崔小珂
摘要:在现代数学学科基本理论的发展路径之中,微积分基本理论为概率论与数理统计基本理论的快速有序发展,创造和提供了坚实的支持条件,切实做好微积分理论内容在解决概率论与数理统计问题过程好的应用,对于有效提升我国概率论与数理统计数学理论的发展水平,具备极其深刻的现实影响意义。
关键词:概率论与数理统计;微积分;应用
O21;O172
现代数学学科理论构成体系中的概略伦和数理统计理论内容,能够针对自然界中出现的随机事件的统计学规律展开严谨的数学运算处理。从数学学科理论体系中不同知识内容之间的相互关系角度展开具体分析,微积分理论不仅是概率论与数理统计理论的基础,而且概率论与数理统计理论,和高等数学中的微积分理论之间还具备着表征鲜明的相互关联和相互制约关系,在现代天文科学、生物科学、经济学、应用工程学、化学,以及物理力学快速有序发展的历史背景之下,微积分理论和概率论与数理统计理论之间的相互关系呈现了日渐紧密的发展变化特征,为一系列具体化随机问题的科学化解决创造和提供了坚实的支持条件。有鉴于此,本文将会围绕概率统计中微积分的应用问题展开简要阐释。
一、微积分理论和概率论与数理统计理论的基本概述
不难理解,概率论与数理统计理论,是在微积分基本理论基础上发展形成的现代数学理论分支,能够针对随机事件发展演化规律和外在表现特征的准确考量和描述,由于在具体开展概率论和梳理统计计算分析处理过程中,本身需要充分引入运用大量的微积分学数学运算知识呢运算技巧,因而导致微积分理论知识内容的掌握和运用质量,对于概率论和数理统计工作实际获取的文预期效果,具备深刻的影响和制约作用。
从具体涉及的知识内容角度展开分析,所谓概率论与数理统计数学理论,其实质就是针对自然界中存在的不确定现象和不确定事件,以及具备结果不确定特征的,或者是具备偶然性表现特征的现象,以及上述现象在实际出现和发展过程中所表现的集体性规律展开初始刻画描述,并在此基础上遵照概率论、以及梳理统计分析的数学处理方法,具体统计分析相关数据要素的规律性表现特征。
对于微积分学而言,其核心的理论内容,在于针对函数的微分以及积分,和函数相关概念以及应用问题展开详细的数理分析,其理论体系的建构基础要素在于实数、极限,以及函数等。微积分理论在建立处理过程中,将现代数论值具备观化表现特征的无穷小量视作其直接基础,因而在基本理论的发展路径层次具备鲜明的不稳固性。在数学家柯西、维尔斯特拉斯创立形成的极限数学理论,以及数学家康托尔创立形成的实数数学理论基础上,有效促进了现代微积分数学理论的基础内容不断发展严密。
从概率论与数理统计基本理论的历史发展路径角度展开具体分析,微积分理论中相关知识内容的不但发展成熟,为现代概率论与数理统计理论的成熟化和公理化发展,创造和提供了稳定为且坚实的实践支持条件,现代概率论与数理统计理论的系统化和科学化发展,與微积分理论的发展成熟,具备不容忽视的因果关系。
二、概率论与数理统计过程中微积分知识内容的具体应用
为清晰认识概率论与数理统计理论的基本内涵,以及微积分理论的基本内涵,同时清楚分析概率论与数理统计理论和微积分理论之间的相互关系,应当从一系列的实际案例出发,为有关知识内容认识水平的不断提升,以及有关数理计算分析方法掌握水平的不断提升,创造和提供坚实的支持条件,本文将试举几例展开简要揭示:
第一,已知有M个好朋友在一张圆形桌子的周围随机就坐,假若有两个朋友是必须要坐在相邻的作为之上的,则计算求解这一在随机性研究视野之下,这一事件的发生概率?、
第二,在针对书架上的书实施整理过程中,已知可以将编号为1、3,以及3的三本书在书架上以随机顺序实施排列,如果在所有的排列顺序中,至少保证有一本书的由左到右的空间排列顺序,与该书编号相同,求解这一事件的发生概率是多少?
第三,一批产品的次品率为5%,从中任取三件进行检查,每次取一件,检查后放回,求:(1)三件中恰有一件次品的概率;(2)三件都是正品的概率;(3)三件中次品不超过一件的概率;(4)至少有一件次品的概率。
三、微积分计算分析方法在求解概率论与数理统计问题中的实际应用
(一)级数求和方法
级数是现代高等数学基础性学科内容构成体系中的重要组成内容,是表述初等函数解析式的基本方法。在运用裂项相消求解函数级数过程中,其最为关键的实施环节,在于如何针对级数运算过程中涉及的通项结构实施针对性的拆开处理,并促使其形成可以实施前后相消计算处理的算术项,而通常运用的计算处理方法,往往涉及了分子有理化、分母有理化,以及三角恒等变换等数学处理应用方法,这些方法与微积分中的基本理论具备不容忽视的相互关联特征。
在针对三角函数形式的无穷级数实施求和处理过程中,需要应用微积分学的有关处理方法,针对基础的三角极级数公式实施展开处理,通过恰当的函数表达式形式转化手段,将其转化为两项不定式之间的差值,为后续开展级数求和过程创造支持条件。
(二)极限问题的求解
极限问题也是一种比较典型的概率问题,其本身作为现代微积分学理论的重要基础,对在微积分学基本理论发生发展的全过程中发挥了不容忽视的重要作用,在具体引用极限法求解数列和问题过程中,要运用微积分学基本理论,对数列通项公式展开针对性的变形处理,确保实际求解过程能够顺利取得预期效果。
四、结语:
针对概率统计中微积分的应用问题,本文具体选取微积分理论和概率论与数理统计理论的基本概述、概率论与数理统计过程中微积分知识内容的具体应用,以及微积分计算分析方法在求解概率论与数理统计问题中的实际应用三个具体方面展开了简要的论述分析,旨意为相关领域的研究人员提供借鉴。
参考文献:
[1]孙向涛.探讨概率统计中微积分的应用[J].科技创新导报,2014(06).
[2]刘鹏,徐厚宝.统计方法在研究微积分与后续课程相关性中的应用与实证分析[J].数学的实践与认识,2011(24).
[3]王婷.高中微积分教学探究[J].甘肃联合大学学报(自然科学版),2008(S1).
[4]张子颖,汪太月.概率论中微积分思想的应用[J].湖北理工学院学报,2016(04).
[5]袁文燕,叶其孝.一本不可多得的以建模思想为主导的数学教材——《微积分与概率统计—生命动力学的建模》[J].数学建模及其应用,2012(01).