文 / 阿里研究院
人工智能:未来制胜之道
文 / 阿里研究院
未来,人工智能将无处不在。美国国防部曾20年未到访硅谷,而当时的国防部长卡特自2015年上任以后以来连续4次访问硅谷,对人工智能表示出极大兴趣,直言要将民用AI技术用于改进国防装备体系,帮助美国培育出新型的“钢铁侠”战士,国防部高等研究计划局(DARPA)正在布局开发基于人工智能技术研发自动驾驶战车、反潜无人机械船、智能电子战系统、“半人马”人类作战行动辅助系统等。据悉,谷歌、微软、苹果、脸书和英特尔等巨头也正在不约而同地投入“人工智能优先”战略。
本报告由阿里云研究中心、波士顿咨询公司和Alibaba Innovation Ventures合作推出,通过对人工智能内涵的阐述,分析了未来人工智能行业的竞争格局和企业制胜之道。
人工智能最适用于解决什么样的问题?通过分解典型的商业流程,我们发现,人工智能更易于解决符合以下特点的商业问题:
行业存在持续痛点;
商业流程本身具备数字化的信息输入,问题可以细分并清晰地界定,商业流程存在重复,且获得的结果的沟通以书面沟通或单项沟通为主;
商业流程较少受整体商业环境的复杂影响。
企业客服就是人工智能应用的一个典型例子,作为企业用户与企业服务的交互入口,客服面对的80%的问题都是简单的、重复的问题,但是却需要大量人力和时间的工作。同时,客服提供的服务内容大都来自于企业自有知识体系,受整体商业环境的影响相对较弱。这使得企业客服的智能化应用相对容易,很多基于自定义知识库的问答型企业智能客服产品蜂涌而出。
但是如何真正实现人工智能意义的智能客服?尽可能地模仿真人的思维交流方式为人类服务,并有效帮助业务提升用户体验,是人工智能时代对商业流程智能化的思考。
2015年起,阿里巴巴推出新一代智能客服产品——阿里小蜜,基于语音识别、语义理解、个性化推荐、深度学习等人工智能技术的应用,并将外部消费场景和阿里后台的关键业务流程无缝融合。阿里小蜜通过积累的大数据优势,提前分析、预测消费者的服务诉求,主动触达用户,阿里小蜜将用户转电话及在线人工服务的求助率降低了70%。即便在每天应对百万级服务量的情况下,智能解决率也达到了接近80%(该指标高于行业智能客服产品平均水平60%以上),并且,依靠阿里巴巴在语音识别领域的知识积累,把服务领域里人机对话语义意图的精确匹配率提升到了93%,满意度比传统的自助服务提升了一倍。
数据是人工智能的基础,拥有针对特定领域的庞大数据集,能够成为竞争优势的重要来源。现阶段,制约人工智能领域很多重大突破的关键,并非是算法不够先进,而是缺乏高质量的数据集。
海量、精准、高质量的数据为训练人工智能提供了原材料(见图1),巨型数据库、十几年累积的搜索结果,乃至整个互联网都让人工智能变得更聪明。人工智能从庞大的、复杂的、无序的个体数据中发现更为本质、更能解释世界的规律,并复合多个规律共同作用,以解决问题。
人工智能的三种主要技术,都需要专有类型的数据。机器学习——例如计算机视觉、情感分析、自然语言处理等技术,需要大量的标签样本数据。模式识别——例如文字、语音、指纹、人脸等识别技术,则偏重于信号、图像、语音、文字、指纹等非直观数据。人机交互——如智能机器人技术,则需要积累大量的用户数据。
互联网催生了大数据,大数据催生了人工智能。互联网的演进和催生的新业态,进一步吸引了大量用户的积极参与,实现了数据“产生—使用—新数据产生—再使用”的闭环,这个闭环恰恰是人工智能自主学习和知识管理的基础。例如:拥有上亿注册用户和上亿商品的阿里巴巴淘宝,后台积累了286亿多个图片文件,更方便地让用户在即时场景(电视观看、社交图片分享、逛街等)下所见即所“得”的找到感兴趣的商品,是淘宝“拍立淘“应用的主要目的。在“以图搜图”模式下,机器学习正确理解后台几百亿图片并打上标签,用户通过点击商品列表等参与来判断机器的理解是否正确。人工智能的应用的实现本质上就是“知识产生—知识应用—知识产生的自我学习和优化”的体系化过程的落地。
图1 海量、精准、高效的数据是智能产生的基地
场景数据的积累,可以促进人工智能技术的应用,从而形成更高效的解决方案。例如,传统外卖配送采用人工调度,由派单员进行手工派单,所依据的是有限的餐厅和配送员的数据,因此派单随机性强,配送效率低,派单高峰时,爆单现象频发,派单本身的人工成本较高。互联网外卖应用的火爆,积累大量外卖场景的相关数据后,阿里云大数据孵化器团队采用人工智能技术,基于外卖场景的数据基础,分析餐厅、配送员、订餐人、配送路径的特点,并结合业务规律、天气等数据实现智能调度高级算法,实现机器实时智能调度,从而合理利用运力,提高配送效率。当场景应用形成正循环后,甚至能够提前对用户行为(如提醒订餐)和餐厅行为(如点菜和出餐速度分析)等进行影响分析,从而进一步提高外卖场景的整体效率。
现阶段,特别是对创业公司而言,数据的来源主要有三种:
方式一,自筹数据,即从零开始,投入大量人力采集数据。例如,很多聊天机器人公司聘请人类担任“AI训练师”,让他们手动创建或核实虚拟助手做出的预测。一旦能够引发数据网络效应,即形成“更多用户—更多数据—更优智能算法—更好产品—更多用户”的正循环后,所需人力就无需再跟随用户数量同步增加,这种简单的自建数据策略就能取得成功。
方式二,公共数据。美国联邦政府已在Data.gov数据平台开放了来自多个领域的13万个数据集的数据。这些领域包括农业、商业、气候、生态、教育、能源、金融、卫生、科研等十多个主题。英国、加拿大、新西兰等国在2009年之后都建立起了政府数据开放平台,成为了国际信息化和大数据领域的一个重要趋势。在我国,2011年香港特区政府上线了香港政府资料一线通。上海在2012年6月推出了中国大陆第一个数据开放平台。之后,北京、武汉、无锡、佛山等城市也都上线了自己的数据平台。
方式三,产业数据协同,即下游创业公司或行业公司和产业链上游的数据或平台型公司建立合作,连接对双方均有利的产品或数据,例如:益海鑫星、有理数科技和阿里云数加平台合作,以中国海洋局的海量遥感卫星数据和全球船舶定位画像数据为基础,打造围绕海洋数据服务平台,服务于渔业、远洋贸易、交通运输、金融保险、石油天然气、滨海旅游、海水垦殖、环境保护等众多行业,从智能指导远洋金枪鱼捕捞到智能预测船舶在港时间,应用场景丰富。
从人工智能的技术突破和应用价值两维度分析,未来人工智能将会出现三个阶段(见图2):
图2 人工智能发展趋势
未来3-5年,仍以服务智能为主。在人工智能既有技术的基础上,技术取得边际进步,机器始终作为人的辅助;在应用层面,人工智能拓展、整合多个垂直行业应用,丰富实用场景。随着数据和场景的增加,人工智能创造的价值呈现指数增长。
中长期将出现显著科技突破。人工智能技术取得显著突破,如自然语言处理技术可以即时完全理解类人对话,甚至预测出“潜台词”。在技术创新的领域,现有的应用向纵深拓展,价值创造限制在技术取得突破的领域。
长期可能出现超级智能。人工智能的技术取得显著突破,应用范围显著拓宽,人机完全共融,人工智能全面超越人类,无所不在,且颠覆各个行业和领域,价值创造极高。
举个例子。到目前为止,人工智能还停留在“专有人工智能”阶段,主要应用是完成具体任务,例如“识别病灶医学图像并判断是否是肿瘤”。现阶段,人工智能将逐渐向“通用人工智能”过渡,应用于完成复杂任务,判断并满足用户需求,如“识别医学图像,并快速诊断疾病(不限于肿瘤)”。中长期,随着技术显著突破,人工智能将逐步发展为“抽象人工智能”,在基础科技取得重大突破后,人工智能可以理解用户情感,从而改变用户行为,例如“说服慢性病患者坚持按医嘱服药并在患病后改变生活习惯”。在遥远的将来,人工智能可能演变为“超级人工智能”,全面超越人类,通过技术突破和广泛的应用,预测并预先改变消费者的行为,例如“预先说服用户改变不良生活习惯,预防慢性病”。
在服务智能下,人工智能会取得边际技术进步,如算法突破,小数据训练或分布式算法(不从数据开始训练,直接下载智能)成为可能;或者,图像识别或自然语言处理技术取得边际突破,对数据结构化的要求降低。人工智能的应用将更加广阔,例如综合天气、土壤变化数据和大宗商品交易行情,人工智能可以为农业决策,选择今年最有经济效益的种植品种;或者,图像识别技术突破后,机器人可以识别消费者微表情的变化,从而预测消费者的情绪。人工智能的应用将更有深度,产生新的社会、商业和个人生活模式,创造巨大的商业价值。人工智能的发展也将更为融合:实现“感知/交互—正确理解—自主决策—自我学习”的实时循环;数据传输速度实现质的飞跃,云端将无缝融合;介入式芯片等新的硬件形式将出现,甚至实现人机共融。
在服务智能情景下,数据可得性高的行业,人工智能将率先用于解决行业痛点,爆发大量场景应用。医疗、金融、交通、教育、公共安全、零售、商业服务等行业数据电子化程度较高、数据较集中且数据质量较高,因此在这些行业将会率先涌现大量的人工智能场景应用,用以解决行业痛点。
对人工智能而言,医疗领域一直被视为一个很有前景的应用领域。基于人工智能的应用在未来数年内能够为千百万人改进健康结果和生活质量,例如临床决策支持、病人监控、辅导、在外科手术或者病人看护中的自动化设备、医疗系统管理、慢病用药和生活管理等。
在金融领域,智能个人身份识别将用于解决金融安全隐患,智能高频交易将用于提高金融决策效率,智能投顾将帮助金融机构开拓用户。
在交通领域,人工智能将应用于无人驾驶、智能汽车、交通规划等场景,用于解决目前交通行业普遍存在的驾驶感受差、道路严重拥堵等问题。
在教育领域,K-12线上教育以及大学配套设备等人工智能应用已经被学校和学生广泛使用,机器人早已经成为广为欢迎的教育设备,智能辅导系统(ITS)也已成为针对科学、数学、语言学以及其他学科相匹配的学生互动导师。
在公共安全领域,人脸识别将广泛应用于安防监控,无人机、预测警务应用可以应用于反恐、维护公共治安等场景,用以解决公共安全隐患。
在零售领域,人工智能将提供精准搜索和推荐,智能导购将降低营销成本,提升用户体验,从而迎合消费升级和消费者日渐成熟的趋势。
在商业服务领域,人工智能已广泛应用于个人智能客服和企业智能助手,未来人工智能还将拓展到人力、法律等专业服务领域。
人工智能产业链根据技术层级从上到下,分为基础层、技术层和应用层。基础层最靠近“云”,应用层最靠近“端”。
人工智能产业链中,基础层是构建生态的基础,价值最高,需要长期投入进行战略布局;通用技术层是构建技术护城河的基础,需要中长期进行布局;解决方案层直戳行业痛点,变现能力最强(见图3)。
在人工智能平台化的趋势下,未来人工智能将呈现若干主导平台加广泛场景应用的竞争格局,生态构建者将成为其中最重要的一类模式(见图4)。
模式一:生态构建者——以全产业链生态+场景应用作为突破口。以互联网公司为主,长期投资基础设施和技术,同时以场景应用作为流量入口,积累应用,成为主导的应用平台,将成为人工智能生态构建者(如Google、Amazon、Facebook、阿里云等)。
关键成功因素:大量计算能力投入,积累海量优质多维度数据,建立算法平台、通用技术平台和应用平台,以场景应用为入口,积累用户。
模式二:技术算法驱动者——以技术层+场景应用作为突破口。以软件公司为主,深耕算法平台和通用技术平台,同时以场景应用作为流量入口,逐渐建立应用平台(如Microsoft、IBM Watson等)。
关键成功因素:深耕算法和通用技术,建立技术优势,同时以场景应用为入口,积累用户。
模式三:应用聚焦者——以场景应用为突破口。以创业公司和传统行业公司为主,基于场景或行业数据,开发大量细分场景应用。
关键成功因素:掌握细分市场数据,选择合适的场景构建应用,建立大量多维度的场景应用,抓住用户;同时,与互联网公司合作,有效结合传统商业模式和人工智能。
图3 人工智能产业链价值分析
模式四:垂直领域先行者——以杀手级应用+逐渐构建垂直领域生态为突破口。以垂直领域先行者为主,在垂直领域依靠杀手级应用(如出行场景应用、面部识别应用等)积累大量用户和数据,并深耕该领域的通用技术和算法,成为垂直领域的颠覆者(如滴滴出行、旷视科技等)。
关键成功因素:在应用较广泛且有海量数据的场景能率先推出杀手级应用,从而积累用户,成为该垂直行业的主导者;通过积累海量数据,逐步向应用平台、通用技术、基础算法拓展。
模式五:基础设施提供者——从基础设施切入,并向产业链下游拓展。以芯片或硬件等基础设施公司为主,从基础设施切入,提高技术能力,向数据、算法等产业链上游拓展。
关键成功因素:开发具有智能计算能力的新型芯片,如图像、语音识别芯片等,拓展芯片的应用场景;在移动智能设备、大型服务器、无人机(车),机器人等设备、设施上广泛集成运用,提供更加高效、低成本的运算能力、服务,与相关行业进行深度整合。
目前,互联网公司和软件公司巨头都在产业链的技术层和应用层着手布局。
图4 人工智能未来竞争格局
在产业链的基础层,科技巨头通过推出算法平台吸引开发者,希望实现快速的产品迭代、活跃的社区、众多的开发者,从而打造开发者生态,成为行业标准,实现持续获利。谷歌、Facebook、IBM、微软等科技巨头已经相继推出并在近期开源自家的人工智能工具。其中,Facebook开源多款深度学习人工智能工具;谷歌发布新的机器学习平台TensorFlow并将其开源,被称为人工智能界的Android;IBM也宣布通过Apache软件基金会免费为外部程序员提供System ML人工智能工具的源代码;微软宣布将开源旗下人工智能(AI)平台Project Malmo,所有研究者都可以用廉价、有效地对人工智能算法和程序进行测试。
在产业链的应用层,科技巨头都借助积累的个人用户数据,开发针对个人用户和企业用户的解决方案。在个人用户应用上,Apple推出Siri个人助手,Facebook推出虚拟用户助手Moneypenny,Amazon推出智能家居硬件Echo,Google推出家具中枢GoogleHome,阿里巴巴推出个人助手阿里小蜜和智能家居等。个人用户应用既可以吸引用户和流量,又可以收集数据,验证商业模式,从而开发新场景应用。在针对企业用户的解决方案上,Google、Apple布局无人驾驶,IBM Watson推出医疗、金融、政府、呼叫中心等企业应用,阿里巴巴布局智能金融解决方案等。针对企业用户的应用/解决方案未来的变现模式除直接出售解决方案外,还可以从流量和广告中转化价值。
创业企业除直接布局场景应用解决方案外,更有效的方式是采取从深挖技术到拓展应用的发展路径。例如,旷视科技以机器视觉技术为突破点,深耕先进的人脸识别、图像识别技术,进而拓展到行业智能解决方案、智能硬件及智能云服务。在发展前期(2011-2014年),旷视科技定位为商用机器视觉开放平台,深耕Face++人脸识别云服务、Image++图像识别云服务和Brain++人工智能深度学习系统。2014年后,Face++开始发力智能行业解决方案,主攻覆盖银行、保险、互联网金融的泛金融行业解决方案和覆盖地产、零售、公安的泛安防解决方案,目前已形成远程核实身份、智能企业、智能商超、智能生活、智慧安防等多种解决方案和人脸识别智能摄像机等智能硬件。未来,旷世科技将向纵深拓展,构建人工智能云、智能感觉网、服务机器人等智能生态基础架构。
大数据和人工智能将企业竞争带入新的纪元,互联网不仅连接虚拟空间,还连接人和资产所在的现实空间。人工智能时代,企业竞争优势转变为算法和数据资产,建立学习网络和数据生态,360度洞察消费者,通过人工智能不断地学习产生新的知识,同时在数据驱动下,进行即时自动决策。
为实现快速转型,在人工智能阶段构建新的竞争优势,传统企业需要携手互联网企业,探索新的商业模式。如,通用电气(GE)公司与微软公司近期宣布合作将通用电气用于工业互联网的Predix平台登陆Microsoft Azure云平台为工业客户提供服务。2015年,富士康和阿里巴巴合作发起“淘富成真”项目,这一项目开放富士康世界级的设计、研发、专利、供应链、智造等能力,阿里云的云计算平台和大数据处理能力,YunOS物联网操作系统能力,阿里电商平台、淘宝众筹能力,同时引入基金和孵化器等企业为创业者提供全链路创新创业服务,目的是帮助中小智能硬件的创业者,完成硬件创业孵化的闭环。
在政府层面,人工智能产业已充分得到了我国政府的重视,近期国家级人工智能扶持政策相继出台。为加快人工智能产业发展,政府应从以下三个维度加强对人工智能产业的政策支持:
开放政府及公共领域数据,打造国家级人工智能资源平台。数据是人工智能的基础。为鼓励人工智能产业发展,应开放公共数据,并优化数据质量,建立系统化结构化的数据库平台,为人工智能的发展提供资源。
建立企业主导、高校研发、国家投入的人工智能产业一体化发展模式。人工智能在未来数年内将以服务智能为主,因此需要树立企业在人工智能行业的主导地位,鼓励企业积极开发人工智能的场景应用,以将人工智能科研成果转变为商业价值。同时,鼓励高校研发、增加国家科研投入,为长期人工智能基础科技突破做准备。
以产业基金、专项基金等激励人工智能创新,提供针对人工智能创业企业的税收优惠,以人才为导向,配套全球人工智能人才安家政策,提供宽松的人工智能法律法规环境。