蔡 文 陈长明 陈国菊 曹必好 雷建军
(华南农业大学园艺学院, 广州 510642)
病毒诱导基因沉默技术在茄科植物功能基因组学研究中的应用进展
蔡 文 陈长明 陈国菊 曹必好 雷建军*
(华南农业大学园艺学院, 广州 510642)
病毒诱导基因沉默(virus-induced gene silencing,VIGS)是一种研究基因功能的反向遗传工具,该技术具有操作简单快速、周期短、高通量、无需遗传转化、成本低等优点,在基因探寻和功能鉴定上广泛应用。着重围绕上述病毒诱导基因沉默技术在研究茄科(Solanaceae)植物的相关功能基因在植物次生代谢、生长发育、生物和非生物胁迫几个方面的应用进行了综述和展望。
茄科植物;VIGS;功能基因组学;次生代谢;生长发育;生物和非生物胁迫
随着测序技术的进步和成本的降低,许多重要的植物全基因组测序已经完成,并且很多基因也被预测。但是在这些被预测到的基因中,已经进行了基因功能验证的却鲜有报道。目前传统的功能基因筛选方法主要是化学诱导、化学突变、插入突变以及图位克隆等。但是这些技术操作复杂、周期长、成本高、通量低,因而难以被广泛应用。与这些传统的基因功能研究方法相比,病毒诱导基因沉默(Virusinduced gene silencing,VIGS)技术具有操作简单快速、周期短、成本低、高通量,且不需要进行遗传转化,沉默之后表型症状明显等优势。该技术已经成为植物功能基因研究的一项重要工具,而对茄科植物进行功能基因学研究,尤其是对茄科植物中的几种经济价值高的茄科蔬菜(茄子、辣椒、番茄、马铃薯)和观赏价值较高的模式植物矮牵牛重要的功能基因研究具有重要的意义,是实现茄科植物分子育种的重要前提。
本文从VIGS技术机制的建立及发展以及在茄科植物生长发育、次生代谢、生物胁迫与非生物胁迫等几个方面进行了综述和展望。
1.1 VIGS的作用机制
病毒诱导基因沉默(Virus-induced gene silencing,VIGS)是一种转录后水平的基因沉默现象(post-transcriptional gene silencing,PTGS),根据植物本身存在的天然免疫机制,当植物受携带目的片段的病毒侵染之后,植物会对病毒的入侵做出响应,随后激活其自身免疫系统,导致内源mRNA下降从而形成的一种自我防御反应。当防御机制启动时单链RNA(Single-Stranded RNA,ssRNA)在RNA聚合酶的作用下形成双链RNA(Double-Stranded RNA,dsRNA),之后双链RNA被Dicer的核酸酶切割成21 ~ 23 nt大小的RNA片段,这些小片段被称之为小干扰RNA。当小干扰RNA与体内酶结合形成RNA诱导的沉默复合物(RNA-induced silencing complex,RISC)之后,RNA诱导的沉默复合物与其同源的病毒mRNA相结合,共同切割靶片段,最后导致mRNA降解。
1.2 VIGS载体的发展及在茄科植物中的应用
“VIGS”一词最初由van Cammen[1]用来描述植物感染病毒的现象,如今“VIGS”已经成为表述重组病毒敲除内源基因表达的专业术语[2-3]。Kumagai等[4]以八氢番茄红素脱氢酶(phytoene desaturase,PDS) cDNA序列为目的片段与烟草花叶病毒(Tobacco mosaic virus,TMV)重组形成重组载体沉默烟草,结果发现被感染的烟草叶片出现白化现象。该研究结果推测烟草叶片的白化现象是由于病毒载体成功侵染了烟草植株,结果导致其内源mRNA水平降低。八氢番茄红素脱氢酶(phytoene desaturase,PDS)是类胡萝卜素合成途径中的一个关键酶,在植物中具有光保护作用,当类胡萝卜素合成途径被阻断后,会导致植物光保护功能的丧失,最终引起白化现象的产生。
1998年Ruiz 等[3]通过构建马铃薯病毒X(potato virus X,PVX)的VIGS 载体,并与PDS基因重组侵染马铃薯,最终在马铃薯叶片中也出现了白化现象,并由此推测VIGS不但可以有效抑制内源基因的表达,而且可以用来鉴定未知基因的功能。随后Ratcliff 等[5]以烟草脆裂病毒(Tobacco rattle virus,TRV)为载体构建了VIGS 体系,其诱导基因沉默的效率在抑制转基因和内源基因的表达上比PVX载体和TMV载体都更具优势。TRV载体能够有效克服分生组织的障碍,并且病毒载体本身对植株的伤害比PVX和TMV病毒载体更小。而Liu 等[6-7]通过改造TRV病毒载体pYL156和pYL279,使其带上重复的启动子和C-端一个酶,导致病毒氨基酸序列发生改变,更有利于病毒RNA的产生,提高了内源基因的沉默效率。目前TRV病毒载体已被广泛应用到矮牵牛(Petunia hybrida)、烟草(Nicotina spp.)、茄子(Solanum melongena)、辣椒(Capsicum spp.)、番茄(Solanum lycopersicum)等许多茄科植物之中。
除上述的RNA 病毒载体外,现在还开发了多种DNA病毒载体。如Kjemtrup等[8]用番茄金色花叶病毒(Tomato golden mosaic virus,TGMV)的DNA-A为载体,沉默本氏烟上镁离子螯合酶的关键基因Su(Sulfur)和转荧光蛋白基因(luc),结果导致烟草叶片出现黄色突变表型,而转luc基因植株不再发出荧光。Turnage等[9]首次用大白菜曲叶病毒(Cabbage leaf curl virus,CbLCV)沉默了拟南芥的同源基因。不久之后,Turnage等[9]与Fofana等[10]又将非洲木薯花叶病毒(African cassava mosaic virus,ACMV)载体在木薯和烟草中应用成功。后来Pandey等[11]将番茄曲叶病毒(Tomato leaf curl virus,ToLCV)构建的VIGS 载体成功运用到沉默番茄和烟草中。此外,基于葡萄病毒A(Grapevine virus A,GVA)的VIGS载体在烟草和茄子中也得到了运用[12]。
此外,Gosselé等[13]将一类较小的卫星病毒诱导沉默体系(Satellite virus induce silence system,SVISS)应用在烟草植株中。随后通过改造中国番茄黄化曲叶病毒(Tomato yellow leaf curl China virus,TYLCCNV)和烟草曲茎病毒(Tobacco curly shoot virus,TbCSV)的卫星DNA,分别开发出了Betasatellite(DNAβ)-VIGS和Alphasatellite(DNA1)-VIGS 病毒卫星沉默载体作为VIGS体系的载体被运用在烟草、矮牵牛以及番茄之中[14-16]。表1例举了用不同类型病毒作为沉默载体,在茄科植物不同组织部位的应用。
表 1 茄科植物中使用的VIGS载体及接种方式
随着VIGS技术的不断发展和完善,该技术在茄科植物中的运用越来越广泛,与茄科植物生长发育、次生代谢、生物胁迫以及非生物胁迫相关的基因及其基因功能鉴定和分析是VIGS技术运用的重点。表2例举了运用VIGS技术沉默茄科植物相关功能基因及沉默后的表型。
2.1 VIGS在生长发育和次生代谢相关基因功能的研究
利用VIGS技术,研究者已经发现番茄果实在成熟的过程中,许多基因参与调控果实的生长发育,其中就包括许多与成熟相关的转录因子。NF-Y作为一类与成熟相关的转录因子,受乙烯信号的诱导,利用TRV病毒介导沉默番茄NF-Y转录因子后与对照植株相比,沉默植株的果实成熟延缓且颜色变为黄色或橘红色[24]。最近,则有研究者将VIGS技术用于研究矮牵牛的衰老,当GRL1基因被沉默后会发现该植物的花衰老受到抑制,但沉默FBH4基因后却会导致花的衰老加速,表明GRL1基因、FBH4基因对矮牵牛花的衰老具有正向或负向调节的功能[25]。这些基因功能的初步鉴定为研究番茄和矮牵牛的生长发育提供了一定的基础。
除了在生长发育方面的运用,VIGS技术在研究植物次生代谢方面也具有广泛的应用。Fantini等[26]通过VIGS技术研究发现,沉默番茄PYS1、ZDS、ZISO与CrtISO结构基因后,与对照植株比较番茄果皮的红色变淡,由此推测这几个基因可能参与番茄红素的合成。利用TRV病毒介导的VIGS载体沉默矮牵牛R2R3-MYB转录因子EOBⅡ,结果发现沉默植株与对照植株相比其香味变淡,并且苯丙烷类代谢香味物质合成结构基因的表达水平也显著下降,表明EOII主要是通过调控这些结构基因来实现的[27]。此前在烟草中运用VIGS技术沉默烟草bHLH1,bHLH2基因,结果发现沉默植株与对照相比其尼古丁的含量显著降低[28]。而在辣椒中利用瓦斯蒂克辣椒黄脉病毒(Pepper huasteco yellow veinsvirus,PHYVV)沉默辣椒素合成相关基因Pun1、Comt、Kas和AMT之后,发现辣椒素合成含量下降,由此推测这些基因可能在辣椒素合成中具有正向调节的功能[20,29]。Zhang等[30]通过研究辣椒CaMYB转录因子结果发现,沉默该转录因子能够抑制花青素的合成,表明CaMYB参与调控花青素的生物合成。
2.2 VIGS在生物胁迫相关基因功能的研究
2.2.1 细菌病害抗性相关基因的研究 通过VIGS技术还能研究植物细菌病害相关基因的功能,植物在受到病原菌入侵的时候会通过激活体内相关抗病基因的表达来防止病原菌的侵袭。目前,利用VIGS已经鉴定了茄科中多种抗细菌病害的相关基因。
Oh等[31]通过对辣椒叶片喷施乙烯和水杨酸,发现辣椒PIF1基因的转录水平比对照高,说明辣椒PIF1基因受外源乙烯和水杨酸的诱导,而喷施茉莉酸甲酯则对PIF1的表达没有显著影响,在烟草中沉默烟草PIF1基因,结果导致烟草对特有病原菌和非宿主性病原菌的抗性降低。由此推测受外源乙烯和水杨酸信号途径诱导的PIF1基因在植物的抗病中具有重要的作用。辣椒CYP1基因属于细胞色素P450家族基因,参与辣椒的抗病反应。Kim等[32]沉默辣椒的CYP1基因之后对沉默植株接种地毯草黄单胞杆菌(Xanthomonas axonopodis pv, Xav),结果发现与对照植株相比,沉默植株对黄单胞杆菌的敏感性增加,由此说明CYP1基因可能作为一个正向调控因子调控辣椒的抗病性。此外,有研究表明辣椒WRKY转录因子家族也参与辣椒的抗病反应,沉默辣椒转录因子家族WRKY1基因,能够减少地毯黄单胞杆菌的生长[33]。当WRKY40基因被沉默时,发现辣椒对青枯病的抗性减弱,热休克反应也加重[34]。Shen等[35]认为辣椒WRKY40基因的功能同时还受碱性亮氨酸拉链转录因子家族(basic leucine zipper,bZIPs)ZIP63的调控,沉默辣椒ZIP63基因之后,发现辣椒对青枯病的抗性降低,同时还会降低耐热性与耐湿性,表明ZIP63参与抗病和抗逆境。最近利用VIGS技术鉴定了LIP1、GLP1、LRR51、PTI1等基因在辣椒细菌病害中的作用,沉默辣椒中的LIP1基因后,发现辣椒植株对野油菜黄单胞菌辣椒致病变种(Xanthomonas campestris pv. Vesicatoria,Xcv)的抗性增强,当沉默GLP1、LRR51、PTI1基因时发现与对照植株相比,沉默植株对细菌病抗性降低,由此推测这些基因作为负向或正向调控因子参与辣椒细菌病的抵抗过程[36-39]。
此前通过VIGS技术还鉴定了番茄抗病基因Pto介导的抗假单胞杆菌一系列相关基因,如NPR1、GTA、TGAla、TGA2.2、MEK1、MEK2和NTF6等[7,40-42]。之后又有研究者利用VIGS技术并结合传统突变筛选技术,发现并鉴定了丁香假单胞杆菌(P. syringae)致病机制中茉莉酸-异亮氨酸(JA-isoleucine)类似物冠菌素(Coronatine,COR)的功能,以及水杨酸、NO合成酶基因iNOS和冠菌素/茉莉酸途径中SGT1和SlALC1 基因在抗P. syringae中的作用。而利用VIGS沉默番茄SGT1基因,结果发现沉默植株叶片坏死和缺绿的症状和未沉默的植株相比症状较轻。由此说明SGT1基因在番茄的抗病性中有着重要的作用[43-44]。利用TRVVIGS探究SISAHH基因与番茄细菌抗病性的关系,当SISAHH 基因被沉默之后,沉默植株不仅对地毯草黄单胞杆菌(Xanthomonas axonopodis pv,Xav)的抗菌性增强,同时还发现该基因沉默还能够增强对干旱的抵抗性[45]。此外,最近的一项研究发现,番茄的CDPK基因、CRK基因也参与番茄的抗病反应。利用VIGS技术沉默这两个基因之后,沉默植株的抗菌性减弱,揭示这两个基因正向调控番茄对病原的入侵[46]。
2.2.2 真菌病害抗性相关基因的研究 真菌病害对于茄科植物同样有十分重要的影响,利用VIGS技术研究真菌病害抗性相关基因近年来也取得了重大进展。沉默辣椒的Btf3基因,导致接种烟草花叶病毒(Tobacco mosaic virus,TMV)的植株超敏反应降低,在沉默植株中同时出现生长缓慢的现象。Huh等[47]利用TRV介导沉默辣椒WRKY转录因子中WRKYd基因导致发病相关基因与超敏反应相关基因的表达降低,揭示了Btf3基因和WRKYd基因作为调控因子调控超敏反应从而阻止病源菌的蔓延。最近有学者研究沉默番茄WRKY41与WRKY54基因,发现即使对沉默植株接种番茄黄化花叶病毒(Tomato yellow leaf curly virus,TYLCV),TYLCV的DNA含量也比对照下低,表明WRKY41基因、WRKY54基因与番茄的抗病性有关[48]。
2.2.3 病毒病抗性相关基因的研究 经过长期的不断探索,利用VIGS技术找到了一系列与茄科植物病毒病抗性相关的基因。Liu等[49]通过研究发现,NBCLIN-1基因与N基因介导的程序性细胞死亡有关,沉默烟草的NBCLIN-1基因后与对照植株相比,结果却发现沉默组对TMV的抗性降低。而本氏烟草RanGAP2基因也被认为与Rx介导的PVX抗性相关,26S蛋白酶体亚基-RPN9是广谱病毒系统运输所需的。Jin等[50]通过沉默烟草RPN9基因发现,当RPN9基因被沉默后,烟草中TMV与芜菁花叶病毒(Turnip mosaic vires,TuMV)的运动受到了明显的抑制,并且在叶脉构造中会导致木质部增加而韧皮部减少。并由此推测RPN9基因主要通过改变维管束组织从而抑制病毒的运动。Tameling和Baulcombe[51]利用TRV介导的VIGS沉默烟草和马铃薯的RanGAP2基因,发现会破坏烟草和马铃薯植株对PVX的极端抗性。且RanGAP2基因作为Rx复合物的一部分,能够与Rx发生互作。而这种互作则是Rx发挥对PVX极端抗性所必需的。
番茄LeHT1基因是一类己糖转运蛋白相关的基因,利用VIGS技术沉默LeHT1基因的实验发现,在沉默番茄植株中细胞坏死症状严重,病毒传播速度加快,据此推测LeHT1基因可能通过抑制病毒的移动减少病毒的积累从而正向发挥调控番茄抗病性的功能。Czosnek等[52]利用TRV病毒载体筛选出一批抗中国番茄黄化曲叶病毒(Tomato yellow leaf curl China virus,TYLCCNV)的基因,并且通过绿色荧光蛋白(Green f uorescent protein,GFP)实验,在本氏烟草验证了病毒的传播时间和位置。
除了上述几种植物之外,利用VIGS技术在辣椒中也鉴定出了与病毒病抗性相关的基因。WRKY转录因子家族的WRKYd基因功能的表达可能与植物防御相关激素和TMV-P0的侵染相关。Huh等[53]利用TRV病毒介导的VIGS载体沉默辣椒WRKYd基因,发现沉默会影响TMV-P0介导的超敏反应,同时也会影响TMV-P0病毒蛋白外壳在植物中的积累,并最终导致发病相关基因与超敏反应相关基因的减少,从而降低植物的超敏反应。
2.3 VIGS在非生物胁迫相关基因功能的研究
VIGS还可以用于非生物胁迫相关基因的功能研究。烟草NAH20基因是一种碱性亮氨酸拉链蛋白编码的基因,能够被干旱和伤害等非生物胁迫诱导,同时该基因的功能还受植物激素的调控,研究者认为脱落酸(abscisic acid,ABA)的积累能够激活该基因发挥功能。在烟草中利用VIGS方法沉默NAH20基因能够降低ABA的积累。证实了NAH20参与抗旱ABA途径[54]程序性细胞死亡(Program cell death,PCD)。该过程是植物在逆境条件下发挥调节功能的一种自我保护机制,而ERF109作为乙烯的响应因子,推测可能通过抑制程序性细胞死亡从而提高植株的耐盐性。Bahieldin等[55]通过VIGS技术沉默烟草ERF109基因导致烟草的盐胁迫加剧,验证了烟草ERF109基因的功能与植物的耐盐性相关。
表 2 利用VIGS研究的茄科植物基因及其表型
续表2
在辣椒中利用VIGS技术挖掘了许多与辣椒耐盐性和抗旱性相关的正向或负向调控基因。如RAV1与OXR1基因,沉默辣椒这两个基因,结果导致辣椒盐胁迫与渗透胁迫加重[56]。Lim等[57]在辣椒叶绿体中发现了与辣椒抗旱性相关的DIN1基因,与之前的研究不同,高盐和干旱处理能显著诱导DIN1的表达。利用TRV载体介导沉默DIN1基因之后,却提高了辣椒的抗旱性。属于泛素连接酶类的AIR1基因也被鉴定出与抗旱性相关,在干旱和ABA信号途径中起着重要的作用。当沉默辣椒AIR1基因后,同样沉默植株的抗旱性也被增强[58]。而Lim等[59]通过沉默辣椒胚胎发育晚期蛋白基因LEA1基因,发现沉默植株枯萎严重导致再次吸水困难且难以存活,同时对干旱胁迫和盐胁迫抵抗减弱,由此推测LEA1基因可能参与了辣椒盐胁迫的调控途径。
利用VIGS技术还在番茄中找到了一系列与非生物胁迫相关的基因。沉默番茄GRX1基因,沉默植株不仅对氧胁迫更加敏感,同时也对盐胁迫与干旱胁迫更加敏感,而且还会降低植株的相对含水量。但在拟南芥中超表达GRX1基因则能够正向调节与抗氧化、耐盐性和抗旱性相关基因的表达[23]。除此之外,在番茄中还存在与热胁迫响应相关的基因如WRKY33与ATG。Zhou 等[60]用TRV介导的VIGS技术沉默番茄叶中ATG基因后与对照番茄植株相比,沉默植株在45℃热处理16 h时,ATG5基因和ATG7基因的表达量下降了70% ~ 80%,并且沉默植株再被放回室温时不能重新恢复,而是逐渐枯萎且伴随严重的电解质渗出现象。而当WRKY33基因被沉默后,沉默植株的点状绿色荧光信号只有对照的25% ~ 30%。位于番茄内质网的E3泛素连接酶类基因SpRing,其表达受到温度的影响,低温能够抑制该基因的表达。利用VIGS技术沉默番茄SpRing基因,与对照植株相比,沉默植株中的可溶性糖含量下降、膜脂过氧化明显,丙二醛的含量较高且光合作用受到明显的抑制,推测SpRing基因能够正向响应番茄逆性胁迫[61]。
虽然VIGS 技术在植物基因功能鉴定方面的应用取得了重大的进展,但是还存在一定的局限性。主要体现在以下几点:首先,在沉默的同一植株中容易出现沉默不均一的现象;其次,VIGS 技术无法将靶基因完全沉默,而未沉默的部分基因将继续发挥蛋白功能,从而带来干扰症状;再次,这种瞬时沉默技术往往在沉默过程中还具有不稳定性,且持续性较差,一般只能维持几个月,而且无法稳定遗传给下一代,难以应用在植物早期苗期表达的功能考察研究。并且在无法获得某一特定基因的完整序列时,存在基因家族功能冗余的干扰;除此之外,环境因子对沉默效率的影响较大,例如温度、湿度、光照等。
但是随着分子生物学的不断发展以及各种功能基因研究技术的开发,VIGS技术还是取得了很大进步,并且在功能基因组学广受重视。更多的病毒载体被开发而加以运用,由此前以RNA病毒载体中TRV病毒作为主要沉默载体发展到RNA病毒载体、DNA病毒载体、卫星病毒载体等多种病毒载体同时并存。并且在运用的植物类型上也不断丰富,从茄科植物的烟草、矮牵牛等模式植物再到番茄、辣椒、茄子、马铃薯等。对于遗传转化困难的植物,VIGS技术以快速、高通量、低成本等优势解决了这一难题。今后随着这一技术的不断完善和发展,特异性与稳定性更高的病毒载体将得到开发,以及一些制约VIGS技术的关键因素也将取得突破,相信在今后包括植物分子育种与植物保护在内的领域都将进一步得到广泛的应用。
[1] van Kammen A. Virus-induced gene silencing in infected and transgenic plants [J]. Trends Plant Science, 1997, 2(11): 409-411
[2] Baulcombe D C. Fast forward genetics based on virusinduced gene silencing[J]. Current Opinion in Plant Biology, 1999, 2(2): 109-113
[3] Ruiz M T, Voinnet O, Baulcombe D C. Initiation and maintenance of virus-induced gene silencing [J]. Plant Cell, 1998, 10(6): 937-946
[4] Kumagai M H, Donson J, Dsllacioppa G, Harvey D, Hanley K, Grill L K. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA [J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(5): 1679-1683
[5] Ratcliff F, Martin-Hernandez A M, Baulcombe D C. Tobacco rattle virus as a vector for analysis of gene function by silencing. [J]. The PlantJournal, 2001, 25 (2): 237-245
[6] Liu Y, Schiff M, Dinesh-Kumar S P. Virus-inducedgene silencing in tomato [J]. The Plant Journal, 2002, 31(6): 777-786
[7] Liu Y, Schiff M, Marathe R, Dinesh-Kumar S P. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are requiredfor N-mediated resistance to tobacco mosaic virus[J]. The Plant Journal, 2002, 30(4): 415-429
[8] Kjemtrup S, Sampson K S, Peele C G, Nguyen L V, Conkling M A, Thompson W F, Robertson D. Gene silencing from plant DNA carried by a geminivirus[J]. The Plant Journal, 1998, 14(1): 91-100
[9] Turnage M A, Muangsan N, Peele C G, Robertson D. Geminivirus-based vectors for gene silencing in Arabidopsis[J]. The Plant Journal, 2002, 30(1): 107-114
[10] Fofana I B F, Sangare A, Collier R, Taylor C, Fauquet C M. A geminivirus-induced gene silencing system for gene function validation in cassava [J]. Plant Molecular Biology, 2004, 56(4): 613-624
[11] Pandey P,Choudhury N R, Mukherjee S K. A geminiviral amplicon VA derived from Tomato leaf curl virus ToLCV can replicate in a widevariety of plant species and also acts as a VIGS vector [J]. Virology Journal, 2009, 6(1): 152-164
[12] Muruganantham M, Moskovitz Y, Haviv S, Horesh T, Fenigstein A, Preez J D, Stephan D, Burger J T, Mawassi M. Grapevine virus A-mediated gene silencing in Nicotiana benthamiana and Vitis vinifera[J]. Journal of Virological Methods, 2009, 155(2): 167-174
[13] Gossele V, Fache I, Meulewaeter F, Cornelissen M, Metzlaff M. SVISS-a novel transient gene silencing system for gene function discovery and validation intobacco plants [J]. The Plant Journal, 2002, 32(5): 859-866
[14] Tao X, Zhou X.A modified viral satellite DNA that suppresses gene expression in plant [J]. The Plant Journal, 2004, 38 (5): 850-860
[15] Cai X Z, Wang C C, Xu Y P, Xu Q F, Zheng Z, Zhou X P. Eff cient gene silencing induction in tomato by a viral satellite DNA vector [J]. Virus Research, 2007, 125 (2): 169-175
[16] Huang C, Xie Y, Zhou X. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component [J]. PlantBiotechnology Journal, 2009, 7 (3): 254-265
[17] Chung E, Seong E, Kim Y C, Chung E J, Oh S K, Lee S, Park J M, Joung Y H, Choi D. A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang) [J]. Molecules & Cells, 2004, 17(2): 377-380
[18] Fu D Q, Zhu B Z, Zhu H L, Jiang W B, Luo Y B. Virusinduced gene silencing in tomato fruit [J]. Plant Journal, 2005, 43(2): 299-308
[19] Igarashi A, Yamagata K, Sugai T, Takahashi Y, Sugawara E, Tamura A, Yaegashi H, Yamagishi N, Takahashi T, Isogai M, Takahashi H, Yoshikawa N. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes [J]. Virology, 2009, 386(2): 407-416
[20] Ogawa K, Murota K, Shimura H, Furuya M, Togawa Y, Matsumura T, Masuta C. Evidence of capsaicin synthase activity of the Pun1-encoded protein and its role as a determinant of capsaicinoid accumulation in pepper [J]. BMC Plant Biology, 2015, 15(1): 1-10
[21] Laura M T, Jesús J R A D, Irineo T P, Rivera-Bustamante R F, Lorenzo G O, Enrique R G,Ramon G G G. Silencing of a germin-like protein gene (CchGLP) in geminivirusresistant pepper(Capsicum chinense Jacq.) BG-3821 increases susceptibility to single and mixed infectionsby geminiviruses PHYVV and PepGMV [J]. Viruses, 2015, 7(12): 6141-6151
[22] Golenberg E M, Sather D N, Hancock L C, Buckley K J, Villafranco N M, Bisaro D M. Development of a gene silencing DNA vector derived from a broad host range geminivirus[J]. Plant Methods, 2009, 5(1): 1-14
[23] Guo Y S, Huang C J, Xie Y, Song F M, Zhou X P. A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses [J]. Planta, 2010, 232(6): 1499-1509
[24] Li S, Li K, Ju Z, Cao D Y, Fu D Q, Zhu H L, Zhu B Z, Luo Y B. Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening [J]. BMC Genomics, 2016, 17(1): 36-51
[25] Yin J, Chang X X, Kasuga T, Bui M, Reid M S,CaiZ J. A basic helix-loop-helix transcription factor, PhFBH4,regulates flower senescence by modulating ethylene biosynthesis pathway in petunia [J]. Horticulture Research, 2015, 2: 15059-15067
[26] Fantini E, Falcone G, Frusciante S, Giliberto L, Giuliano G. Dissection of Tomato Lycopene Biosynthesis through Virus-Induced Gene Silencing [J]. Plant Physiology, 2013, 163(2): 986-998
[27] Spitzer-Rimon B, Marhevka E, Barkai O, Marton I, Edelbaum O, Masci T, Prathapani N, Shklarman E, Ovadis M, Vainstein A. EOBII, a gene encoding a f ower-specif c regulator of phenylpropanoid volatiles' biosynthesis in petunia[J]. The Plant Cell, 2012, 22(6): 1961-1976
[28] Todd A T, Liu E, Polvi S L, Pammett R T, Page J E. A functional genomics screen identif es diverse transcription factors that regulate alkaloid biosynthesis in Nicotiana benthamiana[J]. The Plant Journal, 2010, 62(4): 589-600
[29] Del Rosario Abraham-Juárez M, Del Carmen Rocha-Granados M, López M G, Rivera-Bustamante R F, Ochoa-Alejo N. Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits [J]. Planta, 2008, 227(3): 681-695
[30] Zhang Z, Li D W, Jin J H, Yin Y X, Zhang H X, Chai W G, Gong Z H. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves [J]. Frontiers in Plant Science, 2015, 6: 500-509
[31] Oh S K, Park J M, Joung Y H, Lee S, Chung E, Kim S Y, Yu S H, Choi D. A plant EPF-type zinc-f nger protein, CaPIF1, involved in defenceagainst pathogens [J]. Molecular Plant Pathology, 2005, 6(3): 69-85
[32] Kim Y C, Kim S Y, Paek K H, Choi D, Park J M. Suppression of CaCYP1, a novel cytochrome P450 gene, compromises the basal pathogen defense response of pepper plants [J]. Biochemical and Biophysical Research Communications, 2006, 345(2): 638-645
[33] Oh S K, Baek K H, Park J M, Yi S Y, Yu S H, Kamoun S, Choi D. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense [J]. New Phytologist, 2008, 77(4): 977-989
[34] Dang F F, Wang Y N, Yu L, Eulgem T, Lai Y, Liu Z Q, Wang X , Qiu A L, Zang T X, Lin J, Chen Y S, Guan D Y, Cai H Y, Mou S L, He S L. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection [J]. PlantCell & Environment, 2013, 36(4): 757-774
[35] Shen L, Liu Z Q, Yang S, Yang T, Liang J Q, Wen J Y, Liu Y Y, Li J Z, Shi L P, Tang Q, Shi W, Hu J, Liu C L, Zhang Y W, Lin W, Wang R Z, Yu H X, Mou S L, Hussain A, Cheng W, Cai H Y, He L, Guan D Y, Wu Y, He S L. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40 [J]. Journal of Experimental Botany, 2016, 67(8): 2439-2451
[36] Hong J K, Choi H W, Hwang I S, Kim D S, Kim N H, Choi D S, Kim Y J, Hwang B K. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance [J]. Planta, 2008, 227(3): 539-558
[37] Kim N H, Lee D H, Choi D S, Hwang B K. The pepper GNA-related lectin and PAN domain protein gene, CaGLP1, is required for plant cell death and defense signaling during bacterial infection [J]. Plant Science, 2015, 241: 307-315
[38] Cheng W, Xiao Z L, Cai H Y, Wang C Q, Hu Y, Xiao Y P, Zheng Y X, Shen L, Yang S, Liu Z Q, Mou S L, Qiu A L, Duan D Y, He S L. A novel leucine-rich repeat protein, CaLRR51, plays as a positive regulator in pepper's response to Ralstonia solanacearum infection [J]. Molecular Plant Pathology, 2016, DOI: 10.1111/mpp.12462
[39] Jin J, Zhang H, Tan J, Yan M, Li D, Khan A, Gong Z. A new ethylene-responsive factor CaPTI1 gene of pepper (Capsicum annuum L.) involved in the regulation of defense response to Phytophthora capsici [J]. Frontiers in Plant Science, 2016, 6(e70289): 1217
[40] Ekengren S K, Liu Y,Schiff M, Dinesh-Kumar S P, Martin G B. Two MAPK cascades, NPR1, and TGA transcription factors play a role inPto-mediated disease resistance in tomato [J]. The Plant Journal, 2003, 36 (6): 905-917
[41] Wang C C, Cai X Z, Wang X M, and Zheng Z. Optimisation of tobacco rattle virus-induced gene silencing in Arabidopsis [J]. Functional Plant Biology, 2006, 33(4): 347-355
[42] Chen Y Y, Lin Y M, Chao T C, Wang J F, Liu A C, Ho F I, Cheng C P. Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogenactivated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt [J]. Physiologia Plantarum, 2009, 136 (3): 324-335
[43] Uppalapati S R, Ishiga Y, Ryu C M. SGT1 contributes to coronatine signaling and Pseudomonas syringae pv. tomato disease symptom development in tomato and Arabidopsis [J]. New Phytologist, 2011, 189 (1): 83-93
[44] Kud J, Zhao Z L, Du X R, Liu Y L,Zhao Y, Xiao F M. SGT1 interacts with the Prf resistance protein and is required for Prf accumulation and Prf-mediated defense signaling [J]. Biochem Biophys Res Commun, 2013, 431 (3): 501-505
[45] Li X H, Huang L, Hong Y B, Zhang Y F, Liu S X, Li D Y, Zhang H J, Song F M. Co-silencing of tomato S-adenosylhomocysteine hydrolase genes confers increased immunity against Pseudomonas syringae pv. tomato DC3000 and enhanced tolerance to drought stress [J]. Frontiers in Plant Science, 2015, 6: 717-729
[46] Wang J P, Xu Y P, Munyampundu J P, Liu T Y, Cai X Z. Calcium-dependent protein kinase (CDPK) and CDPK-related kinase (CRK) gene families in tomato: genomewide identification and functional analyses in disease resistance [J]. Molecular Genetics and Genomics, 2016, 291(2): 661-676
[47] Huh S U, Choi L M, Lee G J, Kim Y J, Paek K H. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection [J]. Plant Science, 2012, 197(4): 50-58
[48] Huang Y, Li M Y, Wu P, Xu Z S, Que F, Wang F, Xiong A S. Members of WRKY Group III transcription factors are important in TYLCV defense signaling pathway in tomato (Solanum lycopersicum) [J]. BMC Genomics, 2016, 17(1): 788-805
[49] Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar S P. Autophagy regulates programmed cell death during the plant innate immune response [J]. Cell, 2005, 121(4): 567-577
[50] Jin H, Li S, Villegas A Jr. Down-regulation of the 26S proteasome subunit RPN9 inhibits viral systemic transport and alters plant vascular development [J]. Plant Physiology, 2006, 142(2): 651-661
[51] Tameling W I, Baulcombe D C. Physical association of the NB-LRR resistance protein Rx with a Ran GTPaseactivating protein is requiredfor extreme resistance to Potato virus X [J]. Plant Cell, 2007, 19(5): 1682-1694
[52] Czosnek H, Eybishtz A, Sade D, Gorovits R, Sobol I, Bejarano E, Rosas-Díaz T, Lozano-Durán R. Discovering host genes involved in the infection by the Tomato Yellow Leaf Curl Virus complex and in the establishment of resistance to the virus using Tobacco Rattle Virus-based post transcriptional gene silencing [J]. Viruses, 2013, 5 (3): 998-1022
[53] Huh S U, Kim K J, Paek K H. Capsicum annuum basic transcription factor 3 (CaBtf3) regulates transcription of pathogenesis-related genes during hypersensitive response upon Tobacco mosaic virus infection[J]. Biochemical and Biophysical Research Communications, 2012, 417(2): 910-917.
[54] Re D A, Dezar C A, Chan R L, Baldwin I T, Bonaventure G. Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions [J]. Journal of Experimental Botany, 2011, 62(1): 155-166
[55] Bahieldin A, Atef A, Edris S, Gadalla N O, Ali H M, Hassan S M, Al-Kordy M A, Ramadan A M, Makki R M, Al-Hajar A S M, El-Domyati F M. Ethylene responsive transcription factor ERF109 retards PCD and improves salt tolerance in plant [J]. BMC Plant Biology, 2016, 16(1): 216-224
[56] Lee S C, Choi D S, Hwang I S, Hwang B K. The pepper oxidoreductase CaOXR1 interacts with the transcription factor CaRAV1 and is required for salt and osmotic stress tolerance [J]. Plant Molecular Biology, 2010, 73(4-5): 409-424
[57] Lim S, Baek W, Lee S C. Identification and functional roles of CaDIN1 in abscisic acid signaling and drought sensitivity [J]. Plant Molecular Biology, 2014, 86(4-5) 513-525
[58] Park C, Lim C W, Baek W, Lee S C. RING Type E3 ligase CaAIR1 in pepper acts in the regulation of ABA signaling and drought stress response [J]. Plant and Cell Physiology, 2015, 56(9): 1808-1819
[59] Lim C W, Lim S, Baek W, Lee S C. The pepper late embryogenesis abundant protein CaLEA1 acts in regulating abscisic acid signaling, drought and salt stress response [J]. Physiologia Plantarum, 2015, 154(4): 526-542
[60] Zhou J, Wang J, Yu J, Chen Z. Role and regulation of autophagy in heat stress responses of tomato plants [J]. Frontiers in Plant Science, 2014, 5(3): 174-185
[61] Qi S, Lin Q, Zhu H, Gao F, Zhang W, Hua X. The RING f nger E3 ligase SpRing is a positive regulator of salt stress signaling in salt-tolerant wild tomato specie [J]. Plant and Cell Physiology, 2016, 57(3): 528-539
[62] Tian S L, Li L, Chai W G, Shah S N M, Gong Z H. Effects of silencing key genes in the capsanthin biosynthetic pathway on fruit color of detached pepper fruits [J]. BMC Plant Biology, 2014, 14(1): 314-325
[63] Spitzer B, Zvi M M B, Ovadis M, Marhevka E, Barkai O, Edelbaum O, Marton I, Masci T, Alon M, Morin S, Rogachev I, Aharoni A, Vainstein A. Reverse genetics of f oral scent: Application of tobacco rattle virus-based gene silencing in petunia [J]. Plant Physiology, 2007, 145(4): 1241-1250
[64] Yang W, Liu J, Tan Y, Zhong S, Tang N, Chen G, Yu Y. Functional characterization of PhGR and PhGRL1 during flower senescence in the petunia [J]. Plant Cell Reports, 2015, 34(9): 1561-1568
[65] Gargul J M, Mibus H, Serek M. Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes[J]. Plant Biotechnology Journal, 2015, 13(1): 51-61
[66] Li L, Zhu B, Fu D, Luo Y. RIN transcription factor plays an important role in ethylene biosynthesis of tomato fruit ripening [J]. Journal of the Science of Food and Agriculture, 2011, 91(13): 2308-2314
[67] Hwang I S, Hwang B K. Role of the pepper cytochrome P450 gene CaCYP450A in defense responses against microbial pathogens [J]. Planta, 2010, 232(6): 1409-1421
[68] An S H, Sohn K H, Choi H W, Hwang I S, Lee S C, Hwang B K. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance [J]. Planta, 2008, 228(1): 61-78
[69] Li C W, Su R C, Cheng C P, Sanjaya, You S J, Hsieh T H, Chao T C, Chan M T. Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway [J]. Plant Physiology, 2011, 156(1): 213-227
[70] Li X, Zhang H J, Tian L, Huang L, Liu S X, Li D Y, Song F M. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress [J]. Frontiers in Plant Science, 2015, 6(4): 463
[71] Liu Z Q, Qiu A L, Shi L P, Cai J S, Huang X Y, Yang S, Wang B, Shen L, Huang M K, Mou S L, Ma X L, Liu Y Y, Lin L, Wen J Y, Tang Q, Shi W, Guan D Y, Lai Y, He S L. SRC2-1 is required in PcINF1-induced pepper immunity by acting as an interacting partner of PcINF1 [J]. Journal of Experimental Botany, 2015, 66(13): 3683-3698
[72] Yogendra K N, Kumar A, Sarkar K, Li Y, Pushpa D, Mosa K A, Duggavathi R, Kushalappa A C. Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato [J]. Journal of Experimental Botany, 2015, 66(22): 7377-7389
[73] Dobnik D, Lazar A, Stare T, Gruden K, Vleeshouwers V G A A, Žel J. Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity [J]. Plant Methods, 2016, 12(1): 29-40
[74] Singh A K, Dwivedi V, Rai A, Pal S, Reddy S G E, Rao D K V, Shasany A K, Nagegowda D A. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance [J]. Plant Biotechnology Journal, 2015,13(9): 1287-1299
[75] Atamian H S, Eulgem T, Kaloshian I. SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato [J]. Planta, 2012, 235(2): 299-309
[76] Kim D S, Hwang B K. The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation [J]. The Plant Journal, 2012, 72(5): 843-855
[77] Choi H W, Hwang B K.The pepper extracellular peroxidase CaPO2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens [J]. Planta, 2012, 235(6): 1369-1382
Application of Virus-Induced Gene Silencing Technology in Researchon Solanaceae Plants Functional Genomics
CAI Wen CHEN Changming CHEN Guoju CAO Bihao LEI Jianjun*
(College of Horticulture, South China Agricultural University, Guangzhou 510642, China)
Virus-induced gene silencing (VIGS) is areverse-genetics technology for studying gene function in plants and it’s widely used in the gene identif cation and function validation owing to simple operating, short cycle, high-throughput, transformation-free and low cost. This paper reviews and then prospects mainly the application and development of the VIGS technology in research of functional genes related with plant secondary metabolism, growth and development, biotic and abiotic stress in Solanaceae plants.
Solanaceae plants;VIGS;functional genomics;secondary metabolism;growth and development;biotic and abiotic stress
2017-02-09
国家自然科学基金项目(31572124);广东省公益研究与能力建设专项(2015B020202009,2014B020202005);广州市科创委项目(201508030021)
蔡文(1990-),男,硕士研究生,研究方向为蔬菜遗传育种与生物技术;E-mail:136827769@qq.com
*通信作者:雷建军(1957-),男,博士,教授;E-mail:jjlei@scau.edu.cn