评分之和作为CPS。参照文献[9]介绍的方法测定PWT,将大鼠置于金属网上适应环境30 min,用一系列标准化的von Frey纤维丝(North Coast Medical公司,美国)采用序贯法刺激右后足掌根部缝合线外侧皮肤,使其弯曲成S型,持续 6~8 s,出现快速的缩足反应或摆腿运动为阳性。初始刺激力度为2.041 g,当出现阴性反应时,则使用高一级的刺激力度,当出现阳性反应时,则使用低一级的刺激力度,从第1次出现阳性反应和阴性反应骑跨开始,测定5次,相邻刺激间隔5 min,计算50%机械缩足反应刺激力度即为PWT。为防止刺激力度过大损伤大鼠,最大刺激力度设定为15.136 g。
5)脊髓背角NK-1受体内化的测定:术后3 h时每组取3只大鼠,腹腔注射10%(质量分数)水合氯醛300 mg/kg麻醉,迅速开胸暴露心脏,经升主动脉插管,剪开右心耳。先以400 mL 0.9%(质量分数)氯化钠注射液冲净血液,随即灌注4%(质量分数)多聚甲醛400 mL。掀开椎板,取L4、L5脊髓节段置于4%(质量分数)多聚甲醛4 ℃后固定4~6 h,蔗糖脱水沉底后冰冻包埋。于-20 ℃连续冠状面切片,厚度12 μm,贴片,42 ℃烤片30 min。切片复水后用0.4%(体积分数)Triton X-100室温通透20 min, PBS漂洗5 min×3次,用10%(体积分数)山羊血清封闭1 h;PBS漂洗后加入兔抗NK-1受体抗体(稀释度1∶50)和小鼠抗NeuN抗体(稀释度1∶1 000),4 ℃孵育过夜;PBS漂洗5 min×3次,加入TRITC标记的抗兔IgG(稀释度1∶100)和FITC标记的抗小鼠IgG(稀释度1∶100),室温避光孵育1 h,封片。采用BX-51荧光显微镜(Olympus公司,日本)观察并拍片,计数NK-1受体阳性神经元,以此反映NK-1受体的内化水平。
1.3 统计学方法
2.1 各组大鼠累计疼痛评分和机械缩足阈值的比较
行为学实验结果显示, Control组右后足CPS为(1.05±0.43)分,与Control组相比,切口后3 h Saline组升高至(21.83±0.70)分、GBP组升高至(19.83±0.98)分、BoNT/A组升高至(15.17±1.14)分、G+B组升高至(10.83±0.60)分(P<0.001,n=6);与Saline组比较,BoNT/A组和G+B组CPS显著降低 (P<0.001,n=6),GBP组差异无统计学意义(P>0.05,n=6);与BoNT/A组比较,G+B组CPS降低(P<0.01,n=6)。结果详见图1A。
Control组右后足PWT为(15.14±0)g,与Control组相比,切口后3 h Saline组降低至(2.69±0.49)g、GBP组降低至(3.54±0.78)g、BoNT/A组降低至(7.54±1.05)g(P<0.001,n=6),G+B组降低至(11.35±1.38)g(P<0.05,n=6);与Saline组比较,BoNT/A组和G+B组PWT均显著升高(P<0.01,n=6),GBP组差异无统计学意义(P>0.05,n=6);与BoNT/A组比较,G+B组PWT升高(P<0.05,n=6)。结果详见图1B。
2.2 各组大鼠脊髓背角NK-1受体内化神经元数目比较
Control组脊髓背角NK-1受体内化神经元数目(2.47±0.46)个,切口后3 h 平均每个视野,Saline组上调至(9.53±1.27)个(P<0.001,n=15)、GBP组上调至(9.60±1.11)个(P<0.001,n=15),而BoNT/A组(5.8±0.86)个和G+B组(2.13±0.49)个较Control组差异无统计学意义(P>0.05,n=15);与Saline组比较,BoNT/A组和G+B组脊髓背角NK-1受体内化神经元数目下调(P<0.05,n=15),GBP组差异无统计学意义(P>0.05,n=15);与BoNT/A组比较,G+B组脊髓背角NK-1受体内化神经元数目下调(P<0.05,n=15)。结果详见图2。
图1 大鼠术后3 h累计疼痛评分(A)和机械缩足阈值(B)比较Fig.1 Cumulative pain score (A) and paw withdrawal threshold (B) of rats 3 h after operation
**P<0.01,***P<0.001;###P<0.001;△P<0.05,△△P<0.01;n=6;GBP:gabapentin; BoNT/A:botulinum toxin A; G+B: gabapentin+botulinum toxin A.
图2 各组大鼠术后3h脊髓背角NK-1受体/NeuN免疫荧光双标结果Fig.2 DoubleimmunofluorescencestainingofspinalcorddorsalhornofratswithNK-1receptor(red)andNeuN(green)*P<0.05;###P<0.001;△P<0.05;n=15;GBP:gabapentin;BoNT/A:botulinumtoxinA;G+B:gabapentin+botulinumtoxinA;NK-1r:neurokinin-1receptor.
Brennan等[8]建立的大鼠后足掌切口痛模型是经典的术后痛模型。CPS评分主要反映非诱发性疼痛反应,通常与术后静息痛有关。PWT测试中采用von Frey纤维丝刺激切口,可对术后机械性痛觉过敏进行量化。前期研究[8-10]结果表明,切口痛大鼠术后3 h时痛觉过敏最明显。因此本研究选择切口痛术后3 h作为观察时点。本研究结果表明,切口痛组痛行为学变化同文献[10]的研究结果一致,提示切口痛模型制备成功。
参照文献[11-12]并结合预实验结果,本研究选择鞘内注射BoNT/A的剂量为0.5 U,于术前24 h时给药;鞘内注射GBP的剂量为50 mg,于术前30 min时给药。伤害性刺激可诱发脊髓背角NK-1受体出现明显的内化而进入神经元胞质。本研究采用免疫荧光双标脊髓背角神经元和NK-1受体的方法,检测NK-1受体在脊髓背角神经元的内化水平,保证了收集数据的客观性。
P物质作为一种与疼痛传递相关的神经递质或调质,在术后疼痛和术后急性疼痛向慢性疼痛转化过程中起非常重要的作用[13]。NK-1受体是G蛋白偶联受体,其内化是反映初级感觉神经元末梢释放P物质的重要指标,伤害性刺激可诱发脊髓背角NK-1受体出现明显的内化而进入神经元胞质[6,14]。本研究结果表明,BoNT/A复合低剂量GBP可有效缓解大鼠切口痛,其效应优于单独应用BoNT/A,但单独应用低剂量GBP不能有效缓解切口痛。同时发现切口痛引起脊髓背角NK-1受体内化神经元表达上调,而BoNT/A或BoNT/A复合GBP逆转NK-1受体内化神经元表达上调。因此,联合用药可以产生更佳的疗效、降低彼此用量、减少不良反应,提示BoNT/A复合GBP可能从不同通路不同层次协同下调脊髓背角神经元NK-1受体内化,进而减少P物质释放。
本研究结果提示,单独应用低剂量GBP对大鼠切口痛无效,BoNT/A复合低剂量GBP治疗切口痛大鼠的术后疼痛有明显的协同作用,治疗效果优于单独应用BoNT/A,其镇痛机制可能与抑制切口痛大鼠脊髓背角NK-1受体内化有关。
[1] Perkins F M, Kehlet H. Chronic pain as an outcome of surgery. A review of predictive factors[J]. Anesthesiology, 2000, 93(4):1123-1133.
[2] Ramachandran R, Yaksh T L. Therapeutic use of botulinum toxin in migraine: mechanisms of action[J]. Br J Pharmacol, 2014, 171(18):4177-4192.
[3] 利雪阳,王云,郭瑞娟,等. A型肉毒素预先给药对切口痛大鼠脊髓背角神经激肽-1受体内化的影响[J].中华麻醉学杂志,2016,36(11):1356-1360.
[4] Shahid M, Subhan F, Ahmad N, et al. Topical gabapentin gel alleviates allodynia and hyperalgesia in the chronic sciatic nerve constriction injury neuropathic pain model[J].Eur J Pain, 2017,21(4):668-680.
[5] Sahbaie P, Shi X, Guo T Z, et al. Role of substance P signaling in enhanced nociceptive sensitization and local cytokine production after incision[J]. Pain, 2009, 145(3):341-349.
[6] Jo Y Y, Lee J Y, Park C K. Resolvin E1 inhibits substance P-Induced potentiation of TRPV1 in primary sensory neurons[J]. Mediators Inflamm, 2016, 2016:5259321.
[7] Chao Y C, Xie F, Li X, et al. Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats[J]. Neurochem Int, 2016, 97:91-98.
[8] Brennan T J, Vandermeulen E P, Gebhart G F. Characterization of a rat model of incisional pain[J]. Pain, 1996, 64(3):493-501.
[9] Guo R, Zhao Y, Zhang M, et al. Down-regulation of stargazin inhibits the enhanced surface delivery ofα-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor GluR1 subunit in rat dorsal horn and ameliorates postoperative pain[J]. Anesthesiology, 2014, 121(3):609-619.
[10]Wang Y, Wu J, Guo R, et al. Surgical incision induces phosphorylation of AMPA receptor GluR1 subunits at Serine-831 sites and GluR1 trafficking in spinal cord dorsal horn via a protein kinase Cγ-dependent mechanism[J]. Neuroscience, 2013, 240:361-370.
[11]Park H J, Marino M J, Rondon E S, et al. The effects of intraplantar and intrathecal botulinum toxin type B on tactile allodynia in mono and polyneuropathy in the mouse[J]. Anesth Analg, 2015, 121(1): 229-238.
[12]Marino M J, Terashima T, Steinauer J J, et al. Botulinum toxin B in the sensory afferent: transmitter release, spinal activation, and pain behavior[J]. Pain, 2014, 155(4):674-684.
[13]Chen Y W, Tzeng J I, Lin M F, et al. Transcutaneous electrical nerve stimulation attenuates postsurgical allodynia and suppresses spinal substance P and proinflammatory cytokine release in rats[J]. Phys Ther, 2015, 95(1):76-85.
[14]Gautam M, Prasoon P, Kumar R, et al. Role of neurokinin type 1 receptor in nociception at the periphery and the spinal level in the rat[J]. Spinal Cord, 2016, 54(3):172-182.
编辑 陈瑞芳
Effects of botulinum toxin A combined with low dose gabapentin on the NK-1 receptor internalization at spinal cord dorsal horn in rats with incisional pain
Li Xueyang, Wang Yun*, Sun Yuqing, Ma Danxu, Wu Anshi, Yue Yun
(DepartmentofAnesthesiology,BeijingChaoyangHospital,CapitalMedicalUniversity,Beijing100020,China)
Objective To evaluate the effects of botulinum toxin A combined with low dose gabapentin on the neurokinin-1 (NK-1) receptor internalization at spinal cord dorsal horn in rats with incisional pain. Methods Male Sprague-Dawley rats, weighing 280-300 g, aged 6-8 weeks, were used in the study. Rats were randomly selected and divided into 5 groups (n=9 each) using a random number table: control group (Control group), incisional pain group (Saline group), gabapentin group (GBP group), botulinum toxin A group (BoNT/A group), botulinum toxin A combined with gabapentin group (G+B group). At 24 h before operation, botulinum toxin A 0.5U (in 10 mL of normal saline) was injected intrathecally in BoNT/A group and G+B group. At 30 min before operation, gabapentin 50 mg was injected intrathecally in GBP group and G+B group. At 3 h after operation, 6 rats in each group were selected to measure the cumulative pain scores (CPS) and mechanical paw withdrawal threshold (PWT) in the right hindpaw; besides, 3 rats in each group were selected and sacrificed, and the lumbar segment (L4,5) of the spinal cord was removed for determination of the expression of NK-1 receptors in the spinal dorsal horn by immunofluorescence. Results Compared with Control group, the CPS was significantly increased, the PWT was significantly decreased, and the expression of NK-1 receptors in the spinal dorsal horn was significantly up-regulated in Saline group, GBP group, BoNT/A group and G+B group at 3 h after operation(P<0.05). Compared with Saline group, the CPS was significantly decreased, the PWT was significantly increased, and the expression of NK-1 receptors in the spinal dorsal horn was significantly down-regulated in BoNT/A group and G+B group at 3 h after operation (P<0.05), and no significant change was found in group GBP (P>0.05). Compared with BoNT/A group, the CPS was significantly decreased, the PWT was significantly increased, and the expression of NK-1 receptors in the spinal dorsal horn was significantly down-regulated in G+B group at 3 h after operation (P<0.05). Conclusion Low doses of gabapentin alone may have no effect on postoperative pain, but when it is coadministrated with BoNT/A, it can greatly enhance the analgesic effect of BoNT/A. The analgesic mechanism may be due to inhibition of the internalization of NK-1 receptor at spinal cord horn in a rat model of incisional pain.
botulinum toxin type A;gabapentin; pain; neurokinin-1 receptors;spinal cord
国家自然科学基金(81571065,81428008,81400909)。This study was supported by National Natural Science Foundation of China(81571065,81428008,81400909).
时间:2017-06-09 17∶50 网络出版地址:http://kns.cnki.net/kcms/detail/11.3662.r.20170609.1750.056.html
10.3969/j.issn.1006-7795.2017.03.001]
R971
2017-03-20)
*Corresponding author, E-mail:wangyun129@ccmu.edu.cn