郑季平,李群,吕颂辉*,岑竞仪*,李爱峰,邱江兵
1. 暨南大学赤潮与海洋生物学研究中心,广东 广州 510632;2. 中国海洋大学环境科学与工程学院,山东 青岛 266100
广西涠洲岛底栖蛎甲藻(Ostreopsis sp.)的产毒特性研究
郑季平1,李群1,吕颂辉1*,岑竞仪1*,李爱峰2,邱江兵2
1. 暨南大学赤潮与海洋生物学研究中心,广东 广州 510632;2. 中国海洋大学环境科学与工程学院,山东 青岛 266100
蛎甲藻属(Ostreopsis Schmidt)部分种类可以产生剧毒的海葵毒素(Palytoxins,PLTXs),对海洋生态环境和人类健康构成严重威胁,而国内迄今尚无关于蛎甲藻毒性的研究报道,因此对采自广西涠洲岛同一种蛎甲藻的两个株系(WZD110、WZD111)进行了产毒特性研究。在小鼠生物毒性实验中,腹腔注射两株藻的毒素粗提取物后,小鼠均出现后腰凹陷、运动减少和抽搐等症状,并于短时间内死亡,呈现明显的PLTXs中毒特征。兔血细胞溶血活性实验结果表明,毒素粗提取物具有延迟溶血的效果,且在加入PLTXs特异抑制剂乌本苷后,延迟溶血活性被抑制。液相色谱-质谱联用毒素定性定量分析结果显示,WZD110株单位细胞PLTXs质量为0.348 pg·cell-1,WZD111株单位细胞PLTXs质量为0.081 pg·cell-1,两株系均含有较高浓度的OVTX-c和OVTX-d/e,以及少量的OVTX-g和OVTX-f。文章关于蛎甲藻胞内毒素的报道在中国海域的此类研究尚属首次,可为正确认识和评价蛎甲藻赤潮产生的危害提供参考依据。
蛎甲藻;海葵毒素;液相色谱-串联质谱;涠洲岛
蛎甲藻属(Ostreopsis Schmidt)是海洋底栖甲藻的重要门类,广泛分布于热带、亚热带和温带海域,常附着于海底大型藻类、珊瑚、沙子、石头和无脊椎动物等表面,大量繁殖时会在附着基质上形成一层红棕色薄膜,紧紧黏附在附着基质的体表,且聚集的细胞可随波浪、潮汐等向上方水体扩散,形成肉眼可见的藻华(Vila et al.,2001;Aligizaki et al.,2006;Shears et al.,2009)。蛎甲藻在地中海和新西兰海域暴发赤潮,造成无脊椎动物大量死亡(Totti et al.,2010;Shears et al.,2009)。因此,蛎甲藻对海洋底栖生态系统和浮游生态系统都能产生负面效应,且影响范围较大。
目前确认的蛎甲藻属种类共11种,其中,卵圆蛎甲藻(O. cf. ovata)、暹罗蛎甲藻(O. cf. siamensis)、马斯克林蛎甲藻(O. mascarenensis)和法托鲁索蛎甲藻(O. fattorussoi)被确认可以产生海葵毒素(Palytoxins,PLTXs)(Ciminiello et al.,2008;Ukena et al.,2001;Lenoir et al.,2004;Accoroni et al.,2016;Tartaglione et al.,2016),而菱镜蛎甲藻(O. lenticularis)、七角蛎甲藻(O. heptagona)和罗兹蛎甲藻(O. rhodesae)虽具有毒性,但毒素结构未知(Tindall et al.,1990;Norris et al.,1985;Verma et al.,2016)。此外,Sato et al.(2011)及Tawong et al.(2014)采用分子生物学方法确立的产自日本、泰国的另外7个独立株系都具有毒性。
PLTXs最早分离自夏威夷岛分布的一种毒沙群海葵(Palythoa toxica)(Moore et al.,1971),是已知毒性最强的非蛋白类藻毒素之一,被列为最大的非聚合天然产物之一(Ciminiello et al.,2011)。目前分离确定的PLTXs成分包括卵圆蛎甲藻毒素(ovatoxins,OVTXs)、马斯克林蛎甲藻毒素(mascarenotoxins,McTXs)和蛎甲藻素(ostreocins)等(Tartaglione et al.,2016;Lenoir et al.,2004;Usami et al.,1995;Ukena et al.,2001)。PLTXs以气溶胶的形式被吸入或者通过皮肤直接接触进入人体,引起呼吸困难、发热和眼部不适等症状(Gallitelli et al.,2005;Ciminiello et al.,2014)。2005年,意大利地中海沿岸200余人因吸入含PLTXs气溶胶而身体不适就医(Durando et al.,2007)。Thakur et al.(2017)报道了一例由于吸入PLTXs中毒造成急性呼吸衰竭的临床病例。此外,PLTXs还可以通过食物网富集在一些生物体内,包括甲壳类、贝类、鱼类和棘皮动物等,进而导致人体中毒(Rhodes et al.,2002;Taniyama et al.,2002;Aligizaki et al.,2011;Amzil et al.,2012)。2014年,中国台湾报道了一起因食用染PLTXs毒素的金斑鲱鱼(Goldspot herring)而中毒事件,其中一人死亡(Wu et al.,2014)。
蛎甲藻严重危害生态系统安全及人类健康,成为世界性研究热点(Berdalet et al.,2012)。在中国海域,陈国蔚(1989)报道西沙群岛存在O. siamensis。然而,迄今国内尚无对蛎甲藻相关毒素的研究报道。本文综合运用小鼠生物法、溶血分析法和液相色谱-质谱联用法(LC-MS)对采集自广西涠洲岛的两株蛎甲藻的产毒特性进行了系统研究,试图揭示该海域蛎甲藻毒素的毒性特征、毒素组成及其含量,以期为有毒底栖甲藻的研究奠定基础。
1.1 藻种采集和培养
实验用蛎甲藻为同种两个株系WZD110和WZD111(形态、分子特征一致,数据待发表),采集于广西涠洲岛,活体藻株保存于暨南大学赤潮与海洋生物学研究中心藻种库。实验用藻采用L1培养基(Guillard et al.,1993)培养,培养温度为(25±1)℃,盐度为(30±1),光暗周期比为12∶12,光照150 μmol·m-2·s-1。隔天固定时间取样,于显微镜下用100 μL浮游植物计数框进行藻细胞计数,绘制生长曲线,确定其生长周期。
1.2 毒素粗提取
取处于稳定期中后期的藻液,以过滤方式收集藻细胞,用体积比为1∶1的甲醇-水混合液重悬,藻液经超声破碎仪冰浴破碎3 min,强度20%,间隔0.2 s,再将藻液置于离心管中以11000 r·min-1离心3 min,取上清液即为毒素粗提物,保存于-20 ℃冰箱备用。
1.3 生物毒性测试方法
1.3.1 小鼠生物毒性实验
实验选择同一批次的健康昆明系小鼠(KM小鼠),雄性,清洁级(SPF级),每只(22±2)g,购于广东省医学实验动物中心。饲养于暨南大学实验动物管理中心,光暗周期比为12∶12,温度为(25±2)℃。实验期间为其供应标准的啮齿类动物食物和纯水。
将毒素粗提物旋转蒸发,干燥后溶解于含1% Tween-60的生理盐水中,将动物随机分为3组,每组3只,包括1个对照组,2个实验组(A和B),对照组每只小鼠腹腔注射1 mL含有1% Tween-60的生理盐水,实验组A每只小鼠腹腔注射经上述处理后的WZD110毒素粗提物1 mL,实验组B每只小鼠腹腔注射经上述处理后的WZD111毒素粗提物1 mL。注射后1 h内不间断观察,详细记录小鼠症状及出现时间,之后每30分钟观察1次。
1.3.2 兔血红细胞溶血实验
实验参考前人方法(Bignami,1993;Riobo et al.,2008a;Aligizaki et al.,2008),并进行优化。
新鲜兔血取自暨南大学实验动物管理中心新西兰实验兔,先离心将血红细胞从血浆中分离,用柠檬酸等渗缓冲液清洗3次,然后用柠檬酸等渗缓冲液将兔血稀释为体积分数(V/V)为0.4%的血红细胞溶液,4 ℃下保存,并在7 d内完成实验。
将WZD111毒素粗提物旋转蒸发,干燥后溶解于柠檬酸等渗缓冲液中,实验组为100 μL经上述处理的毒素+500 μL血红细胞溶液+400 μL柠檬酸等渗缓冲液,对照组为100 μL经上述处理的毒素+500 μL含有1 mmol·L-1乌本苷的血红细胞溶液+400 μL柠檬酸等渗缓冲液。实验组和对照组均设置21个平行样,于37 ℃下水浴,分别于0、15、30、60、120、180、240 min时,各取3个平行样,1500 rpm离心30 s,取上清液用酶标仪在414 nm波长处测量吸光值。以时间为横坐标,以吸光度增加值为纵坐标绘制曲线图。
1.4 毒素的定性和定量分析
1.4.1 液相色谱-高分辨质谱联用(LC-HRMS)分析
将毒素粗提物旋转蒸发,干燥后溶解于5 mL体积比为1∶1的甲醇-水混合液中,再转移至10 kDa超滤离心管中过滤,再过0.22 μm滤膜,收集滤液用于LC-HRMS及LC-MS/MS分析。
液相色谱条件:采用赛默飞高效液相色谱仪UltiMate3000,Luna C18色谱柱(50×2.1 mm,3 µm),柱温35 ℃,采用两相洗脱液,流动相A为超纯水,流动相B为95%乙腈,两者都含有50 m mol·L-1甲酸和2 m mol·L-1甲酸铵,流速为0.2 mL·min-1,进样体积5 µL。洗脱方式:0~7 min,25%~100% B,7~10 min,100% B,10~10.5 min,100%~25% B,10.5~16 min,25% B。
质谱条件:Bruker maXis质谱仪,ESI离子源,采用正离子模式在质荷比m/z 300~2900范围内进行全扫描检测。毛细管电压4.0 kV,干燥器温度180 ℃,干燥器流速6.0 L·min-1。
1.4.2 液相色谱-串联质谱(LC-MS/MS)分析
液相色谱条件:Agilent 1100(美国)高效液相色谱仪,选用Phenomenex Gemini C18柱(150 mm×2.00 mm,3 μm),流动相A为超纯水,流动相B为100%乙腈。洗脱方式:0~2 min,20%~100% A;2~8 min,100% A;8~8.1 min,100%~20% A;8.1~18 min,20% A。流速:0.2 mL·min-1,柱温20 ℃,进样体积20 μL。
质谱条件:API4000 QTRAP质谱仪(AB Sciex,美国),采用电喷雾电离(ESI)离子源,检测方式为多反应监测(Multiple reaction monitoring,MRM),雾化气、干燥气均为氮气(N2)。定量变迁离子对选取1332.1/327.1,定性变迁离子对选取1341.1/327.1,1352.1/327.1作为参照。经进样优化后,质谱各参数详见表1。
表1 质谱参数值Table 1 The parameters of mass spectrometry
PLTXs标准曲线建立:PLTXs标准品(putative palytoxin,pPLTX)购自于日本Wako公司。用体积比为1∶1的甲醇-水混合液将PLTXs标准品稀释至10 mg·L-1,再配制质量浓度梯度为0.05、0.1、0.5、1、2、4、8和10 mg·L-1的PLTXs标准溶液,采用上述LC-MS/MS分析方法测定。以PLTXs质量浓度(mg·L-1)为横坐标,以所测得的峰面积为纵坐标,绘制标准曲线。
2.1 PLTXs的生物毒性
2.1.1 小鼠急性毒性
小鼠生物毒性实验结果见表2。与对照组相比,实验组A(WZD110)和实验组B(WZD111)小鼠均表现出后腰凹陷、运动减少、抽搐和短时间内死亡等中毒症状,而对照组小鼠均无明显症状。表明两株蛎甲藻粗提物具有明显的生物毒性。
2.1.2 PLTXs对兔血红细胞的溶血效果
兔血细胞溶血实验结果显示,实验组与对照组相比,WZD111株粗提物延迟溶血效果显著,且乌本苷对其抑制效果明显(图1)。该藻株提取液溶血效果在不同反应时间存在明显差异,在60~120min内,溶血效果显著提升,说明藻株WZD111的毒素具有显著的延迟溶血效应。
图1 WZD111不同时间吸光度增加值(E:兔血红细胞)Fig. 1 Absorbance value-added over time with WZD111 strain (E: erythrocyte)
表2 小鼠实验症状Table 2 The symptoms of mouse bioassay
2.2 PLTXs定性定量检测结果
2.2.1 定性检测结果
PLTXs标准品经高分辨质谱分析,其多种碎片离子的测量值与理论精确质量数之间的偏差均在-5×10-6~5×10-6范围内(见表3)。
毒素粗提取物的高分辨质谱分析结果显示,WZD110样品中含有相对高浓度的OVTX-c(m/z 1345.7319),提取离子的强度约为2500;其次是OVTX-d/e(m/z 1323.7461),提取离子的强度约为1000;还可能含有少量的OVTX-g(m/z 1307.7552)和OVTX-f(m/z 1329.7094)。WZD111样品中含有相对高浓度的OVTX-c,提取离子的强度在2500~3000之间;其次是OVTX-d/e,提取离子的强度约为1300;还可能含有少量的OVTX-g和OVTX-f。
2.2.2 PLTXs标曲的线性关系与检出限
梯度质量浓度的PLTXs标准品经LC-MS/MS检测后得到标准曲线,其回归方程及可决系数分别为Y=24144X-8308.7,r2=0.9908,其中,Y表示峰面积,X表示标准样品质量浓度(单位:mg·L-1)。其峰面积和质量浓度有较好的线性关系,信噪比S/N为13.7,PLTXs定量限为0.05 mg·L-1。
2.2.3 定量检测结果
PLTXs标准品的出峰时间在6.89 min左右(图2A),藻株WZD110及WZD111通过LC-MS/MS检测后,在保留时间内都出现了样品峰(图2B、图2C),可证明这两个株系中都存在PLTXs。计算得到WZD110毒素含量为0.348 pg·cell-1(收藻体积为5 L,总细胞数为5790000个),WZD111毒素含量为0.081 pg·cell-1(收藻体积为3 L,总细胞数为26775000个)。
3.1 蛎甲藻毒性及差异
小鼠生物实验常被用来初步检测蛎甲藻毒性,如Ostreopsis sp.(Aligizaki et al.,2008),Ostreopsis sp.和O. cf. ovata(Tawong et al.,2014),O. cf. ovata和O. cf. siamensis(Botana et al.,2013)。Riobo et al.(2008b)在蛎甲藻毒素粗提物小鼠生物研究中,总结了小鼠不同于其他海洋生物毒素的中毒症状,如运动减少、后肢拉伸、后腰凹陷、运动失调和抽搐等。这些中毒症状在不同地理株系的蛎甲藻小鼠实验中都存在,如地中海东南部的O. ovata株系(Abdennadher et al.,2017),新西兰的O. siamensis株系(Rhodes et al.,2002),西南印度洋的O. mascarenensis株系(Lenoir et al.,2004)。本研究中的两株蛎甲藻粗提物均表现出较强的小鼠毒性,小鼠腹腔注射蛎甲藻粗提物后均出现后腰凹陷、后肢拉伸和抽搐等特征症状(表2)。小鼠腹腔注射1 min内均出现明显反应,表明小鼠生物法检测蛎甲藻毒素的灵敏性较高。注射等量WZD110毒素粗提取物的3只小鼠10 min之内全部死亡,死亡时间差别不大,但注射等量WZD111毒素粗提取物的小鼠中,1只在1 min内死亡,另外2只死亡时间分别为14 min和43 min,差别较大,可能是因为不同小鼠对PLTXs的耐受性差异较大。注射相同蛎甲藻毒素粗提取物的小鼠(平行样之间)症状有差异,在其他文献中已有报道(Sato et al.,2011;Tawong et al.,2014)。
PLTXs的溶血实验是一个简单、快速、灵敏的检测方法(Riobo et al.,2008a),即使采用不同的血细胞也具有很高的再现性(Pezzolesi et al.,2012)。PLTXs主要作用位点为钠钾泵(Na+/K+-ATPase),造成细胞膜上离子通道的改变,具有延迟溶血的特性(Hilgemann,2003;Artigas et al.,2003)。乌本苷是PLTXs的特异性抑制剂,与PLTXs和钠泵的结合位点一致(Habermann et al.,1982)。因此,这一特征被广泛用于PLTXs的检测(Pezzolesi et al.,2012;Brissard et al.,2014)。由图1可见,此藻株粗提取毒素具有显著的延迟溶血效果,并且可被乌本苷抑制,因此可判断该株藻产生的毒素为PLTXs。
表3 海葵毒素标准品的质荷比Table 3 The m/z of palytoxin standard
图2 海葵毒素色谱图Fig. 2 The chromatograms of palytoxins
溶血实验和小鼠生物实验之间可以建立等效性,小鼠生物实验是本研究神经毒素的传统参考方法。溶血实验大约比小鼠实验敏感20倍,两者各有优势,小鼠生物实验可以通过对动物的毒素反应来建立人类最大可接受剂量,溶血实验可用于PLTXs的快速检测(Riobo et al.,2008a)。
3.2 蛎甲藻胞内毒素及组成
广西涠洲岛WZD110和WZD111两个蛎甲藻株系的PLTXs单位细胞毒素质量与古巴株、印度洋株、新西兰株和地中海希腊株在数量级上基本一致,而与地中海意大利株和法国株差别很大(表4)。意大利株O. cf. ovata与法国株O. cf. ovata分别为44 pg·cell-1和300 pg·cell-1,也存在很大差异,这说明蛎甲藻藻株毒素水平差异可能既与藻种有关,又与地理分布有关。事实上,已经有研究报道藻株的毒性强弱更有赖于不同的地理分布和环境条件(Guerrini et al.,2010;Pistocchi et al.,2011)。
本研究中蛎甲藻的两个株系虽然形态、分子特征均一致,毒素成分一致,但单位细胞毒素质量差异明显。类似情况已有报道,如Suzuki et al.(2012)研究发现日本海沿岸不同株系产毒情况不同,即使处于系统发育树上的同一支系藻株的单位细胞毒素质量都存在明显差别。Accoroni et al.(2016)报道黎巴嫩海域五株O. fattorussoi株系单位细胞毒素质量情况,其中两株未检测到有毒素,另外3株检出量分别为0.28、0.47、0.94 pg·cell-1,毒素成分一致但水平差异明显。而采自塞浦路斯岛的O. fattorussoi株系不仅毒素水平有差异,还含有上述黎巴嫩株系所没有的毒素成分(OVTX-i,-j1,-j2,-k)(Tartaglione et al.,2016)。
近年来关于PLTXs类似物的报道越来越多,如Ciminiello et al.(2008;2010;2012)、García-Altares et al.(2015)、Brissard et al.(2015)、Tartaglione et al.(2016)陆续报道地中海蛎甲藻株系产生的PLTXs种类包括OVTX-a、OVTX-b、OVTX-c、OVTX-d、OVTX-e、OVTX-f、OVTX-g、OVTX-h、OVTX-i、OVTX-j1、OVTX-j2、OVTX-k和pPLTX等。Suzuki et al.(2012)对采自日本海域的蛎甲藻株系进行研究,检测到一系列异于地中海株系PLTXs的同分异构体OVTX-aAC、-b AC、-d AC、-e AC。本研究发现两个株系中含有较高浓度的OVTX-c和OVTX-d/e,以及少量的OVTX-g和OVTX-f,并未检测到地中海株系中含量较高的OVTX-a。
表4 世界各地海葵毒素含量和成分Table 4 Palytoxins content and profile of Ostreopsis spp. around the world
(1)蛎甲藻WZD110和WZD111株细胞具有明显的PLTXs生物毒性,小鼠表现出后腰凹陷、抽搐症状和短时间内死亡等PLTXs中毒症状。
(2)蛎甲藻WZD111株毒素提取物表现出延迟溶血效果,且可被乌本苷抑制,进一步证实了PLTXs的存在。
(3)蛎甲藻WZD110和WZD111株所含毒素经液相色谱-质谱联用定量分析,测得两株藻单位细胞PLTXs质量分别为0.348 pg·cell-1和0.081 pg·cell-1。经高分辨质谱定性分析,发现两株藻细胞内含有较高浓度的OVTX-c和OVTX-d/e,以及少量的OVTX-g和OVTX-f。
ABDENNADHER M, ZOUARI A B, SAHNOUN W F, et al. 2017. Ostreopsis cf. ovata in the Gulf of Gabès (south-eastern Mediterranean Sea): morphological, molecular and ecological characterization [J]. Harmful Algae, 63: 56-67.
ACCORONI S, ROMAGNOLI T, PENNA A, et al. 2016. Ostreopsis fattorussoi sp. nov. (Dinophyceae), a new benthic toxic Ostreopsis species from the eastern Mediterranean Sea [J]. Journal of Phycology, 52(6): 1064-1084.
ALIGIZAKI K, KATIKOU P, MILANDRI A, et al. 2011. Occurrence of palytoxin-group toxins in seafood and future strategies to complement the present state of the art [J]. Toxicon, 57(3): 390-399.
ALIGIZAKI K, KATIKOU P, NIKOLAIDIS G, et al. 2008. First episode of shellfish contamination by palytoxin-like compounds from Ostreopsis species (Aegean Sea, Greece) [J]. Toxicon, 51(3): 418-427.
ALIGIZAKI K, NIKOLAIDIS G. 2006. The presence of the potentially toxic genera Ostreopsis and Coolia (Dinophyceae) in the North Aegean Sea, Greece [J]. Harmful Algae, 5(6): 717-730.
AMZIL Z, SIBAT M, CHOMERAT N, ET AL. 2012. Ovatoxin-a and palytoxin accumulation in seafood in relation to Ostreopsis cf. ovata blooms on the French Mediterranean coast [J]. Marine Drugs, 10(2): 477-496.
ARTIGAS P, GADSBY D C. 2003. Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels [J]. Proceedings of the National Academy of Sciences of the United States of America, 100(2): 501-505.
BERDALET E, BRAVO I, EVANS J, et al. 2012. Global ecology and oceanography of harmful algal blooms, GEOHAB Core Research Project: HABs in benthic systems [M]. Paris and Newark: IOC of UNESCO and SCOR: 64.
BIGNAMI G S. 1993. A rapid and sensitive hemolysis neutralization assay for palytoxin [J]. Toxicon, 31(6): 817-820.
BOTANA L, FERNÁNDEZ-ARAUJO A, ALFONSO A, et al. 2013. Warm seawater microalgae: Growth and toxic profile of Ostreopsis spp. from European costs [J]. Oceanography, 1(104): 2.
BRISSARD C, HERRENKNECHT C, SECHET V, et al. 2014. Complex toxin profile of French Mediterranean Ostreopsis cf. ovata strains, seafood accumulation and ovatoxins prepurification [J]. Marine Drugs, 12(5): 2851-2876.
BRISSARD C, HERVE F, SIBAT M, et al. 2015. Characterization of ovatoxin-h, a new ovatoxin analog, and evaluation of chromatographic columns for ovatoxin analysis and purification [J]. Journal of Chromatography A, 1388: 87-101.
CIMINIELLO P, DELL’AVERSANO C, IACOVO E D, et al. 2011. LC-MS of palytoxin and its analogues: state of the art and future perspectives [J]. Toxicon, 57(3): 376-389.
CIMINIELLO P, DELL’AVERSANO C, IACOVO E D, et al. 2014. First finding of Ostreopsis cf. ovata toxins in marine aerosols [J]. Environmental Science & Technology, 48(6): 3532-3540.
CIMINIELLO P, DELL'AVERSANO C, FATTORUSSO E, et al. 2008. Putative palytoxin and its new analogue, ovatoxin-a, in Ostreopsis ovata collected along the Ligurian coasts during the 2006 toxic outbreak [J]. Journal of The American Society for Mass Spectrometry, 19(1): 111-120.
CIMINIELLO P, DELL'AVERSANO C, IACOVO E D, et al. 2010 Complex palytoxin-like profile of Ostreopsis ovata. Identification of four new ovatoxins by high-resolution liquid chromatography/mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 24(18): 2735-2744.
CIMINIELLO P, DELL'AVERSANO C, IACOVO E D, et al. 2012. Unique toxin profile of a Mediterranean Ostreopsis cf. ovata strain: HR LC-MS(n) characterization of ovatoxin-f, a new palytoxin congener [J]. Chemical Research in Toxicology, 25(6): 1243-1252.
DURANDO P, ANSALDI F, ORESTE P, et al. 2007. Ostreopsis ovata and human health: epidemiological and clinical features of respiratory syndrome outbreaks from a two-year syndromic surveillance, 2005-06, in north-west Italy [J]. Euro Surveill, 12(6): E070607.
GALLITELLI M, UNGARO N, ADDANTE L M, et al. 2005. Respiratory illness as a reaction to tropical algal blooms occurring in a temperate climate [J]. Jama, 293(21): 2595-2600.
GARCIA-ALTARES M, TARTAGLIONE L, DELL'AVERSANO C, et al. 2015. The novel ovatoxin-g and isobaric palytoxin (so far referred to as putative palytoxin) from Ostreopsis cf. ovata (NW Mediterranean Sea): structural insights by LC-high resolution MS(n.) [J]. Analytical and Bioanalytical Chemistry, 407(4): 1191-1204.
GIUSSANI V, SBRANA F, ASNAGHI V, et al. 2015. Active role of the mucilage in the toxicity mechanism of the harmful benthic dinoflagellate Ostreopsis cf. ovata [J]. Harmful Algae, 44: 46-53.
GUERRINI F, PEZZOLESI L, FELLER A, et al. 2010. Comparative growth and toxin profile of cultured Ostreopsis ovata from the Tyrrhenian and Adriatic Seas [J]. Toxicon, 55(2): 211-220.
GUILLARD R R L, HARGRAVES P E. 1993. Stichochrysis immobilis is a diatom, not a chrysophyte [J]. Phycologia, 32(3): 234-236.
HABERMANN E, CHHATWAL G. 1982. Ouabain inhibits the increase due to palytoxin of cation permeability of erythrocytes [J]. Naunyn-Schmiedeberg's archives of pharmacology, 319(2): 101-107.
HILGEMANN D W. 2003. From a pump to a pore: how palytoxin opens the gates [J]. Proceedings of the National Academy of Sciences, 100(2): 386-388.
LENOIR S, TEN-HAGE L, TURQUET J, et al. 2004. First Evidence of Palytoxin Analogues from An Ostreopsis mascarenensis (Dinophyceae) Benthic Bloom in Southwestern Indian Ocean [J]. Journal of Phycology, 40(6): 1042-1051.
LENOIR S, TEN-HAGE L, TURQUET J, et al. 2006. Characterisation of new analogues of palytoxin isolated from an Ostreopsis mascarenensis bloom in the south-western Indian Ocean [J]. African Journal of Marine Science, 28(2): 389-391.
MOORE R E, SCHEUER P J. 1971. Palytoxin: a new marine toxin from a coelenterate [J]. Science, 172(3982): 495-498.
MOREIRA A, RODRÍGUEZ F, RIOBÓ P, et al. 2012. Notes on Ostreopsis sp. from southern-central coast of Cuba [J]. Cryptogamie, Algologie, 33(2): 217-224.
NORRIS D, BOMBER J, BALECH E. 1985. Benthic dinoflagellates associated with ciguatera from the Florida Keys. I. Ostreopsis heptagona sp. nov. [C]//ANDERSON D M, WHITE A. W, BADEN D G. Toxic dinoflagellates. Amsterdam: Elsevier: 39-44.
PEZZOLESI L, GUERRINI F, CIMINIELLO P, et al. 2012. Influence of temperature and salinity on Ostreopsis cf. ovata growth and evaluation of toxin content through HR LC-MS and biological assays [J]. Water Research, 46(1): 82-92.
PISTOCCHI R, PEZZOLESI L, GUERRINI F, et al. 2011. A review on the effects of environmental conditions on growth and toxin production of Ostreopsis ovata [J]. Toxicon, 57(3): 421-428.
RHODES L L, SMITH K F, VERMA A, et al. 2017. The dinoflagellate genera Gambierdiscus and Ostreopsis from subtropical Raoul Island and North Meyer Island, Kermadec Islands [J]. New Zealand Journal of Marine and Freshwater Research, DOI: 10.1080/00288330.2016.1270337.
RHODES L, TOWERS N, BRIGGS L, et al. 2002. Uptake of palytoxin-like compounds by shellfish fed Ostreopsis siamensis (Dinophyceae) [J]. New Zealand Journal of Marine and Freshwater Research, 36(3): 631-636.
RIOBO P, PAZ B, FRANCO J M, et al. 2008b. Mouse bioassay for palytoxin. Specific symptoms and dose-response against dose-death time relationships [J]. Food Chem Toxicol, 46(8): 2639-47.
RIOBO P, PAZ B, FRANCO J M, et al. 2008a. Proposal for a simple and sensitive haemolytic assay for palytoxin [J]. Harmful Algae, 7(4): 415-429.
SATO S, NISHIMURA T, UEHARA K, et al. 2011. Phylogeography of Ostreopsis along west Pacific coast, with special reference to a novel clade from Japan [J]. PLoS One, 6(12): e27983.
SHEARS N T, ROSS P M. 2009. Blooms of benthic dinoflagellates of the genus Ostreopsis; an increasing and ecologically important phenomenon on temperate reefs in New Zealand and worldwide [J]. Harmful Algae, 8(6): 916-925.
SUZUKI T, WATANABE R, UCHIDA H, et al. 2012. LC-MS/MS analysis of novel ovatoxin isomers in several Ostreopsis strains collected in Japan [J]. Harmful Algae, 20: 81-91.
TANIYAMA S, MAHMUD Y, TERADA M, et al. 2002. Occurrence of a food poisoning incident by palytoxin from a serranid Epinephelus sp. in Japan [J]. Journal of natural toxins, 11(4): 277-282.
TARTAGLIONE L, MAZZEO A, DELL'AVERSANO C, et al. 2016. Chemical, molecular, and eco-toxicological investigation of Ostreopsis sp. from Cyprus Island: structural insights into four new ovatoxins by LC-HRMS/MS [J]. Anal Bioanal Chem, 408(3): 915-32.
TAWONG W, NISHIMURA T, SAKANARI H, et al. 2014. Distribution and molecular phylogeny of the dinoflagellate genus Ostreopsis in Thailand [J]. Harmful Algae, 37: 160-171.
THAKUR L K, JHA K K. 2017. Palytoxin-induced acute respiratory failure [J]. Respiratory Medicine Case Reports, 20: 4-6.
TINDALL D R, MILLER D M, TINDALL P M. 1990. Toxicity ofOstreopsis lenticularis from the British and United States Virgin Islands [C]//GRANELI E, SUNDSTROM B, EDLER L, et al. Toxic Marine Phytoplankton. New York: Elsevier: 424–429.
TOTTI C, ACCORONI S, CERINO F, et al. 2010. Ostreopsis ovata bloom along the Conero Riviera (northern Adriatic Sea): Relationships with environmental conditions and substrata [J]. Harmful Algae, 9(2): 233-239.
UKENA T, SATAKE M, USAMI M, et al. 2001. Structure elucidation of ostreocin D, a palytoxin analog isolated from the dinoflagellate Ostreopsis siamensis [J]. Biosci Biotechnol Biochem, 65(11): 2585-2588.
USAMI M, SATAKE M, ISHIDA S, et al. 1995. Palytoxin analogs from the dinoflagellate Ostreopsis siamensis [J]. Journal of the American chemical society, 117(19): 5389-5390.
VERMA A, HOPPENRATH M, DORANTES-ARANDA J J, et al. 2016. Molecular and phylogenetic characterization of Ostreopsis (Dinophyceae) and the description of a new species, Ostreopsis rhodesae sp. nov., from a subtropical Australian lagoon [J]. Harmful Algae, 60: 116-130.
VILA M, GARCÉS E, MASÓM. 2001. Potentially toxic epiphytic dinoflagellate assemblages on macroalgae in the NW Mediterranean [J]. Aquatic microbial ecology, 26(1): 51-60.
WU M L, YANG C C, DENG J F, et al. 2014. Hyperkalemia, hyperphosphatemia, acute kidney injury, and fatal dysrhythmias after consumption of palytoxin-contaminated goldspot herring [J]. Annals of Emergency Medicine, 64(6): 633-6.
陈国蔚. 1989. 西沙群岛甲藻的研究: Ⅲ. 几种罕见的热带大洋性甲藻[J]. 海洋与湖沼, 20(3): 230-237.
Production of palytoxins by two strains of Ostreopsis sp. (Dinophyceae) from Weizhou island, Guangxi, China [J]. Ecology and Environmental Sciences, 26(4): 663-670.
ZHENG Jiping, LI Qun, LÜ Songhui, CEN Jingyi, LI Aifeng, QIU Jiangbing. 2017.
Production of Palytoxins by Two Strains of Ostreopsis sp. (Dinophyceae) from Weizhou Island, Guangxi, China
ZHENG Jiping1, LI Qun1, LÜ Songhui1*, CEN Jingyi1*, LI Aifeng2, QIU Jiangbing2
1. Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China; 2. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
Genus Ostreopsis Schmidt is widely distributed in the benthic marine ecosystem. Some of them can produce palytoxin and its analoges (PLTXs), which are highly toxic, causing human poisoning through inhalation of contaminated aerosols or consumption of contaminated seafood. There is still no report about toxin produced by Ostreopsis so far in China. In this study, two strains of Ostreopsis sp., WZD110 and WZD111, were isolated from Weizhou island, China. The toxicity test and toxin analysis were conducted. The results from the mouse bioassay showed the symptoms of severe posterior lumbar depression, decreased locomotion, convulsions and acute death after being injected intraperitoneally with crude algal extracts. The hemolysis neutralization analysis revealed that the hemolysis effects of the crude algal extracts were inhibited effectively by Ouabain, a PLTXs antagonist. The toxins have also been analyzed qualitatively and quantitatively by LC-MS/MS and LC-HRMS. The results indicated that the PLTXs content of strain WZD110 and WZD111 were 0.348 pg·cell-1and 0.081 pg·cell-1, respectively, both containing higher concentrations of OVTX-c and OVTX-d/e, and maybe small amount of OVTX-g and OVTX-f. This is the first report on the toxin study on Ostreopsis from Chinese Sea, providing some scientific references on understanding of the harm done by Ostreopsis bloom.
Ostreopsis; palytoxins; LC-MS/MS; Weizhou island
10.16258/j.cnki.1674-5906.2017.04.017
X17
A
1674-5906(2017)04-0663-08
郑季平, 李群, 吕颂辉, 岑竞仪, 李爱峰, 邱江兵. 2017. 广西涠洲岛底栖蛎甲藻(Ostreopsis sp.)的产毒特性研究[J]. 生态环境学报, 26(4): 663-670.
国家自然科学基金项目(41576162);国家自然科学基金项目(31372535);教育部博士点基金项目(20134401110009);中央高校基本科研业务费专项资金
郑季平(1991年生),女,硕士研究生,研究方向为海洋生态。E-mail: jipingzheng@hotmail.com
*通信作者,吕颂辉,E-mail: lusonghui1963@163.com。岑竞仪,E-mail: jingyicen@gmail.com
2017-03-25