张治科,张 烨,吴圣勇,雷仲仁, 4*
昆虫气味结合蛋白研究进展
张治科1*,张 烨2,吴圣勇3,雷仲仁3, 4*
(1.宁夏农林科学院植物保护研究所,宁夏植物病虫害防治重点实验室,银川 750002;2.山西省农业科学院植物保护研究所,太原 030031;3.中国农业科学院植物保护研究所,植物病虫害生物学国家重点实验室,北京 100193;4.闽台特色作物病虫生态防控协同创新中心,福州 350002))
嗅觉在昆虫生命活动中起着重要的作用,气味结合蛋白(odorant binding proteins, OBPs)是昆虫嗅觉系统中发挥重要作用的蛋白之一,近年随着基因组学、转录组学的快速发展,越来越多的昆虫OBPs基因陆续被鉴定出来,部分OBPs的功能也逐步被证实。本文作者针对OBPs的种类、结构特征、表达分布、三维结构以及生理功能等方面进行了综述,为更多昆虫OBPs基因的鉴定及其功能研究提供参考,也为进一步揭示昆虫-环境间的化学通讯机理以及开辟害虫新的防治策略奠定基础。
昆虫嗅觉;气味结合蛋白;结构特征;表达分布;生理功能
昆虫在长期进化过程中演化出复杂的嗅觉、味觉、触觉等信号感受机制,其中嗅觉在昆虫寄主选择、交尾、觅食、忌避及信息传递等生命活动中发挥重要作用。气味结合蛋白(odorant binding proteins, OBPs)是昆虫嗅觉系统中发挥重要作用的蛋白之一,主要存在于触角嗅觉感受器胞外空间的淋巴液内,能够结合并运送脂溶性气味分子通过水溶性淋巴液到达嗅觉神经元树突,激活树突膜上的嗅觉受体引发第二信使反应(Mombaerts, 1999)。由于昆虫触角上存在大量表皮具有微孔的嗅觉相关感器,通常认为亲脂性的气味分子由这些微孔进入到感器淋巴液中,被OBPs识别后结合,然后运转到气味受体(olfactory receptors, Ors),启动G蛋白偶联信号途径,嗅觉受体神经元上的Ors检测到气味物质并被识别和激活,引起膜电位发生变化并刺激神经,经轴突传到中枢神经系统,大脑整合后发出指令,从而产生相关嗅觉行为反应(Krieger and Breer, 2003),随后这些气味分子被感器淋巴腔中的气味降解酶(odorant degrading enzymes, ODEs)或者感器支持细胞中的多种酶降解(Vogtetal., 2005),将气味物质迅速分解,阻止气味物质与受体持续结合,从而保持受体活性(Vogt and Riddiford, 1981)。
自从Vogt等(1981)采用同位素标记的方法,起始在雄性多音天蚕蛾Antheraeapolyphemus的触角中发现了一个信息素结合蛋白(pheromone binding proteins,PBPs),其分子量16 kDa、等电点4.7、能够特异性结合雌性信息素、大量存在于毛形感器淋巴液中的可溶性蛋白,这是首次发现的一个昆虫OBP,开启了OBPs的研究,并在近些年来一直是昆虫化学生态学研究的热点。OBPs在昆虫触角感器淋巴液中浓度非常高,进一步细分为PBPs和普通OBPs(general odorant binding proteins,GOBPs),其中GOBPs又分为普通OBPsⅠ(general odorant binding proteinsⅠ,GOBPⅠ)和普通OBPsII(general odorant binding proteins II,GOBPII)(任珍珍等,2010);还有一类称为触角特异蛋白(antenna special proteins,ASPs),最初在西方蜜蜂ApismelliferaL.中发现,包括触角特异蛋白ASP1和ASP2(Dantyetal., 1998)。PBPs主要感受雌虫释放的性信息素组分,分布于毛型感器中,GOBPs主要感受环境中植物挥发性化学物质等环境信号气味物质,分布于锥型感器中。
近年来,越来越多的昆虫OBPs陆续被鉴定出来,如鳞翅目(曹馨月等,2015;李文海等,2015)、半翅目(Vandermotenetal., 2011)、双翅目(陈玲等,2013)、直翅目(Yuetal., 2009)、鞘翅目(Juetal., 2012)、膜翅目(吉挺等,2014)等。再加上基因组学、转录组学的发展速度飞快,研究人员利用这些技术手段,陆续发现了较多个OBPs,如在膜翅目昆虫意大利蜜蜂A.melliferaligustica中鉴定了21个OBPs(Forêt and Maleszka, 2006; Zhaoetal., 2013);在双翅目昆虫黑腹果蝇Drosophilamelanogaster基因组中鉴定了近60个OBPs(Matsuoetal., 2007),在中华按蚊Anophelessinensis中鉴定了64个OBPs(Xiuetal., 2016);在鞘翅目昆虫暗黑鳃金龟Holotrichiaparallela中鉴定了25个OBPs(Juetal., 2014);在直翅目昆虫亚洲小车蝗Oedaleusasiaticus触角中鉴定了15个OBPs(张硕,2015);在鳞翅目昆虫棉铃虫的触角转录组中鉴定了26个OBPs(Liuetal., 2012),在家蚕Bombyxmori的基因组中,发现了40多个OBPs(Gongetal., 2009a);在同翅目昆虫中也鉴定了较多个OBPs,如Zhou等(2010)在豌豆蚜中发现了十几个OBPs。OBPs蛋白序列相似性差异较大,有的序列相似性能到达90%以上,有的却小于10%,尤其是不同目昆虫或不同种昆虫OBPs间。
昆虫OBPs由位于嗅觉感器旁边的支持细胞合成,然后释放到感器的淋巴液中,是一类小分子(14-17 kDa)水溶性、偏酸性(pH5.0左右)的球状蛋白(Pelosietal., 2006),能与进入到触角内的脂溶性的气味物质结合并承担运送和卸载信息化合物的角色,是昆虫专一性识别环境气味物质的第一步生化反应(Vogt and Riddiford, 1981),对昆虫与外界进行信息交流起到重要意义(纪萍等,2013)。昆虫OBPs蛋白通常由135-220个氨基酸组成,不同昆虫种间序列相似性较低,但典型OBPs结构中均存在六个保守的半胱氨酸位点(Krieger and Breer,1999),且第2和第3个Cys之间间隔3个氨基酸,第5和第6个Cys之间间隔8个氨基酸;蛋白三维结构中成对出现的3个二硫键由这6个保守半胱氨酸形成的,对蛋白三维结构起到稳固作用(Tegonietal., 2004),如家蚕BmorPBP中Csy19-Csy54、Csy50-Csy108和Csy97-Csy117间形成的3个二硫键分别连接α螺旋1和3、3和6,5和6(Sandleretal., 2000)。还有一类非典型的OBPs,含有多于或少于6个保守的半胱氨酸位点,分别称为Plus-C OBP(Zhouetal., 2004)和Minus-C OBP(Spinellietal., 2012)。通常研究认为,OBPs的主要功能是首先识别并溶解环境中的脂溶性气味分子,然后承载这些气味分子、通过感器淋巴液、到达Ors,激活了整个嗅觉信号的转导过程(Krieger, 1999)。
起初研究者们发现,昆虫OBPs仅在触角中表达,如家蚕BmorOBPs(Kriegeretal., 1996)、亚洲玉米螟Ostriniafurnacalis的OfurPBP3(Allen and Wanner, 2011)、棉铃虫的HarmPBPs(Guoetal., 2012)和HarmOBP2(Wangetal., 2003)、小菜蛾Plutellaxylostella的PxylPBP1(Zhangetal., 2009)、小地老虎Agrotisipsilon的AipsPBPl-3(Huaetal., 2012)、水稻二化螟Chilosuppressalis的CsupOBP2(Gongetal., 2009b)等。
后来大量的研究证据表明,有些OBPs不仅在触角中表达,也在昆虫的头、胸、腹、足、翅、下颚须、喙、口器、性腺、精囊、气门等其它组织部位中表达(Lietal., 2008;Vogeletal., 2010;Huaetal., 2012;Yinetal., 2012;陈玲等,2013;魏丹等,2013;Zhuetal., 2013;吉挺等,2014;秦赠等,2014;宋月芹等,2014;赵雪等,2014)。
有的OBPs在雌雄虫体中的表达量和部位也有较大差异,如水稻二化螟Minus-C CsupOBP1在雄虫触角内的表达量显著高于雌虫触角(魏丹等,2013),小菜蛾的PxylPBPs在雄性成虫的足以及雌性成虫的生殖器官中表达(Sunetal., 2013),斜纹夜蛾的 SlitPBPl和SlitPBP2在表达于雄性成虫中表达十分高、斜纹夜蛾的SlitPBP3在雌性成虫中大量表达(Liuetal., 2013),小地老虎PBP1、PBP2和PBP3在雄性触角中表达,在味觉器官喙和下唇须中也有少量的表达(Guetal., 2013),在雌性成虫的腹部末端CpomGOBP2-3有表达(Garczynskietal., 2012)。
有的OBPs在蚜虫有翅和无翅期的表达量也存在差异,如茄无网蚜AcyrthosiphonsolaniOBPs OBP7在无翅成蚜时表达量显著高于有翅蚜(赵雪等,2014),推测该蛋白在无翅成蚜的觅食等嗅觉行为活动中发挥着重要作用。
近年来,大量的免疫组织化学和原位杂交实验表明,GOBP主要在锥形感器中表达,PBPs通常在毛形感器淋巴液中表达(Forstneretal., 2009; Guetal., 2013)。有些OBPs在毛形感器和锥形感器淋巴液中均有表达(Guetal., 2011)。
三维结构能够更加直观的阐明、推测OBPs的功能,对深入研究OBPs的功能起到不可或缺的作用。目前,NCBI数据库中已提交数千个PBPs序列,而PDB数据库中提交的OBPs晶体结构并不多。目前比较经典的研究昆虫OBPs三维结构的两种方法是X射线衍射(X-ray diffraction spectroscopy)和核磁共振技术(nuclear magnetic resonance, NMR)。昆虫OBPs三维结构第一个获得解析的是家蚕的BmorPBP(Dambergeretal., 2000),该蛋白结合口袋是由螺旋α1、α4、α5、α6组成,α3覆盖在结合口袋的另一端,结合口袋内部结合有性信息素蚕蛾醇(Sandleretal., 2000)。研究发现,pH值对PBPs的三维结构影响较大,家蚕复合物BmorPBP-bombykol的三维结构会因触角淋巴液pH的不同而有变化,如在高PH条件下表现出亲和性,低PH值条件下没有亲和性(Wojtasek and Leal,1999),这种现象在重建的BmorPBP1和天然蛋白中均存在,推测蛋白PH值从高向低转换是与生理相关的。随后研究证明在高、低两种PH值条件下,性信息素分子与家蚕BmorPBP的C末端折叠形成的α-螺旋共同竞争BmorPBP结合腔,当在pH较高时,BmorPBP蛋白的C末端会在蛋白的表面上折叠,然后开始结合性信息素,蚕蛾醇占据结合腔;低pH条件下BmorPBP1的C末端折叠形成一个α-螺旋占据结合腔,此时释放性信息素(Sandleretal., 2000)。由于树突表面的PH值较低(Leal, 2005a),当蚕蛾醇或BmorPBP到达Ors时信息素分子便从结合腔内释放出来。
随后又有果蝇的LUSH(Kruseetal., 2003)、蜚蠊Leucophaeamaderae的LmadPBP(Lartigueetal., 2003)、多音天蚕蛾的ApolPBP(Mohantyetal., 2004)、意大利蜜蜂的AmelPBP(Lartigueetal., 2004)、AmelGOBP(Lescopetal., 2009)和C-minus OBP AmelOBP14(Spinellietal., 2012)、冈比亚按蚊Anophelesgambiae的AgamOBP1(Wogulisetal., 2006)、家蚕的BmorGOBP2(Zhouetal., 2009)等的三维结构陆续获得了解析。
目前采用同源模建的方法,尤其在序列一致性较高的情况下,能够较为准确的预测OBPs的三维结构,促进了OBPs功能的进一步研究。如利用同源模建法构建棉红铃虫Pectinophoragossypiella的PBP三维结构,并采用Errat、Verify_3D、Procheck、ProSa2003等程序的评价结果具有很高的可靠性,显示棉红铃虫PBPs结构主要由6个α-螺旋和连接这些螺旋的回折构成,底物结合口袋成锥形,6个保守的半胱氨酸形成3个二硫键,对蛋白结构起到稳定作用(孙浩等,2013);中华蜜蜂Apisceranacerana体外重组蛋白AcerASP2与气味信息的结合模式和机理也通过同源建模和分子对接进行解析,显示4-烯丙基藜芦醚绝大部分位于该重组蛋白预测的1个狭长口袋状的疏水性结合腔内,并与Lys74产生2个氢键(李红亮等,2013);花绒寄甲Dastarcushelophoroides的DhelOBP21通过配体结合实验和分子对接,疏水相互作用比氢键相互作用更为明显,尽管形成氢键的相互作用可以预测一些结合复合物,疏水相互作用更大程度的影响着疏水性结合腔的变化,配体的取向通过影响疏水相互作用而影响结合(Lietal., 2015);信息化合物诱烯醇与苹果蠹蛾Cydiapomonella的CpomPBP2和BmorPBP对接的构象叠加研究表明, CpomPBP2结合袋内整个化合物的准确对接(Tianetal., 2016);基于靶标蛋白冈比亚按蚊AgamOBP1结合口袋特征,结合所构建的酰基哌啶类化物三维定量构效关系模型,阐明了酰基哌啶类化合物结构与驱避活性的关系(陈文雅等,2013),等。
昆虫OBPs的结构及其结合特性研究表明,6个α-螺旋构成的OBP的三维结构的结合腔,很有可能就是与外界气味分子结合的关键部位,而且气味分子进出结合腔会与一些因子密切相关,Leal(2005b)研究报道如气味分子的构象、触角感器淋巴液的pH值等。Sandler等(2000)报道在识别气味分子时,位于蛋白结合腔开口处或内部的某些亲水性氨基酸残基发挥重要角色,除此,OBPs结合化学气味分子和释放化学气味分子时,都会经历pH致使的一些构象变化,Xu等(2010)研究表明,当在酸性条件下,位于PBP C链末端的氨基酸会额外构成1个a-螺旋,同时占据了结合腔的内部,挤出了气味分子,在中性条件下,气味分子再次进入结合腔,由于C链末端又会变得疏松,这种现象与Kowcun等(2001)报道的位于嗅觉神经元树突膜附近的淋巴液通常情况下会偏酸性以及昆虫感器附近的淋巴液普遍认为呈中性的观点相一致。
有关OBPs在昆虫嗅觉识别中具体功能的假说不断被提出,目前普遍认为OBPs可能具有的功能(赵红霞等,2015):(1)具有外周滤器作用。在气味分子识别过程中选择性结合某些气味分子,同时在气味分子浓度过高时OBPs可降低其浓度,以免降低受体灵敏度,如PBPs对非信息素分子具有过滤作用。(2)OBPs可以通过亲水性的淋巴液作为溶剂和运输气味物质的载体。被认为能够溶解进入感器淋巴液中的气味分子,并且能够运输一些脂溶性的气味分子。(3)OBPs帮助气味分子到达嗅觉受体蛋白,有利于信号迅速传导。(4)降解气味分子,使气味分子失活。OBPs能够将气味分子运输到嗅觉受体,然后迅速激活嗅觉受体后,又能够迅速降解气味分子。(5)起到清除作用,能够及时清除结合在受体上的各种信息素,保持受体的活性。(6)OBPs还来自于昆虫触角以外的其它不同组织部位,意味着OBPs很可能还扮演其它未被揭示的重要功能。
截至目前科学家们能够确认的是首先识别并结合亲脂性气味分子,然后运输这些亲脂性气味分子,穿过感器淋巴液,最后到达目的地—嗅觉受体,有关其作用过程,有人研究认为OBP到达膜结合受体后释放配体,然后配体激活嗅觉受体(Maoetal., 2010);也有人认为OBP与气味分子结合的复合物共同激活膜结合受体(Laughlinetal., 2008)。当然,OBP在昆虫体内其他组织中也有表达,可能还发挥着其他重要的功能(Leal, 2013)。OBP可以单独、或与自身、或与其它OBP形成二聚体后与气味分子结合,如冈比亚按蚊OBP1和OBP4可形成二聚体共表达(Schultzeetal., 2012)。
在20世纪80-90年代主要采用同位素标记性信息素,再经聚丙烯凝胶电泳、转印和放射自显影技术检测结果的方法对多音天蚕蛾、舞毒蛾、烟草天蛾、甘蓝夜蛾等鳞翅目昆虫进行气味分子结合蛋白的功能研究(Lietal., 1997)。这种方法的缺点是不够简便、不安全并且实验结果不稳定。测定蛋白结合外界的气味分子的方法有几种,如Gu等(2011)采用的荧光竞争结合实验,Zhou等(2009)采用的冷结合实验,还有He等(2010)采用的双相结合实验。在这些方法当中,荧光竞争结合实验被用得最为广泛(Zhongetal., 2012),该方法利用气味分子与可发射荧光的高效特异探针和目的蛋白的竞争结合,能够测定OBP与气味分子特异性结合的强弱,可筛选出专一性的气味物质或性信息素,且简便、安全、可靠,该方法已被广泛应用到OBP与气味分子结合能力的测试中(Gongetal., 2009b;Yuetal., 2009;孙红岩等,2011;陈玲等,2013;李红亮等,2013;魏丹等,2013;宋月芹等,2014)。
昆虫嗅觉系统是一个高度专一、极其灵敏的化学检测器,可以识别环境中的特异性化学气味分子并直接接触这些信号物质进行觅食、趋避、寻偶和选择产卵场所等生命活动(Schneider, 1969),对昆虫适应环境和种群繁衍具有重要的生物学意义。探索、阐明昆虫与环境之间信息联系的本质规律,并运用此规律研究开发害虫产卵忌避剂和益虫利用新技术等,一直是国内外化学生态学研究的热点和目标之一,是生物间化学通讯机制研究的主要内容(Pelosietal., 2006)。
研究昆虫嗅觉相关蛋白是阐明昆虫嗅觉机理的基础,OBPs是参与昆虫嗅觉系统活动的重要成员之一,主要参与外界气味物质的嗅觉识别和传递过程。已报道的OBPs多源自鳞翅目、半翅目、双翅目、等翅目、直翅目、鞘翅目、膜翅目等,还有许多目昆虫OBPs至今未有鉴定。通过学者们不断探索研究,陆续明确了OBPs的一些生理生化特征、证实了OBPs的某些重要生理功能,如对气味物质的识别、运输、降解,以及OBPs与具体气味或信息化合物的分子对接机理等,但OBPs也许还发挥着其它未被发现或证实的重要功能,尤其蛋白互做功能研究任重道远、意义重大,尚需进一步深入研究,才能确切阐明OBPs在昆虫行为中所发挥的重要功能。因此,在今后的工作中,仍需加大对更多目昆虫OBPs的鉴定,加大对OBPs单独及互做下所发挥的功能深入研究,更好的明确昆虫寄主选择、驱避、产卵、求偶等方面的生化和分子机制、揭示害虫行为反应的本质原因、阐明昆虫的嗅觉感受机理、解析害虫-环境-寄主之间的化学通讯奠定基础,从而为保护和利用有益昆虫、调控昆虫行为、研发环境友好型引诱剂或驱避剂等害虫防控新策略提供依据。
References)
Allen JE, Wanner KW.Asian com borer pheromone binding protein 3, a candidate for evolving specificity to the 12-tetradecenyl acetate sex pheromone [J].InsectBiochemistryandMolecularBiology, 2011, 41: 141-149.
Cao XY, Huang YY, Zhao X,etal.Cloning and prokaryotic expression ofCydiapomonellapheromone binding proteinⅡ gene (CpomPBP2) [J].JournalofNorthwestA&FUniversity(Natural Science Edition), 2015, 43(3): 132-140.[曹馨月, 黄嫒媛, 赵骁, 等.苹果蠹蛾性信息素结合蛋白Ⅱ (CpomPBP2) 基因的克隆及原核表达[J].西北农林科技大学学报 (自然科学版), 2015, 43 (3): 132-140]
Chen L, Li HL, Zhou YX,etal.cDNA cloning, tissue expression and ligand binding characteristics of odorant-binding protein 2 from the oriental fruit fly,Bactroceradorsalis(Diptera: Tephritidae) [J].ActaEntomologicaSinica, 2013, 56 (6): 612-621.[陈玲, 李红亮, 周宇翔, 等.桔小实蝇气味结合蛋白BdorOBP2的cDNA克隆、组织表达及配基结合特性[J].昆虫学报, 2013, 56 (6): 612-621]
Chen WY, Wang SS, Li DL,etal.Structure activity relationship studies on novel acylpiperidine compounds based on insect OBP1[J].ChemicalJournalofChineseUniversities, 2013, 34 (12): 2798-2805.[陈文雅, 王珊珊, 李冬玲, 等.基于昆虫气味结合蛋白的新型酰基哌啶类化合物的构效关系[J].高等学校化学学报, 2013, 34 (12): 2798-2805]
Damberger F, Nikonova L, Horst R,etal.NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein fromBombyxmori[J].ProteinScience, 2000, 9, 1038-1041.
Danty E, Arnold G, Huet JC.Separation characmon and sexual heterogeneity of multiple putative odorant-binding proteins in the honeybeeApismelliferaL.(Hymenoptera: Apidea) [J].ChemicalSenses, 1998, 23 (1) : 83-91
Forêt S, Maleszka R.Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apismellifera) [J].GenomeResearch, 2006, 16 (11): 1404-1413.
Forstner M, Breer H, Krieger J.A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmothAntheraeapolyphemus[J].InternationalJournalofBiologicalSciences, 2009, 5: 745-757.
Garczynski SF, Coates BS, Unruh TR,etal.Application ofCydiapomonellaexpressed sequence tags: Identification and expression of three general odorant binding proteins in codling moth [J].InsectSci., 2013, 20(5): 559-574.
Gong DP, Zhang HJ, Zhao P,etal.The odorant binding protein gene family from the genome of silkworm,Bombyxmori[J].BMCGenomics, 2009a, 10 (1): 332.
Gong ZJ, Zhou WW, Yu HZ,etal.Cloning, expression and functional analysis of a general odorant-binding protein 2 gene of the rice striped stem borer,Chilosuppressalis(Walker) (Lepidoptera: Pyralidae) [J].InsectMolecularBiology, 2009b, 18: 405-417.
Gu SH, Wang WX, Wang GR,etal.Functional characterization and immunolocalization of odorant binding protein 1 in the lucerne plant bug,Adelphocorislineolatus(Goeze) [J].ArchivesofInsectBiochemistryandPhysiology,2011, 77: 81-98.
Gu SH, Zhou JJ, Wang GR,etal.Sex pheromone recognition and immunolocalization of three pheromone binding proteins in the black cutworm mothAgrotisipsilon[J].InsectBiochemistryandMolecularBiology, 2013, 43: 237-251.
Guo H, Huang LQ, Pelosi P,etal.Three pheromone-binding proteins help segregation between two Helicoverpa species utilizing the same pheromone components [J].InsectBiochemistryandMolecularBiology, 2012, 42: 708-16.
He X, Tzotzos G, Woodcock C,etal.Binding of the general odorant binding protein ofBombyxmoriBmorGOBP2 to the moth sex pheromone components [J].JournalofChemicalEcology, 2010, 36: 1293-1305.
Hua JF, Zhang S, Cui JJ,etal.Identification and binding characterization of three odorant binding proteins and one chemosensory protein fromApolyguslucorum(Meyer-Dur) [J].JournalofChemicalEcology, 2012, 38: 1163-1170.
Ji P, Liu JT, Gu SH,etal.Expression and binding specificity analysis of odorant binding protein AlucOBP7 fromApolyguslucorum(Hemiptera: Miridae) [J].ActaEntomologicaSinica, 2013, 56 (6): 575-583.[纪萍, 刘靖涛, 谷少华, 等.绿盲蝽气味结合蛋白AlucOBP7的表达及气味结合特性[J].昆虫学报, 2013, 56 (6): 575-583]
Ji T, Shen F, Liang Q,etal.Cloning, prokaryotic expression and tissue expression profiling of an OBP3 gene in the Chinese honeybee,Apisceranacerana(Hymenoptera: Apidae) [J].ActaEntomologicaSinica, 2014, 57 (8): 897-904.[吉挺, 沈芳, 梁勤, 等.中华蜜蜂OBP3基因的克隆、原核表达及组织表达谱[J].昆虫学报, 2014, 57 (8): 897-904]
Ju Q, Li X, Jiang XJ,etal.Transcriptome and tissue log pecific expression analysis of obp and csp genes in the dark black chafer [J].ArchivesofInsectBiochemistry&Physiology, 2014, 87 (4), 177-200.
Ju Q, Qu MJ, Wang Y,etal.Molecular and biochemical characterization of two odorant-binding proteins from dark black chafer,Holotrichiaparallela[J].Genome, 2012, 55: 537-546.
Kowcun A, Honson N, Plettner E.Olfaction in the gypsy moth,Lymantriadispareffect of pH, ionic strength, and reductants on pheromone transport by pheromone-binding proteins [J].JournalofBiologicalChemistry, 2001, 276: 44770-44776.
Krieger J, Breer H.Olfactory reception in invertebrates [J].Science, 1999, 286: 720-728.
Krieger J, Breer H.Transduction mechanisms of olfactory sensory neurons [J].InsectPheromoneBiochemistryandMolecularBiology, 2003, 593-607.
Krieger J, von Nickisch-Rosenegk E, Mameli M,etal.Binding proteins from the antennae ofBombyxmori[J].InsectBiochemistryandMolecularBiology, 1996, 26: 297-307.
Kruse SW, Zhao R, Smith DP,etal.Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH fromDrosophilamelanogaster [J].NatureStructural&MolecularBiology,2003, 10: 694-700.
Lartigue A, Gruez A, Briand L,etal.Sulfur single-wavelength anomalous diffraction crystal structure of a pheromone-binding protein from the honeybeeApismelliferaL [J].TheJournalofBiologicalChemistry, 2004, 279: 4459-64.
Lartigue A, Gruez A, Spinelli S,etal.The crystal structure of a cockroach pheromone-binding protein suggests a new ligand binding and release mechnism [J].TheJournalofBiologicalChemistry,2003, 278: 30213-30218.
Laughlin JD, Ha TS, Jones DNM,etal.Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein [J].Cell, 2008, 133: 1255-1265.
Leal WS, Chen AM, Ishida Y,etal.Kinetics and molecular properties of pheromone binding and release [J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 2005b, 102: 5386-5391.
Leal WS.Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes [J].AnnualReviewofEntomology, 2013, 58: 373-91.
Leal WS.Pheromone reception [J].TopicsinCurrentChemistry, 2005a, 240: 1-36.
Lescop E, Briand L, Pernollet JC,etal.Structural basis of the broad specificity of a general odorant-binding protein from the honeybee [J].Biochemistry, 2009, 48: 2431-2441.
Li DZ, Yu GQ, Yi SC,etal.Structure-based analysis of the ligand-binding mechanism for DhelOBP21, a C-minus odorant binding protein, fromDastarcushelophoroides(Fairmaire; Coleoptera: Bothrideridae) [J].InternationalJournalofBiologicalSciences, 2015, 11 (11): 1281-1295.
Li F, Prestwieh GD.Expression and characterization of a Lepidopteran general odorant-binding protein [J].InsectBiochemistryandMolecularBiology, 1997, 27: 405-412.
Li HL, Zhang LY, Zhuang SL,etal.Interpretation of odorant binding function and mode of general odorant binding protein ASP2 in Chinese Honeybee (Apisceranacerana) [J].ScientiaAgriculturaSinica, 2013, 46 (1): 154-161.[李红亮, 张林雅, 庄树林, 等.中华蜜蜂普通气味结合蛋白ASP2 的气味结合功能模式分析 [J].中国农业科学, 2013, 46 (1): 154-161]
Li S, Picimbon JF, Ji S,etal.Multiple functions of an odorant-binding protein in the mosquitoAedesaegypti[J].BiochemicalandBiophysicalResearchCommunications, 2008, 372: 464-468.
Li WH, Huang XL, Wang D,etal.Molecular cloning and immunofluorescence localization of sex pheromone binding protein 2 fromAtrijuglanshetaohei(Lepidoptera: Heliodinidae) [J].ActaEntomologicaSinica, 2015, 58 (10) : 1054-1062.[李文海, 黄兴龙, 王敦, 等.核桃举肢蛾性信息素结合蛋白2的分子克隆和免疫荧光定位[J].昆虫学报, 2015, 58 (10) : 1054-1062]
Liu NY, Liu CC, Dong SL.Functional differentiation of pheromone-binding proteins in the common cutwormSpodopteralitura[J].Comp.Biochem.Phys.A, 2013, 165: 254-262.
Liu Y, Gu S, Zhang Y,etal.Candidate olfaction genes identified within theHelicoverpaarmigeraantennal transcriptome [J].PLoSONE, 2012, 7: e48260.
Mao Y, Xu X, Xu W,etal.Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone [J].ProceedingsoftheNationalAcademyofSciences,USA, 2010, 107: 19102-19107.
Matsuo T, Sugaya S, Yasukawa J,etal.Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference inDrosophilasechellia[J].PLoSBiology, 2007, 5 (5): e118.
Mohanty S, Zubkov S, Gronenborn M.The solution NMR structure ofAntheraeapolyphemusPBP provides new insight into pheromone recognition by pheromone-binding proteins [J].JournalofMolecularBiology, 2004, 337: 443-451.
Mombaerts P.Seven-transmembrane proteins as odorant and chemosensory receptors [J].Science, 1999, 286 (5440): 707-711.
Pelosi P, Zhou J, Ban L,etal.Soluble proteins in insect chemical communication [J].CellularandMolecularLifeSciences, 2006, 63: 1658-1676.
Qin Z, Ran YH, Zhi ZJ,etal.Cloning and expression analysis of an odorant binding protein geneAsinOBP1 fromAnophelessinensis(Diptera: Culicidae) [J].ActaEntomologicaSinica, 2014, 57 (11): 1289-1298.[秦赠, 冉永红, 支中婧, 等.中华按蚊气味结合蛋白基因AsinOBP1的克隆和表达分析[J].昆虫学报, 2014, 57 (11): 1289-1298]
Ren ZZ, Liu XL, Hu MY.Structure and function of insect Olfactory proteins [J].ChineseJournalofBiochemistryandMolecularBiology, 2010, 26 (6): 531-537.[任珍珍, 柳晓磊, 胡美英.昆虫嗅觉相关蛋白的结构和功能[J].中国生物化学与分子生物学报, 2010, 26 (6): 531-537]
Sandler BH, Nikonova L, Leal WS,etal.Sexual attraction in the silkworm moth: Structure of the pheromone-binding-protein-bombykol complex [J].ChemistryandBiology, 2000, 7: 143-151.
Schneider D.Insect olfaction: deciphering system for chemical messages [J].Science, 1969, 163 (3871): 1031-1037.
Schultze A, Schymura D, Forstner M.Expression pattern of a“Plus-C”class odorant binding protein in the antenna of the malaria vectorAnophelesgambiae[J].InsectMol.Biol., 2012, 21 (2) : 187-195.
Song YQ, Xie XC, Dong JF,etal.cDNA cloning, expression profiling and binding properties of odorantbinding protein GmolOBP3 in the oriental fruit moth,Grapholitamolesta( Lepidoptara: Tortricidae) [J].ActaEntomologicaSinica, 2014, 57 (3): 274-285.[宋月芹, 解幸承, 董钧锋, 等.梨小食心虫气味结合蛋白GmolOBP3的cDNA克隆、表达谱及结合特性分析[J].昆虫学报, 2014, 57 (3): 274-285]
Spinelli S, Lagarde A, Iovinella I,etal.Crystal structure ofApismelliferaOBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules [J].InsectBiochemistryandMolecularBiology, 2012, 42 (1): 41-50.
Sun H, Shu M, Zhao LX,etal.Homology modeling of pheromone binding protein ofPectinophoragossypiella[J].JournalofEnvironmentalEntomology, 2013, 35 (6): 749-753.[孙浩, 舒茂, 赵雷修, 等.棉红铃虫信息素结合蛋白的同源模建[J].环境昆虫学报, 2013, 35 (6) : 749-753]
Sun HY, Yin J, Feng HL,etal.Expression, purification and binding characteristics of general odorant binding proteinⅠ (GOBP1) from themeadow moth,Loxostegesticticalia(Linnaeus) (Lepidoptera: Pyralididae) [J].ActaEntomologicaSinica, 2011, 54 (4): 381-389.[孙红岩, 尹姣, 冯红林, 等.草地螟普通气味结合蛋白Ⅰ(Lsti-GOBP1)蛋白表达纯化及结合特性分析[J].昆虫学报, 2011, 54 (4): 381 -389]
Sun MJ, Liu Y, Wang GR.Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth,Plutellaxyllotella[J].JournalofInsectPhysiology, 2013, 59: 46-55.
Tegoni M, Campanacci V, Cambillau C.Structural aspects of sexual attraction and chemical communication in insects [J].TrendsinBiochemicalSciences, 2004, 29: 257-264.
Tian Z, Liu J, Zhang Y.Structural insights intoCydiapomonellapheromone binding protein 2 mediated prediction of potentially active semiochemicals [J].ScientificReports, 2016, 6: 1-16.
Vandermoten S, Francis F, Haubruge E,etal.Conserved odorant-binding proteins from aphids and eavesdropping predators [J].PLoSONE, 2011, 6: e23608.
Vogel H, Heidel AJ, Heckel DG,etal.Transcriptome analysis of the sex pheromone gland of the noctuid mothHeliothisvirescens[J].BMCGenomics.2010, 11: 29.
Vogt RG, Riddiford LM.Pheromone binding and inactivation by moth antennae [J].Nature, 1981, 293 (5828): 161-163.
Vogt RG.Molecular basis of pheromone detection in insects.In: Gilbert L, Iatro K, Gill S, ed.Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology.Vol.3 [C].London: Elsevier; 2005: 753-804.
Wang GR, Wu KM, Guo YY.Cloning, expression and immunocytochemical localization of a general odorant binding protein gene fromHelicoverpaarmigera(Hubner) [J].InsectBiochemistryandMolecularBiology, 2003, 33: 115-124.
Wei D, Ye ZF, Gao JQ,etal.Molecular cloning and functional identification of a Minus-C odorant binding protein from the rice striped stem borer,Chilosuppressalis(Lepidoptera: Pyralidae) [J].ActaEntomologicaSinica, 2013, 56 (7): 754-764.[魏丹, 叶占峰, 高建清, 等.二化螟Minus-C气味结合蛋白的分子克隆及功能鉴定[J].昆虫学报, 2013, 56 (7): 754-764]
Wogulis M, Morgan T, Ishida Y,etal.The crystal structure of an odorant binding protein fromAnophelesgambiae: Evidence for a common ligand release mechanism [J].BiochemicalandBiophysicalResearchCommunications, 2006, 339 (1): 157-164.
Wojtasek H, Leal WS.Conformational change in the pheromone-binding protein fromBombyxmoriinduced by pH and by interaction with membranes [J].JournalofBiologicalChemistry, 1999, 274: 30950-30956.
Xiu H, Zheng BH, Yu JZ,etal.Genome-wide identification and characterization of odorant-binding protein (obp) genes in the malaria vectorAnophelessinensis, (Diptera: Culicidae) [J].InsectScience, 2016, 23(3): 366-376.
Xu X, Xu W, Rayo J,etal.NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBPl): Implications for pH-sensitive pheromone detection [J].Biochemistry, 2010, 49: 1469-1476.
Yin J, Feng H, Sun H,etal.Functional analysis of general odorant binding protein 2 from the Meadow Moth,LoxostegesticticalisL.(Lepidoptera: Pyralidae) [J].PLoSONE, 2012, 7: e33589.
Yu F, Zhang S, Zhang L,etal.Intriguing similarities between two novel odorant-binding proteins of locusts [J].BiochemicalandBiophysicalResearchCommunications, 2009, 385: 369-374.
Zhang S.Identification and Expression Profile Analysis of Odorant-binding Proteins Genes Based on Transcriptome in Grasshopper,Oedaleusasiaticus[D].Hohhot: Journal of Inner Mongolia Agricultural University, 2015: 31-32.[张硕.基于转录组的亚洲小车蝗气味结合蛋白基因的鉴定及其表达谱分析[D].内蒙古农业大学, 2015:31-32]
Zhang ZC, Wang MQ, Zhang GA.Molecular cloning and expression of pheromone binding protein 1 from the diamondback moth,Plutellaxylostella[J].EntomologiaExperimentalisetApplicata, 2009, 133: 136-145.
Zhao H, Luo Y, Lee J,etal.The odorant-binding protein gene obp11 shows different spatiotemporal roles in the olfactory system ofApismelliferaligusticaandApisceranacerana[J].Sociobiology, 2013, 60 (4): 429-435.
Zhao HX, Zeng XN, Liang Q,etal.Research on honeybee odorant-binding proteins biochemical characteristics, phyletic evolution, expression location and physiological function [J].JournalofEnvironmentalEntomology, 2015, 37 (2): 420-425.[赵红霞, 曾鑫年, 梁勤, 等.蜜蜂气味结合蛋白的生化特性、系统进化、表达部位和生理功能的研究[J].环境昆虫学报, 2015, 37 (2): 420-425]
Zhao X, Han LL, Wang L,etal.Sequence characteristic and expression profiling of odorant binding protein 7 gene fromAcyrthosiphonsolani[J].ChineseJournalofBiologicalControl, 2014, 30 (5): 639-646.[赵雪, 韩岚岚, 王玲, 等.茄无网蚜Acyrthosiphonsolani气味结合蛋白OBP7的序列特点及表达谱分析[J].中国生物防治学报, 2014, 30 (5): 639-646]
Zhong T, Yin J, Deng SS,etal.Fluorescence competition assay for the assessment of green leaf volatiles and trans-β-farnesene bound to three odorant-binding proteins in the wheat aphidSitobionavenae(Fabricius) [J].JournalofInsectPhysiology, 2012, 58: 771-778.
Zhou JJ, Robertson G, He XL,etal.Characterisation ofBombyxmoriodorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components [J].JournalofMolecularBiology.2009, 389: 529-545.
Zhou JJ, Vieira FG, He XL,etal.Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphidAcyrthosiphonpisum[J].InsectMolecularBiology, 2010, 19 (Suppl.2): 113-122.
Zhou JJ, Zhang GA, Huang W,etal.Revisiting the odorant-binding protein LUSH ofDrosophilamelanogaster: Evidence for odour recognition and discrimination [J].FEBSLetters, 2004, 558 (1-3): 23-26.
Zhu JY, Zhang LF, Ze SZ,etal.Identification and tissue distribution of odorant binding protein genes in the beet armyworm,Spodopteraexigua[J].JournalofInsectPhysiology, 2013, http: //dx.doi.org/10.1016/jjinsphys.2013.02.011.
Recent advances in odorant binding proteins of insects
ZHANG Zhi-Ke1*,ZHANG Ye2,WU Sheng-Yong3,LEI Zhong-Ren3, 4*
(1.Ningxia Key Laboratory of Plant Diseases and Pests Control, Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; 2.Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China; 3.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; 4.Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fuzhou 350002, China)
Olfactory plays important roles in the behavior of insects, illustrating the olfactory mechanism of insects will be useful to regulate insect behaviors and develop new strategy for pest control.Odorant binding proteins is one class important proteins in insect olfactory system.In recent years, with the rapid development of genome and transcriptome, more and more odorant binding proteins were identified, among them, some proteins’ functions were proved gradually, which are beneficial to reveal the machenism of insect olfactory.This paper summarized the classes, structure, expression, distribution,three-dimensional model, physiological functions of odorant binding proteins, which could provide reference for identifying more odorant binding proteins and studying their functions, lay the foundation for revealling furtherly chemical communication mechanism between insect and environment.
Insect olfactory; odorant binding protein; structural characteristics; expression and distribution; physiological function
张治科,张烨,吴圣勇,等.昆虫气味结合蛋白研究进展[J].环境昆虫学报,2017,39(3):713-720.
国家自然科学基金(31660621);宁夏农林科学院科技创新先导资金(NKYJ-17-05,NKYJ-15-15);宁夏自然科学基金(NZ15128);自治区重点研发计划重大项目(2016BZ09);一二三产业融合发展科技创新示范项目(YES-16-03);国家重点研发计划项目(2016YEC1201200)
张治科,男,1980年生,博士,副研究员,主要从事昆虫生态与综合防治以及昆虫化学生态学研究,E-mail: zhangzhike98@163.com
*通讯作者Author for correspondence, E-mail: zhangzhike98@163.com; leizhr@sina.com
Received: 2016-04-14; 接受日期Accepted: 2016-09-18
Q965;S433
A
1674-0858(2017)03-0713-08