炎症性疾病中细胞色素P450表达调控的研究进展

2017-03-16 10:47茜,李
大连医科大学学报 2017年1期
关键词:原代炎症性肝细胞

虞 茜,李 巍

(1. 扬州大学医学院 基础医学系,江苏 扬州 225001; 2. 扬州大学医学院 临床医学系,江苏 扬州 225001;3. 江苏省中西医结合老年病防治重点实验室,江苏 扬州 225001)

综 述

炎症性疾病中细胞色素P450表达调控的研究进展

虞 茜1,李 巍2,3

(1. 扬州大学医学院 基础医学系,江苏 扬州 225001; 2. 扬州大学医学院 临床医学系,江苏 扬州 225001;3. 江苏省中西医结合老年病防治重点实验室,江苏 扬州 225001)

细胞色素P450(cytochrome P450, CYPs)是人体内催化外源化合物氧化反应的主要代谢酶,参与了近90%药物的代谢。在炎症性疾病过程中,CYPs家族某些成员的表达可能会下降从而改变药物的代谢表型,对CYPs的诱导或抑制可能改变药物代谢速度,进而影响体内药物的浓度。而在此过程中影响CYPs的机制可能与Th1细胞分泌的IL-1β、IL-2、IL-6、TNF-α、IFN-γ,Th2细胞分泌的IL-4、IL-5、IL-10、IL-13、TGF-β,核受体和microRNA有关。本文综述炎症性疾病中CYPs的调节作用及相关机制,为炎症性疾病临床用药提供参考。

细胞色素P450;炎症;细胞因子;疾病;感染

细胞色素P450(cytochrome P450, CYPs)是一类混合功能氧化酶,主要存在于肝细胞光面内质网内。人类编码的CYPs基因分属于18个基因家族的44个亚家族,其中涉及体内大多数药物代谢的主要为前3个基因家族(CYP1、CYP2、CYP3)中的7个重要的亚型,分别为CYP1A1、CYP2A6、CYP2C9、CYP2C19、CYP2D6、CYP2E1、CYP3A4[1]。基于CYPs代谢的药物不仅可作为CYPs的底物,还能作为CYPs的酶诱导剂或者抑制剂, CYPs酶活性被诱导或抑制能加速或者减缓CYPs底物代谢,引发其底物血药浓度的改变,从而影响药物的安全性和有效性。近期研究表明由药物代谢改变导致药物不良反应占住院病例的10%[2]。影响CYPs活性的因素包括遗传、年龄和共服药物等。近年来疾病导致的CYPs活性变化引发的不良反应也开始受到关注[2-4]。Woolbright BL等[5]研究表明机体在炎症和感染的情况下肝脏内CYPs的表达和酶活性会受到影响。其中最先报道的研究是在小儿流感过程中,炎性细胞因子水平的升高引起CYPs表达降低,导致茶碱的清除降低,血药浓度升高,半衰期延长,引发了茶碱过量症状的出现[6]。因此,了解炎症条件下CYPs的调节作用及机制,可对临床合理用药,避免药物-疾病相互作用提供参考。

研究发现,感染细菌、病毒及寄生虫引发的炎症以及类风湿性关节炎等炎症性疾病均对CYPs的表达有调控作用[2-3,7]。这些炎症反应又分为1型免疫和2型免疫,分别由Th1和Th2细胞为主介导。在炎症性疾病环境下CYPs基本处于低活性状态。炎症因子是炎症性疾病的共同调节因素[8]。目前研究认为炎性疾病中CYPs活性下降的机制可能是由Th1和Th2细胞分泌的细胞因子介导的,另外,核受体和microRNA也可能是炎症过程中下调CYPs的机制。

1 Th1细胞介导的炎症及其反应相关因子

细菌、病毒感染引起的炎症和类风湿性关节炎属Th1细胞主要介导的炎症反应。实验动物肝外感染革兰氏阳性菌或革兰氏阴性菌均可引起参与药物代谢的1、2和3家族的大部分CYPs酶活性下调[2,9-11]。革兰氏阴性细菌的内毒素脂多糖(lipopolysaccharide, LPS)可在人原代肝细胞培养和小鼠体内复制模型细菌感染导致的CYPs表达的降低,并被广泛应用于细菌感染引起的炎症反应对CYPs的调控机制研究中[12-13]。病毒感染同样引起CYPs表达的下调。慢性丙型肝炎病毒感染者代谢CYP3A4探针底物美达唑仑的能力下降[14]。乙型肝炎病毒感染者肝细胞中CYP2C19的mRNA表达下降[15]。肝外病毒感染同样改变CYPs的活性,例如儿童上呼吸道病毒感染使肝CYP1A2水平降低[6],HIV患者体内肝CYP2E1和CYP2B6的表达降低[16-17]。此外,Th1主导的非感染性炎症性疾病类风湿性关节炎患者体内同样存在CYPs活性下调,CYP3A4的底物辛伐他汀的代谢清除速率被抑制[3]。

1.1 IL-1β

IL-1β可下调大鼠和人的CYPs。在大鼠脑损伤模型中,IL-1β下调CYP2B1和CYP2D1的mRNA以及CYP1A2,CYP2B1,CYP2D1和CYP3A2蛋白质的表达[18];在人FLC-4肝癌细胞株中,IL-1β下调CYP3A4的表达[19];在人原代肝细胞中IL-1β可下调CYP2C8和CYP3A4的表达[20]。但采用不同供体的人原代肝细胞的体外研究发现,IL-1β对CYPs mRNA 水平的抑制是个体依赖性的,不同个体CYPs的表达变化对IL-1β的敏感性没有固定的模式[21]。

1.2 IL-2

除了作为细胞分泌的促炎细胞因子参与炎症反应外, IL-2也可用于治疗癌症和HIV等。在体外培养的大鼠原代肝细胞体系中,IL-2作用后会引起CYP2C11和CYP3A的mRNA和蛋白质下调[22]。对人肝细胞的研究表明,IL-2诱导其CYP2D6的基因表达, 对CYP2C19和CYP2B6的基因表达无影响,但却能够抑制上述3个酶的活性[23]。在人肝细胞单独培养的体系中,与IL-1和IL-6持续下调CYPs的作用不同,IL-2可短暂的下调CYP3A4。而在库否氏细胞存在的条件下,IL-2可持续下调人肝细胞内的CYP3A[24]。

1.3 IL-6

IL-6是I型炎症反应中分泌的重要的促炎症分子,可引起广泛的CYPs抑制。在体外培养的人原代肝细胞中,IL-6能够在转录水平上抑制CYP2E1,CYP3A,CYP1A2,CYP2B6,CYP2C9,CYP2C19,CYP3A4,同时可以不同程度的降低CYP1A2,CYP2B6,CYP2C9,CYP2C19,CYP2D6,CYP3A4的酶活性[20,23]。而且与IL-2不同,该作用并不依赖于库否氏细胞即可持续发生[24]。而用IL-6受体单克隆抗体tocilizumab能够恢复上述IL-6引起的CYP3A4的mRNA表达的下调[19]。体内实验也表明IL-6可调控多种CYPs的表达,IL-6基因敲除的Engelbreth-Holm-Swarm肉瘤小鼠模型中,midazolam(IL-6拮抗剂)处理后能够恢复被抑制的Cyp3a11基因表达[25]。在小鼠体内阻断IL-6信号传导会诱导CYP2E1的表达,进而提高乙酰氨基酚的活性代谢产物产生,从而加重肝损伤。在类风湿性关节炎的病人体内,抗IL-6单克隆抗体sirukumab治疗后能够逆转IL-6介导的CYP3A、CYP2C9和CYP2C19的探针底物代谢活性的下降[26]。

1.4 TNF-α

肿瘤坏死因子(tumor necrosis factor,TNF)可促进中性粒细胞吞噬,抗感染,引起发热,诱导肝细胞急性期蛋白合成,促进细胞增殖和分化,是重要的炎症因子。在体外培养的人原代肝细胞中,TNF-α处理使CYP1A2、CYP2C、CYP2E1和CYP3A4的mRNA表达下降,并且能够不同程度的降低CYP1A2,CYP2C9,CYP2C19,CYP3A4,CYP2B6,CYP2D6的酶活性[23,27]。但在人肝癌细胞株FLC-4的三维培养模型中,TNF-α能够抑制CYP3A4的mRNA的表达,且具有浓度依赖性(0~10 ng·mL-1)和时间依赖性(0~24 h),却对CYP3A4的蛋白质水平和酶活性的改变无明显的影响[19]。枸橼酸杆菌感染的小鼠模型中, Cyp3a11和Cyp3a2的表达下调可被TNF-α拮抗剂XPro1595阻断,表明TNF-α可能是引起Cyp3a11和Cyp3a25表达下调的原因[28]。

1.5 IFN-γ

IFN-γ在人肝细胞和大鼠原代肝细胞中能够抑制多种CYP亚型的基因表达和酶活性[20]。在HepG2细胞中,IFN-γ能够抑制胞内CYP2E1的启动子活性从而抑制其表达。在体外培养的人原代肝细胞中,IFN-γ能够在mRNA水平上抑制CYP1A2、2B6的表达,在转录后水平上抑制CYP2E1、2B6的表达,在酶活性上抑制CYP1A2,但是对CYP3A无影响[20,27]。

2 Th2细胞介导的炎症及其反应相关因子

寄生虫感染和过敏性反应属Th2细胞主要介导的炎症反应,关于Th2介导的炎症与CYPs的表达相关性的研究相对较少。据报道疟原虫感染导致肝微粒体中CYP2C9,CYP2C19和CYP3A4的酶活性被抑制[29]。对小鼠的研究表明曼氏裂体吸虫感染慢性期,即虫卵感染肝脏导致的肝脏发生基于Th2的炎症反应,使体内Cyp1a2,Cyp2c29,Cyp2e1,Cyp2j5,Cyp3a11,Cyp4f13和Cyp4f18的表达均显著下调[30]。然而带状泡尾幼虫感染的大鼠肝CYP1A1,CYP1A2,CYP2B1的活性却增强[31]。但是非感染性Th2主导的炎症反应中,卵清蛋白诱导的过敏性反应引起的炎症对小鼠肝脏Cyp1a2,Cyp2c29和Cyp3a1表达均无影响[32]。

关于Th2分泌的IL-4,IL-5,IL-10,IL-13,TGF-β等细胞因子对CYPs表达调控的研究较少。在小鼠体内炎症模型中,IL-4,IL-10升高的同时肝微粒体中CYP1A和CYP2B的酶活性降低[33]。采用人肝癌细胞株B16A2 进一步研究发现,该诱导作用是通过STAT6和NFATc1结合于CYP2E1启动子的转录增强所致[34]。在小鼠的重组腺病毒模型中,IL-10显著升高的同时CYP2J的表达降低,并且CYP2J也能够抑制炎症情况下IL-10的浓度[35]。在曼氏血吸虫尾蚴感染的血吸虫病小鼠模型中,肝CYPs活性下降与Th2细胞分泌的细胞因子IL-4、IL-5、IL-13的显著增多存在相关性[30]。TGF-β能够在转录水平上抑制CYP2C8,CYP2C9,CYP2C19和CYP3A4的表达,对CYP2B6的mRNA有诱导作用,但是在蛋白质水平上观察到CYP2B6蛋白质表达降低[20]。

3 炎症影响CYPs的其它机制

核受体与CYPs的表达调控密切相关,参与调控的核受体包括过氧化物酶体增殖物激活受体(PPARα),孕烷X受体(PXR),组成型雄烷受体(CAR)、维甲酸X受体α(RXRα)和法尼醇X受体(FXR)等。在大鼠结肠炎炎症过程中,AhR、CAR、PXR、 PPARγ和FXR的 mRNA水平明显下调[36]。在溃疡性结肠炎的模型小鼠中,Cyp3a11, Cyp1a2, Cyp2c29, Cyp2d9和Cyp2e1的mRNA水平下降,并伴随着肝脏细胞因子水平升高和核受体CAR、PXR 的表达增多[37]。但是关于这些核受体是否受细胞因子直接调控的研究不多。

有文献报道小分子编码RNA(microRNA)能在转录后水平调控CYPs的表达。miR-130b、 miR107、 miR103、miR-570和miR-552是目前报道的可下调CYPs的分子[38]。炎症是否通过miRNA调控CYPs表达研究较少,但有证据表明这些miRNA可能作为促炎细胞因子的下游分子,参与调控CYPs。例如IL-6、 IFN-γ、TNF-α和TGF-β下调miR107的表达[39]。

尽管大部分研究认为促炎细胞因子是感染性炎症疾病中CYPs表达改变的主要原因,但有研究表明,感染源本身的成分可能也参与了CYPs的表达调控。大鼠体内研究发现,在腺病毒感染14天后,炎症介质已经消失的情况下,CYP3A2的表达仍被抑制。该研究认为,在促炎细胞因子消失后,腺病毒分子可能作用于整合素受体分子,进而下调CYP3A2的表达[7]。此外乙型肝炎病毒X蛋白可能与PXR相互作用,进而诱导人肝内CYP3A4的酶活性[40]。

在炎症病理生理条件下,尽管在大部分情况下可观察到大部分CYPs的mRNA表达和蛋白质受到抑制,但各种不同原因所致的感染或不同个体CYPs的变化情况并不完全一致,这可能是通过细胞因子、核受体、microRNA和感染源自身分子等多条途径所致。在体内,这一过程与基于药物代谢酶代谢的药物清除率的下降有关,会提高药物中毒的概率。因此,研究炎症与CYPs的关系有助于临床药物更合适的使用,避免药物疗效降低甚至引起致命的危险。

[1] ZHAO Chun, LI Yinsheng, Jiang Meilin, et al. Advanced of the Interaction between Cytochrome P450 and Xenobiotics [J]. Chin J Mod Appl Pharm, 2014, 31(8): 1020-1025.

[2] Gandhi A1, Moorthy B, Ghose R. Drug disposition in pathophysiological conditions [J]. Curr Drug Metab, 2012, 13(9): 1327-1344.

[3] Schmitt C, Kuhn B, Zhang X, et al. Disease-drug-drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis [J]. Clin Pharmacol Therap, 2011, 89(5): 735-740.

[4] Piccinato C, Neme RM, Torres N, et al. Increased expression of CYP1A1 and CYP1B1 in ovarian / peritoneal endometriotic lesions [J].Reproduction,2016, 51(6):683-692.

[5] Woolbright BL, Jaeschke H. Xenobiotic and Endobiotic Mediated Interactions Between the Cytochrome P450 System and the Inflammatory Response in the Liver [J]. Adv Pharmacol, 2015, 74: 131-161.

[6] Kraemer MJ, Furukawa CT, Koup JR, et al. Altered theophylline clearance during an influenza B outbreak [J]. Pediatrics, 1982, 69(4): 476-480.

[7] Jonsson-Schmunk K, Wonganan P, Choi JH, et al. Integrin Receptors Play a Key Role in the Regulation of Hepatic Cytochrome P450 3A [J]. Drug Metab Dispos, 2016, 44(5): 758-770.

[8] Spellberg B, Edwards JE, Jr. Type 1/Type 2 immunity in infectious diseases [J]. Clin Infect Dis, 2001, 32(1): 76-102.

[9] Schumacher SD, Jose J. Expression of active human P450 3A4 on the cell surface of Escherichia coli by Autodisplay [J]. J Biotechnol, 2012, 161(2): 113-120.

[10] Ahmad A, Ahmad A, Sudhakar R, et al. Designing, synthesis, and antimicrobial action of oxazoline and thiazoline derivatives of fatty acid esters [J]. J Biomol Struct Dyn, 2016, 28: 1-20.

[11] Monshouwer M, Witkamp RF, Nijmeijer SM, et al. Selective effects of a bacterial infection (Actinobacillus pleuropneumoniae) on the hepatic clearances of caffeine, antipyrine, paracetamol, and indocyanine green in the pig [J]. Xenobiotica, 1995, 25(5): 491-499.

[12] Shedlofsky SI, Israel BC, McClain CJ, et al. Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism [J]. J Clin Invest, 1994, 94(6): 2209-2214.

[13] Nguyen TV, Ukairo O, Khetani SR, et al. Establishment of a hepatocyte-kupffer cell coculture model for assessment of proinflammatory cytokine effects on metabolizing enzymes and drug transporters [J]. Drug Metab Dispos, 2015, 43(5): 774-785.

[14] Morcos PN, Moreira SA, Brennan BJ, et al. Influence of chronic hepatitis C infection on cytochrome P450 3A4 activity using midazolam as an in vivo probe substrate [J]. Eur J Clin Pharmacol, 2013, 69(10): 1777-1784.

[15] Tang X, Ge L, Chen Z, et al. Methylation of the Constitutive Androstane Receptor Is Involved in the Suppression of CYP2C19 in Hepatitis B Virus-Associated Hepatocellular Carcinoma [J]. Drug Metab Dispos, 2016, 44(10): 1643-1652.

[16] Pandey R, Ghorpade A. Cytosolic phospholipase A2 regulates alcohol-mediated astrocyte inflammatory responses in HIV-associated neurocognitive disorders [J]. Cell Death Discov, 2015, 1:15045.

[17] Vo TT, Varghese Gupta S. Role of Cytochrome P450 2B6 Pharmacogenomics in Determining Efavirenz-Mediated Central Nervous System Toxicity, Treatment Outcomes, and Dosage Adjustments in Patients with Human Immunodeficiency Virus Infection [J]. Pharmacotherapy, 2016, 36(12): 1245-1254.

[18] Ma J, Wang J, Cheng J, et al. Impacts of Blast-Induced Traumatic Brain Injury on Expressions of Hepatic Cytochrome P450 1A2, 2B1, 2D1, and 3A2 in Rats [J]. Cell Mol Neurobiol, 2016, 25. [Epub ahead of print].

[19] Mimura H, Kobayashi K, Xu L, et al. Effects of cytokines on CYP3A4 expression and reversal of the effects by anti-cytokine agents in the three-dimensionally cultured human hepatoma cell line FLC-4 [J]. Drug metabolism and pharmacokinetics, 2015, 30(1): 105-110.

[20] Aitken AE, Morgan ET. Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes [J]. Drug Metab Dispos, 2007,35(9):1687-1693.

[21] Dickmann LJ, Patel SK, Wienkers LC, et al. Effects of interleukin 1beta (IL-1beta) and IL-1beta/interleukin 6 (IL-6) combinations on drug metabolizing enzymes in human hepatocyte culture [J]. Curr Drug Metab,2012,13(7):930-937.

[22] Tinel M, Robin MA, Doostzadeh J, et al. The interleukin-2 receptor down-regulates the expression of cytochrome P450 in cultured rat hepatocytes [J]. Gastroenterology, 1995, 109(5): 1589-1599.

[23] Dallas S, Sensenhauser C, Batheja A, et al. De-risking bio-therapeutics for possible drug interactions using cryopreserved human hepatocytes [J]. Curr Drug Metab, 2012, 13(7): 923-929.

[24] Sunman JA, Hawke RL, LeCluyse EL, et al. Kupffer cell-mediated IL-2 suppression of CYP3A activity in human hepatocytes [J]. Drug Metab Dispos, 2004, 32(3): 359-363.

[25] Kacevska M, Mahns A, Sharma R, et al. Extra-hepatic cancer represses hepatic drug metabolism via interleukin (IL)-6 signalling [J]. Pharmaceut Res, 2013, 30(9): 2270-2278.

[26] Zhuang Y, de Vries DE, Xu Z, et al. Evaluation of disease-mediated therapeutic protein-drug interactions between an anti-interleukin-6 monoclonal antibody (sirukumab) and cytochrome P450 activities in a phase 1 study in patients with rheumatoid arthritis using a cocktail approach [J]. J Clin Pharmacol,2015, 55(12): 1386-1394.

[27] Abdel-Razzak Z, Loyer P, Fautrel A, et al. Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture [J]. Mol Pharmacol, 1993, 44(4): 707-715.

[28] Kinloch RD, Lee CM, van Rooijen N, et al. Selective role for tumor necrosis factor-alpha, but not interleukin-1 or Kupffer cells, in down-regulation of CYP3A11 and CYP3A25 in livers of mice infected with a noninvasive intestinal pathogen [J]. Biochem Pharmacol, 2011, 82(3): 312-321.

[29] Thelingwani R, Leandersson C, Bonn B, et al. Characterisation of artemisinin-chloroquinoline hybrids for potential metabolic liabilities [J]. Xenobiotica, 2016, 46(3):234-240.

[30] Mimche SM, Nyagode BA, Merrell MD, et al. Hepatic cytochrome P450s, phase II enzymes and nuclear receptors are downregulated in a Th2 environment during Schistosoma mansoni infection [J]. Drug Metab Dispos, 2014, 42(1): 134-140.

[31] Montero R, Serrano L, Davila VM, et al. Infection of rats with Taenia taeniformis metacestodes increases hepatic CYP450, induces the activity of CYP1A1, CYP2B1 and COH isoforms and increases the genotoxicity of the procarcinogens benzo[a]pyrene, cyclophosphamide and aflatoxin B(1) [J]. Mutagenesis, 2003, 18(2): 211-216.

[32] Moriya N, Kataoka H, Fujino H, et al. Different expression patterns of hepatic cytochrome P450 s during anaphylactic or lipopolysaccharide-induced inflammation [J]. Die Pharmazie, 2014, 69(2): 142-147.

[33] De-Oliveira AC, Poça KS, Totino PR2, et al. Modulation of cytochrome P450 2A5 activity by lipopolysaccharide: low-dose effects and non-monotonic dose-response relationship [J]. PLoS One, 2015, 10(1):e0117842.

[34] Mimche SM, Nyagode BA, Merrell MD, et al. Hepatic cytochrome P450s, phase II enzymes and nuclear receptors are downregulated in a Th2 environment during Schistosoma mansoni infection [J]. Drug Metab Dispos, 2014, 42(1): 134-140.

[35] Chen W, Yang S, Ping W, et al. CYP2J2 and EETs protect against lung ischemia/reperfusion injury via anti-inflammatory effects in vivo and in vitro [J]. Cell Physiol Biochem, 2015, 35(5):2043-2054.

[36] Zhou X, Xie Y, Qi Q, et al. Disturbance of hepatic and intestinal UDP-glucuronosyltransferase in rats with trinitrobenzene sulfonic acid-induced colitis [J]. Drug Metab Pharmacokinet, 2013, 28(4): 305-313.

[37] Kusunoki Y, Ikarashi N, Matsuda S, et al. Expression of hepatic cytochrome P450 in a mouse model of ulcerative colitis changes with pathological conditions [J]. J Gastroenterol Hepatol, 2015, 30(11): 1618-1626.

[38] Wang Pei, Li xiaotian, Zhang Lirong. Post transcriptional regulation of miRNAs on drug metabolism enzymes[J]. Chin Pharm J, 2015, 31(8): 1037-1040.

[39] Xue X, Cao AT, Cao X, et al. Downregulation of microRNA-107 in intestinal CD11c(+) myeloid cells in response to microbiota and proinflammatory cytokines increases IL-23p19 expression [J]. Eur J Immunol, 2014, 44(3): 673-682.

[40] Niu Y, Wu Z, Shen Q, et al. Hepatitis B virus X protein co-activates pregnane X receptor to induce the cytochrome P450 3A4 enzyme, a potential implication in hepatocarcinogenesis [J]. Digest liver Dis, 2013, 45(12): 1041-1048.

Research progress on the regulation of cytochrome P450 expression in inflammatory diseases

YU Xi1, LI Wei2,3

(1.DepartmentofBasicMedicine,YangzhouUniversitySchoolofMedicine,Yangzhou225001,China; 2.DepartmentofClinicalMedicine,YangzhouUniversitySchoolofMedicine,Yangzhou225001,China; 3.JiangsuKeyLaboratoryofIntegratedTraditionalChineseandWesternMedicineforPreventionandTreatmentofSenileDiseases,Yangzhou225001,China)

CYPs are a class of enzymes in human that mainly catalyze the oxidation reaction of xenobiotic compounds, and responsible for the metabolism of almost 90 percent of clinical drugs. During inflammation, the expression of some members of the CYPs family may be down regulated and the phenotype of drug metabolism may be changed. CYPs induction or inhibition may change the speed of drug metabolism, as a result, affect the concentration of drugs in vivo. The mechanism of the CYPs regulation is probably related to the cytokines, such as IL-1β, IL-2, IL-6, TNF-α, IFN-γ secreted by Th1 cells and IL-4, IL-5, IL-10, IL-13, TGF-β secreted by Th2 cells, as well as nuclear receptors and microRNAs. This article reviews the regulatory role of CYPs in inflammatory diseases and its related mechanisms, which will provide reference for clinical drug use during inflammatory diseases.

cytochrome P450s; inflammation; cytokine; disease; infection

江苏省高校自然科学研究面上项目(14KJB310026);扬州市自然科学基金青年科技人才项目(YZ2014020)

虞 茜(1991-),女,硕士研究生。

李 巍,副教授。E-mail: weili@yzu.edu.cn

10.11724/jdmu.2017.01.20

R392.5

A

1671-7295(2017)01-0087-05

虞茜,李巍.炎症性疾病中细胞色素P450表达调控的研究进展[J].大连医科大学学报,2017,39(1):87-91.

2016-09-21;

2017-01-01)

猜你喜欢
原代炎症性肝细胞
外泌体miRNA在肝细胞癌中的研究进展
高盐饮食或可诱发炎症性疾病
改良无血清法培养新生SD乳鼠原代海马神经元细胞
炎症性肠病与肝胆胰病变
MDT在炎症性肠病诊断和治疗中的重要性
新生大鼠右心室心肌细胞的原代培养及鉴定
艾迪注射液对大鼠原代肝细胞中CYP1A2、CYP3A2酶活性的影响
肝细胞程序性坏死的研究进展
肝细胞癌诊断中CT灌注成像的应用探析
桥粒芯糖蛋白1、3 在HaCaT 细胞、A431 细胞及原代角质形成细胞中的表达